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From the Translator 
    I have translated the main work of Poisson on probability theory but 

deleted many intermediate transformations not directly belonging to 

that discipline and full of formulas difficult to copy. Neither have I 

checked the derivations, sometimes insufficiently explained. 

    Poisson (Preamble, § 13) indicated (and obviously understated, see 

below) the aim of his first four chapters dealing with probability 

proper: they 

 

    Include the general formulas of the calculus of probability which 
disperses with searching for them elsewhere and enables to treat other 
problems alien to the special aim of these researches but proper for 
the calculus to explain. 
 

    Many authors have described the work of Poisson in the theory of 

probability, e. g., Bru (1981). I myself published a pertinent paper 

(1978), too long-winded but useful and was co-author of Gnedenko & 

Sheynin (1978) which contained a section on Poisson.  

    Here are some points contained in those four chapters. 

    1. Random variable. In § 53 Poisson defined a discrete random 

variable first appearing a few years earlier (Poisson 1829, § 2.5). Such 

variables were known and applied by Simpson, Laplace and Gauss and 

even before them, but Poisson introduced them formally although 

calling them by a provisional term. True, he still invariably considered 

extractions of balls of two or more colours from urns. 

    2. Chances and probabilities. Throughout his book, Poisson 

introduces both chances and probabilities. I am not at all sure that he 

was wholly consistent and anyway later authors have been applying 

much more appropriate terms, objective and subjective probabilities 

respectively. In many instances Poisson dealt with subjective 

probabilities and in a few cases his conclusions were therefore barely 

useful; one of his examples in § 11 was meaningless, see also Sheynin 

(2002). The probability of the studied event was 1/2, which signified 
complete perplexity (Poisson, § 4 of Chapter 1) and which information 

theory is telling us. The same is true about the celebrated Bertrand’s 

problem about the length of a random chord. 

    3. The law of large numbers and the central limit theorem. For 

Poisson, that law was rather a loose principle, and for many decades 

statisticians had understood it just as Poisson. De Moivre had 

introduced the simplest form of the central limit theorem later 

developed by Laplace. Then several authors, Laplace certainly 

included, provided non-rigorous proofs of a few of its other versions, 

whereas Poisson’s proof, on which he based his law of large numbers 

in a proper restricted sense, was methodically defective. 

    The law of large numbers (if understood in a loose sense) has been 

applied in the inverse case in which the theoretical probability was not 

known (or even did not exist) and had to be estimated (or effectively 

defined) by the observed frequencies. This case is less precise, but 

only Bayes rather than Jakob Bernoulli or De Moivre noted this 
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circumstance. For his part, Poisson at the very least did not study it 

quantitatively. 

    4. Causes of events. Poisson consistently introduced causes of 

events, probabilities of their action and chances which they provide for 

the appearance of the events. Later authors did not follow him; 

Quetelet, for example, studied causes of events quite independently. 

    5. Mathematical statistics. When estimating the significance of 

empirical discrepancies, a problem which now would have been 

attributed to it, Poisson effectively applied consistent estimators. In the 

same context he introduced null-hypotheses both as main assumptions 

and tests of no difference.  

    Poisson’s former student Gavarret (1840), who understood null-

hypotheses in the second sense, declared that they were indispensable. 

Both Poisson and he restricted the application of statistics (a term that 

Poisson never mentioned!) to the availability of numerous 

observations. See Sheynin (2012). 

    6. Theory of errors. The main point here is that, because of the ill-

fated priority strife between Legendre and Gauss, French 

mathematicians including Poisson had been ignoring the latter’s 

pertinent fundamental work. Add to this that Laplace’s theory of errors 

was barely useful since it demanded a large number of observations 

and his measure of error involved computations only possible in the 

case of the normal distribution. It was the existence of his own version 

of the error theory rather than the mentioned strife that prevented 

Laplace from following Gauss. 

    In several places of his book Poisson discussed geodetic 

measurements, but his deliberations were useless the more so since he 

was obviously ignorant of practical requirements and circumstances of 

field work. 

    7. Three more points. Poisson (§ 103) introduced functions now 

called after Dirac. They first appeared in Poisson (1811/1833, p. 637). 

For the sake of completeness I also mention that Poisson (1824, p. 

278) introduced the distribution later called after Cauchy and 

effectively discovered its stability. And he (1829, § 1; 1837, pp. 63 and 

80) also introduced distribution functions whose essential application 

did not begin until the 20
th

 century. 

    As a most general conclusion, I ought to add, first, that for Poisson 

the theory of probability remained, just like for Laplace, an applied 

mathematical discipline; and second, that his book is not a Lehrbuch, 

although this is how its translator into German had called it.  

    A few words about the fifth chapter. This is Poisson’s indirect 

explanation (Preamble, § 8) of its essence: 

 

    The precise aim of the theory is to calculate for a jury panel 
composed of a certain number of people and judging a very large 
number of cases by an also known majority verdict, the future rates of 
acquittal and conviction likely to take place and the chance of 
mistaken judgement for those who were or will be randomly selected 
as jurymen.  
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    Poisson introduced both the probability of mistakes made by 

jurymen and judges and, unlike Laplace, the prior probability of the 

defendant’s guilt. He studied the consequences of changes in criminal 

legislation on the conviction rate and on mistakes in convictions and 

acquittals but resolutely replaced the concepts of guilt and innocence 

by notions of subject to be convicted, to be acquitted.  

    Poisson extracted statistical data, including the particulars of 

verdicts (unanimous decisions, majority verdicts with various definite 

numbers of votes pro and con), by studying several sources. He never 

mentioned either the dependence between the decisions reached by 

jurors or judges or the inevitable changes with time in their attitudes to 

cases of the same kind. However, many of his conclusions were 

possibly more or less proper.  

    In spite of Laplace’s opinion, the application of probability beyond 

natural sciences had been strongly criticized, for example by Poinsot 

(Poisson 1836, p. 380 of the Discussion), and, after the appearance of 

Poisson’s book, by Mill (1843/1886, p. 353) and Poincaré (1896/1912, 

p. 20) who stated that people act like the moutons de Panurge. And 

Leibniz, in his letters to Jakob Bernoulli, insisted that a proper 

consideration of the pertinent circumstances was more important than 

calculations. 

    So how to estimate the influence of Poisson’s study? Heyde & 

Seneta (1977, p. 31) concluded that there was a surge of activity 
stimulated by Poisson. They mentioned the preceding work of Poisson 

in the same field and the ensuing discussions and inserted a sketch of 

the pertinent work of earlier authors, but did not justify their 

conclusion. 

   I can only name Cournot (1843). He included a chapter on criminal 

statistics and, like earlier (1838), attempted to investigate the 

dependence between jurors or judges. In several places Cournot 

criticized Poisson, sometimes indirectly, but severely (§§ 61, 93, 149 

Note, 225 and 237). 

    Unpleasant circumstances 
    1. The book was badly printed which is especially true with respect 

to formulas. 

    2. There are many misprints/mistakes unnoticed by Poisson. I have 

indicated at least some of them. 

    3. In the first two chapters, formulas are not numbered at all; in the 

next two, the enumeration is very incomplete. Poisson’s references to 

previous formulas are therefore somewhat awkward, and in a few 

cases barely understandable. I have additionally numbered many 

formulas and adopted a convenient form of their enumeration. 

    4. The Preamble was not separated into sections and I myself 

accomplished this task. 

    5. Poisson obviously intended his work for a wider circle of readers; 

some explanations are too detailed, and conclusions are illustrated by 

possible bets on one or another circumstance. However, in many 

places the explanations are patently insufficient. Furthermore, at least 

the discussion of the Petersburg paradox (§ 25) is unsatisfactory and 

the Bayes principle is superficially described in a few words (§1 of 

Preamble).  
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    6. For a modern reader Poisson’s mention of magnitude A or 

fraction p is superfluous, but I did not dare to omit these words. Note 

that by fraction he always meant a proper fraction. Understandably, his 

terminology is dated but left without change. Some modern notation, 

for example, n!, ,  
n
mC p , is lacking 

    I conclude that in an ideal world Poisson’s book should have been 

rewritten anew rather than reprinted (Paris, 2003 and 2012). 

    In 1841 Poisson’s book was translated into German (see 

Bibliography) with four apparently forgotten supplements about 150 

pages long by the translator (annuities and life insurance; moral 

expectation; probabilities of mean values, this being a translation of 

Poisson (1824 – 1829); application of probability to natural sciences). 

The print quality is good which allowed me to avoid at least some 

mistakes in copying formulas, and I also checked my translation of 

some phrases against their German rendition. 
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Contents 

    [Preamble]. The calculus of probability is equally applicable to things of all 

kinds, moral and physical and, if only in each case observations provide the 

necessary numerical data, it does not at all depend on their nature.  

    Statement about the general law of large numbers. Its verification by numerous 

and various examples taken from the physical and moral worlds. At present, they 

allow us to consider it as an empirical fact, never to be refuted. This law will be 

directly demonstrated below. 

    A summary of the observational data and of the results attained in the last chapter 

concerning the probability of judgements in criminal and civil matters. 

    Chapter 1. General Rules of Probabilities. Definition of the probability of an 

event. The difference that can be assigned between the terms chance and probability. 

Measure of probability. The goal of the calculus of probability. Demonstration of its 

main rules and examples of their applications
1
, §§ 1 – 13  

    Formulas describing the repetition of events in a series of trials. Solution of the 
problem of points. Solution of another problem based on the development of a 

polynomial raised to a given power. A note about chances varying during trials. The 

probability of obtaining m white and n black balls when extracting m + n balls at 

once from an urn containing white and black balls in a given ratio, §§ 14 – 19  

    General rules defining the probabilities of compound events if the chances of the 

simple events somehow change during the trials, § 20 

    Application of the calculus of probability for determining the advantages 

connected with the occurrence of possible things
2
. Calculation of the possible 

chances in the previous Royal Lottery of France. Contrary and equally badly justified 

prejudices of gamblers about the numbers to be drawn. What is understood by 
mathematical and moral expectation. Explication of a difficulty concerning the rule 

of mathematical expectation
3
, §§ 21 – 25  

    When an unknown chance favours the occurrence of one of the two contrary 

events, E and F, without us knowing which one, it always increases the probability of 

the events being repeated in two or more trials, § 26 

    Chapter 2. General Rules, Continued. Probabilities of Causes 

and Future Events Derived from Observing Past Events. The exact 

meaning attached to the words cause and randomness in the calculus of probability. 

Rules for determining the probabilities of various possible causes of an observed 

event. A remark about the application of this rule to successive events. The rules for 

determining, by issuing from observed events, the probabilities of other events 

depending on the same causes. This, however, does not suppose any influence of the 

occurred past events on the appearance of future events. Application of those two 

rules to particular examples, §§ 27 – 33  

    Extension of those same rules on a case in which there exist some prior 

observational notions about the events. An appropriate example proving the need to 

take them into consideration, §§ 34 – 35  

    Formulas concerning the probability of testimonies. The case in which it is only 

required to find out whether an event attested or denied by one or more witnesses is 

real or false. The case in which more than two events could have occurred and a 

witness attests to one particular event having taken place. A theorem concerning the 

probability of an event about which we found out through a traditional chain of 

witnesses, §§ 36 – 40  

    When a very large number of events is possible and their prior probabilities are all 

equal and extremely low, the occurrence of one among those having something 
remarkable should be likely attributed to a particular cause C, not being random but 

similar, for example, to human volition. If after observation such remarkable events 

become much more probable than the others, the probability of a cause C having 

intervened is much lowered, and perhaps to such an extent that it becomes useless to 

take it into consideration, §§ 41 – 42 

    Transformation of formulas concerning the probabilities of infinitely many 

possible causes and future events into definite integrals. It is possible to leave out 

common causes of past and future events and to regard both as compound events 
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depending on the same simple event G whose unknown chance can take an infinite 

number of values, §§ 43 – 45  

    Application of those integrals to the problem in which, given that the event G 

occurred m times in (m + n) trials and the contrary event H took place at the n other 

trials, it is required to determine the probability that they will occur, respectively, m' 

and n' times in (m' + n') future trials. The case in which it is certain beforehand that 

the unknown chance of G very little deviates from a given fraction
4
, §§ 46 – 48  

    Stating the Jakob Bernoulli theorem about the repetition of events in a very large 

number of trials proportional to their respective chances, whether known or not, but 

supposed constant. Its application to an example taken from Buffon’s l’Arithmétique 
morale. Indication of the proof of that theorem based on the binomial formula, §§ 49 

– 51  

    Stating the three general propositions demonstrated in Chapt. 4 which concern the 

repetition of events whose chances somehow vary during trials. Derivation of the 

general law of large numbers previously verified in the Preamble. This law is 

contained in two equations which justify all the important applications of the 

calculus of probability, §§ 52 – 54  
    Examples of the application of the first equation. The essential difference between 

using a constant chance and the mean chance of the events, both derived from 

observations. The constant sex ratio at birth. The ratio which should exist between 

the coincidence and the dissimilarity of the sex of the two firstborn into the same 

family, §§ 55 – 59  

    Indicated as applications of the second equation are calculations of the mean 

errors of observations, of the mean life at different ages, and of the influence of the 

winds on the height of the [mean] sea level, §§ 60 – 62  

    Digression concerning the principle of causality. Refutation of Hume’s opinion 

about the simple coincidence of cause and effect. It is seen that a cause capable of 

necessarily producing a phenomenon, although only observed a small number of 

times, can possess a very high probability, §§ 63 – 64  

    Probability of the existence and non-existence of a permanent cause of certain 

phenomena which is combined with variable causes and randomness but does not 

always produce those phenomena. What should be understood as luck and misfortune 

in games [of chance], § 65 

    Chapter 3. Calculus of Probabilities Depending on Very Large 

Numbers. The Case of Chances Invariable During the Trials. The 

need to turn to methods of approximation for calculating the values of the products 

of a very large number of unequal factors. Laplace’s method of reducing functions of 

large numbers expressed by definite integrals to convergent series. Application of 

this method to n!. The Wallis formula, §§ 66 – 68  

    Probability that two contrary events, E and F, occur m and n times respectively in 

a very large number (m + n) of trials. Decrease of this probability when the constant 

chances of E and F, instead of having been known beforehand, are determined by a 

large number of other observations. An example of a particular case in which the 

chances of those two events vary during the trials, §§ 69 – 72  

    Transformation of a part of the binomial formula to another formula convertible 

into a definite integral. Application of Laplace’s method to this integral. Formulas 

determining the probability that in (m + n) trials event E occurs at least m times, and 

the contrary event F takes place not more than n times. Probability that these 

numbers, m and n, will be contained between limits almost proportional to the 

respective chances of those two events. Probabilities of one of the numbers m and n 

not attaining either of these limits, §§ 73 – 79  

    The preceding formulas lead to the Jakob Bernoulli theorem stated in § 49. The 

case in which the chance of one of the two events, E and F, is slim. Probabilities of 

the difference between m and n being contained between given limits when the 

chances if E and F coincide or not. The role of randomness in a very large number 

(m + n) of trials, §§ 80 – 82  

    Probability of the limits containing the unknown chance of event E after it had 

taken place a certain number of times in a very large number of trials. The infinitely 

low probability of that chance being precisely equal to a given fraction. Therefrom 

we derive the probability of a future event comprised of E and the contrary event F. 

Application of the derived formula to different examples. Probability that the event E 
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which occurred m times in (m + n) trials will take place m' times in another very 

large number (m' + n') of trials. Its expression corresponding to a given difference 

between the ratios m/(m + n) and m'/(m' + n'). Comparing the chances of two 

different events which occurred a known number of times in a given number of 

trials. A numerical application to an example borrowed from the works of Buffon 

and solution of a problem admitting an important application. The resulting 

consequence about the election of deputies by a very large number of voters 

distributed among a considerable number of electoral constituencies, each 

nominating one deputy, §§ 90 – 93  
    Chapter 4. Calculus of Probabilities Depending on a Very Large 

Numbers, Continued. The Case of Chances Varying Somehow 

with the Case of Constant Chances Being Included. Transforming the 

rule of § 20 into a formula expressed by a definite integral. Its application to the case 

of a very large number of trials. Determining the probability that in (m + n) trials 

event E occurs m times with that number being contained between given limits. 

Conforming to the first general proposition of § 52, we conclude that the number m 

is likely to be almost proportional to the mean chance of E in that series of trials,  

§§ 94 – 96  

    Probability that the sum of values, whether restricted in number or becoming 

infinite, of a thing which takes place in a given number of trials is contained within 

given limits. Expressing that probability by definite integrals in a finite form in the 

particular case in which all those possible values have the same chance and remain 

invariable during the trials. Verifying both the particular result and the general 

formula in the simplest case of one single trial, §§ 97 – 100 

    The theorem of § 53 is proved by applying that formula in the case of a very large 

number of observations. Therefore, if that number becomes ever larger, the mean 

value of the thing considered accordingly approaches a constant value k coinciding 

with it if that same number can become infinite. That special constant depends on the 

law of probabilities of all the possible values [of the thing]. The more or less 

probable limits of the difference δ between that constant and the mean of the 

observed values in a very large number of observations depend also on another 

constant, h, of the same law. Determining these magnitudes, k and h, under simplest 

hypotheses about the law of probabilities. Examining the case in which, according to 

that law, the number of possible values is restricted, §§ 101 – 103  

    Demonstrating the second general proposition of § 52
5
. This completes the prior 

proof of the universal law of large numbers regarded until now as a fact learned by 

experience, § 104 

    A rule for deducing the result of observations and the limits of the difference δ 
having a given probability, or, reciprocally, the probability corresponding to a given 

extent of those limits, §§ 105 – 106  

    Probability of given limits of the difference between the mean values of the same 

thing provided by two series of different trials. The most advantageous rule for 

deriving the value approaching that thing from two or more series of observations. 

The value approaching that thing when the mean values really converge to its exact 

value; that is, when in each series the special constant is that veritable value,  

§§ 107 – 108 

    Probability of the given limits of the difference between the ratios m/(m + n) and 

m'/(m' + n') with m and m' being the numbers of the occurrences of the same event E 

in series of (m + n) and (m' + n') trials, if all the possible causes of E are the same in 

both series, although in each of them the chances of that event vary in some way,  

§ 109 

    Solving a problem about the inclinations of the planetary orbits relative to the 

ecliptic and about their eccentricities. Solving a similar problem about the 

inclinations of the comets. It is concluded that the unknown cause of the formation of 

the comets likely did not lead to unequal probabilities of either their various 

inclinations relative to the ecliptic or of the directions of their motion, direct or 

retrograde. It also appeared that the mean inclination of all the comets probably very 

little deviates from the same mean of all the comets observed until this day. Note 

about the great many glowing bodies being observed in the sky at a certain time of 

the year
6
. A remark about applying the calculus of probability to initial equations

7
 

provided by observations, §§ 112 – 113  
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    Chapter 5. Application of the General Rules of Probability to 

the Decisions of Jury Panels and the Judgements of the Tribunals. 
Determining the probability that an accused person will be convicted or acquitted by 

a certain majority of the jurymen, each having a given probability of faultlessness, 

when considering, in addition, the given probability of the defendant’s guilt existing 

before the judgement. Also determined, according to the rule about the probability of 

causes or hypotheses, are the probabilities of the accused, having been convicted or 

acquitted, being guilty or innocent, §§ 114 – 117  

    Formulas pertaining to the case of a certain number of jurymen, all of them having 

the same chance of faultlessness, whose judgement took or will take place, either by 

a given majority verdict, or by a verdict with only its minimal majority given. It is 

seen that the probability of a convictive verdict is always lower than the prior 

probability of guilt. The probability of a correct judgement only depends, other 
things being equal, on the majority of the verdict, but not on the total number of the 

jurymen
8
 if their chance of faultlessness is given beforehand. This statement does not 

persist if that chance has to be determined a posteriori by issuing from that majority, 

§§ 118 – 120 

    Applying these formulas to the case in which the jury panel is very large which 

greatly lowers the probability of a conviction returned by a small majority, § 121  

    A theorem about the jury panel composed of some number of jurymen each of 

them having many differing and unequally probable chances of faultlessness. An 

example of calculating the mean chance when the number of possible chances 

becomes infinite and their law of probabilities is given. This mean chance is the 

same for all the jurymen if they should be randomly selected from the same general 

list. Formulas which determine in that case the probabilities of a convictive verdict; 

of the convicted accused to be guilty; and of the chance of a mistake made by the 

jurymen to be contained within given limits, §§ 122 – 127  

    Application pf these formulas to a panel composed of a very large number of 

jurymen, §§ 128 − 131 

    In all cases, the use of those formulas require a formulated hypothesis about the 

law of probabilities of the jurymen’s chances of error. Examining the Laplace’s 

hypothesis. Its resulting consequences render it inadmissible. Since no appropriately 

justified hypothesis based on [some previously adopted] law of probabilities can be 

formulated, it is equally impossible to determine the probability of the correctness of 

an isolated judgement given the number of the jurymen and the majority of the 

verdict returned. The need to apply the results of a very large number of judgements 

for deriving the two special elements [parameters] included in the preceding 

formulas, the chance u of faultlessness common to all the jurymen randomly selected 

from the same general list and the probability k of the guilt of the accused resulting 

from the procedures preceding the pleadings at the assize courts, §§ 132 – 133  

    Probability of the difference between the rate of conviction derived from a series 

of trials and the special value, which this rate attains if the numbers of the convicted 

and accused become infinite, being contained between given limits. Probability of 

the difference between the former rate and the rate resulting from another series of 

trials to become contained within limits given as well, § 134 

    Observations which serve for determining the numerical values of u and k 

extracted from the Comptes généraux de l’administration de la justice criminelle. 

These values are the various ratios taken into account before applying the preceding 

probability formulas. Influence of the successive changes in the legislation 

concerning the jury panels in France on the magnitude of those ratios. Separating 

crimes into two distinctive categories. At present, we are obliged to suppose that the 

values of u and k, very different in those categories of crime, are respectively almost 

the same for all France, §§ 135 – 138  

    Calculating these values either for all France or for the département de la Seine in 

particular. Probability that, when issuing from those values, judgements of 

conviction or acquittal are returned unanimously, §§ 139 – 141  

    The meaning to be attached to the words convictable and not guilty. This is 

explained in more detail in the Preamble, § 142 

    Formulas which indicate the measure of danger to the accused of being convicted 

although not being convictable, and to the society of acquitting an accused who 

should have been convicted, § 143 
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    Calculating these measures and the probabilities of innocence and guilt of the 

convicted accused in periods of differing legislation, §§ 144 – 145  

    Indicating a similar calculation, impossible owing to the lack of necessary 

observations, concerning the judgements of the police courts
9
 and of the military 

justice, § 146 

    Formulas concerning the correctness, more or less probable, of judgements in civil 

cases returned in courts of first instance and courts of appeal, §§ 147 – 149  

    Lacking the observational data necessary for determining the two distinctive 

elements [parameters] included in those formulas, we are obliged to suppose that the 

chances of error are the same for all the judges in both these courts. Calculating that 

[common] chance by issuing from the ratio, given by observations, of the number of 

judgements confirmed by the royal courts to that of the judgements returned by the 

courts of first instance and yearly submitted to them. During three consecutive years, 

that ratio varied but little which is a very remarkable proof of the general law of 

large numbers. Issuing from those observational data, the probabilities of correct 

judgements of both types of courts either coinciding or not are derived, §§ 150 – 151  
 

Notes 
    1. The numbering of the sections was mistaken, so that § 13 follows after § 11. 

Poisson 

    2. Thing A (chose A) was the author’s term for random variable. Poisson (1829, p. 

3) even before 1837 formally introduced the random variable and, although naming 

it by a provisional term, applied it in probability theory at large. He hardly connected 

the letter A with aléa (chance, risk) since he (1811/1833, pp. 141, 146) denoted a 

constant by the same letter. See also my note From the Translator. 

    3. Not the rule, but the definition of mathematical expectation. 

    4. In § 2 of Chapter 1 Poisson mentioned that irrational values of probability were 

also possible. 

    5. When applying this general proposition, for example, to therapeutics, it also 

conforms to simple common sense. If a medicine was successfully taken by a very 

large number of similar patients, so that the number of cases when it failed to help 

was very small as compared with the total number of these experiments, it will likely 

be successful in a new trial. Medicine will not become either a science or an art if not 

based on numerous observations, on the tact and proper experience of the physicists 

who judge the similarity of cases and take into account exceptional circumstances. 

Poisson 

    6. The author suggests a possible cause of those glowing bodies. 

    7. The author’s term was équations de condition, but it contradicts the terminology 

adopted in the classical theory of errors. 

    8. Ostrogradsky made the same conclusion a few years earlier, see Note 1 to 

Chapter 5. 

    9. Police courts dealt with minor offences by summary jurisdiction. 
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Preamble 
    [1] A problem about games of chance proposed by a man about 

town to an austere Jansenist
1
 became the origin of the calculus of 

probability. Its aim was to determine the proportion according to 

which the stakes should be shared by the gamblers if they agree to stop 

playing and to base their decision on the unequal number of points 

gained by them
2
. Pascal was the first to solve that problem although 

only in the case of two gamblers. Fermat solved it somewhat later in 

the general case of any number of gamblers.  

    Nevertheless, those geometers of the 17
th

 century who had been 

occupying themselves with the calculus of probability merely 

determined chances in various contemporary games
3
. Only in the next 

century did that calculus wholly extend and become one of the main 

branches of mathematics owing both to the number and utility of its 

applications and to the type of analysis which it beget. 

    One of the most important among those applications concerns the 

probability of judgements, or, generally, of decisions reached by 

majority vote. Condorcet (1785) made the first attempt to determine it. 

He wrote his book during the lifetime, and at the request of Minister 

Turgot who conceived all the advantages which the moral sciences and 

the public administration could have elicited from the calculus of 

probability, whose indications are always precise even when lacking 

sufficient observational data and not therefore leading to complete 

solutions of problems.  

    Condorcet’s work includes a preliminary discourse in which the 

author describes his results without the aid of analytical formulas and 

thoroughly develops suitable considerations for proving the utility of 

research of that kind. In his Traité des probabilités [Théorie analytique 
des probabilités] Laplace also occupied himself with calculating the 

chances of the error to be feared in judgements of tribunals or jury 

panels of a given strength by known majority vote returned against an 

accused. His solution, one of the most delicate in the theory of 

probability
4
, is based on the principle that serves to determine the 

probabilities of various causes which can be attributed to the observed 

facts. At first, Bayes presented it in a slightly different form, and 

Laplace, in his [earlier] memoirs and treatise, discovered its most 

successful application for calculating the probabilities of future events 

by issuing from observation of the past events.  

    However, with regard to the problem of the probability of 

judgements, it is fair to say, that the ingenious idea of subordinating 

the solution to the Bayes principle by successively considering the 

guilt and innocence of the accused as an unknown cause of the 

received judgement which is the observed fact, is due to Condorcet. 

By issuing from this fact it is required to deduce the probability of that 

cause. The exactitude of this principle is demonstrated with full rigor, 

and the applications to the question with which we are occupied can 

not at all be doubtful
5
. Nevertheless, for applying it, Laplace 

introduced a hypothesis which is not at all incontestable. He supposed 

that the probability of a juryman’s faultlessness can take all equally 

possible degrees from certitude to indifference which corresponds to 
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1/2 in the calculus and means an equality of chances of error and 

verity. The illustrious geometer
6
 based his hypothesis on the opinion 

that a juryman [a judge] doubtlessly tends rather to verity than to error, 

and this should really be admitted in general. However, there exist 

infinitely many different laws of probabilities of error satisfying the 

stated condition without requiring to suppose either that the chance of 

a juryman to be faultless can never descend lower than 1/2, or that 

above that limit all its values are equally possible. Therefore, 

Laplace’s particular presumption can not be justified beforehand. 

Either because of that hypothesis or owing to its consequences, which 

seem to me inadmissible, the solutions of the problem about the 

probability of judgements contained in Laplace’s treatise (1812/1886, 

pp. 469 – 470) and its Premier supplément (1816/1886, p. 528) 

differing one from another invariably left me very doubtful. 

    [2] I would have applied to the illustrious author had I occupied 

myself with this problem during his lifetime. The authority of his name 

would have obliged me to do so and his friendliness with which he 

always glorified me would have facilitated its realization. It is easy to 

conceive that only after a long reflection I have decided to consider the 

question from another viewpoint and that before going ahead I may 

allow myself to describe the main reasons which impelled me to 

abandon his last solution whose numerical results he inserted in his 

Essai (1814/1996, Chapter On the probability of Judicial Decisions). 

    Laplace’s formula expressing the probability of an erroneous 

judgement only depends on the majority vote and the total number of 

judges but does not include anything about their more or less extensive 

knowledge of the case under their consideration. It follows, however, 

that the probability of a mistaken decision reached, for example, by a 

majority of 7 votes against 5, will be the same as delivered by 12 

jurymen selected form any group of people. For me, this consequence 

alone seems sufficient for definitely rejecting the formula from which 

it was derived.  

    That same formula supposes that prior to the decision of the jury 

panel there is no presumption of the accused being guilty; the more or 

less high probability of his guilt should only be deduced from the 

convicting decision. This, however, is once more inadmissible. The 

accused, upon arriving at the assize courts
 7

, had already been under 

detention awaiting trial, then committed for trial. This establishes 

against him a probability higher than 1/2 that he is guilty. And in a fair 

game certainly no one will hesitate to stake more for his guilt than for 

his innocence.  

    Now, the rules for establishing the probability of an observed event 

given the probability of its cause, which are the basis of the theory 

under consideration, require taking into account all the presumptions 

prior to the observation, if only they are thought to exist, or if proven 

that they are not absent. On the contrary [contrary to Laplace], such a 

presumption is evident owing to the criminal proceedings and I am 

obliged to consider it when solving that problem. And it is actually 

seen that otherwise it will be impossible to reconcile the consequences 

of calculations with the invariable results of observations.  

    This presumption is similar to that which takes place in civil cases 
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when one of the litigants appeals against the first judgement to a 

superior court: there exists the assumption contrary to his cause, and it 

will be a grave mistake to disregard this circumstance when 

calculating the probability of error to be feared in the definitive 

decision. Finally, Laplace restricted his attention to considering the 

probability of judgement received by a given majority vote. However, 

the danger that the accused, when brought before the jury panel, will 

suddenly be mistakenly convicted by that majority, depends not only 

on that probability; in addition, it depends on the chance that such a 

conviction will be pronounced. And, admitting for a moment that the 

probability of an erroneous judgement returned by a majority of 7 

votes against 5 is expressed by a fraction almost equal to 2/7, as it 

results from Laplace’s formula, it should also be noted that, according 

to experience
8
, each year the jury panels in France convict only 7/100 

of the accused by that majority. The danger for the accused to be 

falsely judged by 7 votes against 5 is therefore measured by the 

product of 2/7 and 7/100, or by 1/50. Indeed, for all eventual things the 

danger of a loss or the hope of a gain is expressed by the product of the 

value of that thing which is dreaded or expected, multiplied by the 

probability that it will take place.  

    This consideration alone reduces the proportion of the innocent 

accused being yearly convicted by the least possible majority vote of 

the jury panel to 1/50. Still, this is doubtless too much if all those 

accused were really innocent, but it is convenient to expound right 

here the real sense to be attributed in this [?] theory to the words guilty 

and innocent, the sense that Laplace and Condorcet [Condorcet and 

Laplace] had actually attributed to them. We will never be able to find 

out mathematically whether an accused is guilty. Even his confession 

can not be regarded as a probability very nearly equal to certainty. The 

most enlightened and humane juryman will only pronounce conviction 

when having a strong probability of guilt, [although] often lower than 

that resulting from a confession of guilt.  

    There exists an essential difference between him and a judge in a 

civil case. When the judge, after deeply examining a case, is only able, 

owing to its difficulty, to discern a feeble probability in favour of one 

of the two parties, it will suffice for convicting the other party [for 

deciding against it]. The juryman, however, should only vote for 

conviction if, to his eyes, the probability that the accused is guilty, 

reaches a certain limit and much exceeds the probability of his 

innocence. 

    [3] However hard you attempt, it is impossible to avoid every 

chance of error in criminal judgements, so how much it could be 

reduced for ensuring the innocent man the greatest possible guarantee? 

It is difficult to answer this question in a general way. Condorcet 

thought that the chance to be unjustly convicted can be equivalent to 

the chance of such a danger which we believe to be sufficiently slim 

for attempting to avoid it in habitual life. Because, as he states, for its 

security the society can rightfully expose its member to a danger 

whose chance is for him, so to say, indifferent. For such a grave 

problem that consideration is, however, much too subtle.  
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    Laplace offered a definition much more suitable for clearing up this 

question of the chance of error which we are compelled to admit in 

judgements in criminal cases. He maintained that that probability 

should be such that more danger for public security results from 

acquitting a guilty man than occurs from the fear of convicting an 

innocent. And, as he expressively stated, it was this question rather 

than the guilt itself of the accused that each juryman was called for to 

decide, in his own way, according to his enlightenment and opinion. 

An error in his vote, whether he convicted or acquitted, can originate 

from two different causes. Either he wrongly appreciates the 

arguments contrary to, or favourable for the accused, or his established 

limit of probability necessary for conviction is too high or too low. Not 

only is that limit different for all those selected for judging, it also 

changes with the nature of the accusations and even depends on the 

circumstances under which the proceedings are taking place. In the 

army, face to face with the enemy, or when trying cases of espionage, 

that limit is doubtlessly much lower than in ordinary cases. It lowers, 

and the number of convictions increases in cases of such crimes that 

become more frequent and more dangerous for the society. 

    The decisions of jury panels therefore concern the appropriateness 

of conviction or acquittal. The language will become more exact if the 

really true word convictable is substituted instead of guilty which 

needs to be explained and which we continue to use so as to conform 

to custom. And so, if we find out that in a very large number of 

judgements there was a certain proportion of mistaken convictions, it 

should not be understood that all the thus convicted were innocent. 

That proportion concerns those convicted for whom the probability 

was too low not for establishing their guilt rather than their innocence, 

but for their conviction to become necessary for public security. It is 

not the aim of our calculations to determine the number of those who, 

among the convicted, were really not guilty although there is ground to 

believe that that number is fortunately very small, at least beyond 

political cases. 

    For the ordinary cases this conclusion can be confirmed by the very 

small number of convictions pronounced by jury panels but protested 

by public opinion; by the small number of freely pardoned; by the 

number, once more very small, of cases in which an assize court, 

having decided that the oral debate at the court of first instance had 

destroyed the accusation and that the convicted was not guilty, had 

enjoyed the right granted them by law to annul a conviction returned 

by a jury panel and to return the accused to be judged by other 

jurymen. 

    The results concerning the chances of error in criminal judgements, 

to which Laplace had arrived, seem exorbitant, in disagreement with 

general ideas which contradict his own phrase that the theory of 
probability is basically only common sense reduced to a calculus 

(Laplace 1814/1995, p. 124). They [the results] were wrongly 

interpreted and it is too hasty to conclude that mathematical analysis is 

not applicable at all to such problems, or generally to things called 

moral. 
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    [4] This is a prejudice which, as I see with regret, is shared by those 

well disposed. For destroying it, I believe it useful to recall here some 

general considerations which, in addition, are proper for comparing it 

with other problems. No one contests that for them the calculus is 

legitimate and necessary, and such comparison is also needed for 

thoroughly understanding the aim of the problem which I specially 

proposed in this work.  

    Things of every kind obey a universal law that we may call the law 

of large numbers. Its essence is that if we observe a very large number 

of events of the same nature, depending on constant causes and on 

causes varying irregularly, sometimes in one manner, sometimes in 

another, i.e., not progressively in any determined sense, then almost 

constant proportions will be found among these numbers. For things of 

every kind these ratios will have a special value from which they 

deviate ever less as the series of events increases, and which they 

reach if that series can be prolonged to infinity. 

    As the amplitudes of the variation of the irregular causes become 

more or less large, the number of events should also be more or less 

large for their ratio almost to attain permanence. Observations 

themselves will show, in each problem, whether the series of trials is 

sufficiently long. And, according to the number of established facts 

and the magnitude of the deviation still remaining between their ratios, 

the calculus will provide definite rules for determining the probability 

that the special value to which those ratio converge is contained 

between arbitrarily confined limits. If new trials are made and it is 

established that those ratios considerably deviate from their final 

values determined by the previous observations, it can be concluded 

that the causes on which depend the observed facts had experienced a 

progressive variation or even some abrupt change in the interval 

between the two series of observations. 

    Without the aid of the calculus of probability you run a great risk of 

being mistaken about the necessity of that conclusion. However, the 

calculus leaves nothing vague here and in addition provides necessary 

rules for determining the chance of the change of the causes indicated 

by comparing the observed facts at different times. 

    The law of large numbers is noted in events which are attributed to 

pure chance since we do not know their causes or because they are too 

complicated
9
. Thus, games, in which the circumstances determining 

the occurrence of a certain card or certain number of points on a die 

infinitely vary, can not be subjected to any calculus. If the series of 

trials is continued for a long time, the different outcomes nevertheless 

appear in constant ratios. Then, if calculations according to the rules of 

a game are possible, the respective probabilities of eventual outcomes 

conform to the known Jakob Bernoulli theorem. However, in most 

problems of contingency a prior determination of chances of the 

various events is impossible and, on the contrary, they are calculated 

from the observed result. 

    [5] For example, it is impossible to calculate beforehand the 

probability of a loss of a ship during a long voyage, and it is 

determined by comparing the number of shipwrecks and voyages and 

when the latter is very large, the ratio of those numbers is almost 
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constant, at least for each sea and each nation in particular. Its value 

can be assumed as the probability of future shipwrecks and it is this 

natural consequence of the law of large numbers that serves as a basis 

for marine insurance. If the insurer only deals with an insignificant 

number of cases, it is a simple bet with no values for computation, but 

if he operates a very large number of them, it will be a speculation 

whose success is almost certain. 

    Just the same, the law of large numbers governs phenomena 

produced by known forces acting together with accidental causes 

whose effect lacks any regularity. Successive elevations and 

abatements of the sea at harbours and sea-coasts offer an example of 

remarkable precision. In spite of the inequalities produced by the 

winds, which destroy the laws of the mentioned phenomenon in 

isolated or not numerous observations, the mean of a large number of 

observed tides at the same place reveals that they almost conform to 

the laws of ebb and flow of the sea resulting from the attraction of the 

Moon and the Sun as though the accidental winds had no influence. 

What can be the effect of the winds blowing in the same direction for 

some part of the year on the tides during that time is not yet 

determined at all.  

    The small difference between these means calculated for 

observations made at the beginning and end of the last [the 18
th

] 

century, and therefore separated by [about] a hundred years from each 

other, can be attributed to some changes having occurred in the 

localities. To provide [another] example of the law I am considering, I 

also refer to the mean length of human life. Among a considerable 

number of infants born each year in very near places and about the 

same time some die early, others live longer and still others reach the 

limits of longevity. And, in spite of the vicissitudes of human life, 

which produce such great differences in the ages of the dying, when 

dividing the sum of those ages by their number supposed to be very 

large, the quotient, or what is called the mean life, will not depend on 

that number.  

    Its duration can be different for the two sexes, in different countries 

and at different times because it depends on the climate and doubtless 

on the well-being of the people
10

. It increases if a disease disappears 

like smallpox did due to the blessing of the vaccine. And in all cases 

the calculus of probability shows whether those variations revealed in 

that duration are sufficiently large and manifested in a sufficiently 

large number of observations for necessarily attributing them to some 

changes having taken place in general causes. 

    The yearly sex ratio at birth in a large country has a constant value 

just as well. It does not seem to depend on the climate, but, owing to 

some singularity, to which it will possibly be easy to assign a likely 

cause, it appears to be different for infants born in and out of wedlock. 

    The constitution of bodies formed by disjointed molecules separated 

by spaces devoid of ponderable matter also offers a special application 

of the law of large numbers, Draw a straight line in a certain direction 

from a point in the interior of a body. The distance to the point where 

the line encounters the first molecule, although very short in any sense, 
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nevertheless greatly varies with the direction. It can be 10, 20, 100 

times longer in one than in another. Around each point the distribution 

of the molecules can be very irregular and very different from one 

point to another. Due to internal oscillations of the molecules it even 

incessantly changes since a body in repose is just an assemblage of 

molecules undergoing continual vibrations whose amplitudes are 

imperceptible but comparable to the distances between molecules. And 

when dividing each imperceptibly small portion of the volume by the 

number of the molecules contained there, by an extremely large 

number because of their excessive minuteness, and extracting the 

cubic root of the quotient, the result will be the mean interval between 

the molecules. When disregarding the unequal compression of its parts 

produced by its own weight, it is independent from the irregularity of 

their distribution and constant throughout a homogeneous body having 

everywhere the same temperature. Similar considerations served as a 

foundation for calculating molecular forces and calorific radiation in 

the interior of bodies in my other works
11

.  

    All these diverse examples of the law of large numbers were taken 

from the category of physical things, and, if necessary, we can still 

multiply them. And it is not more difficult to cite other examples 

pertaining to things of the moral category. Among those, we may 

indicate the income from indirect taxes, constant if not yearly then at 

least during a few consecutive years. Such, along with others, is the 

judicial duty which adds almost the same sum to the annual revenue 

and which depends on the number and the importance of the cases, i. 

e., on the opposing and variable interests of the people and their 

greater or lesser aptitude of pleading. 

    Such are also the incomes from the Lottery of France before it was 

luckily suppressed and from the games of Paris
12

 whose suppression is 

no less desirable. These games present constant magnitudes of two 

different kinds: each year, or during each few years, the sum of the 

stakes is almost the same; and, on the other hand, the banker’s gain is 

palpably [sufficiently] proportional to this sum. This proportionality is 

a natural effect of randomness which provides the banker favourable 

outcomes in a constant proportion calculable beforehand according to 

the rules of the game. The constancy of the sum of the stakes is a fact 

belonging to the moral category because they depend on the gamblers’ 

number and volition. It is good that those two elements scarcely vary; 

otherwise, the contractor of the games would have been unable to 

evaluate in advance the pledged yearly payment to the government by 

issuing from the profit he was able to receive during his previous 

lease. 

    [6] I will soon describe below the results of the experience on which 

I base myself when considering the problem of the probability of 

judgements and present additional decisive examples of the law of 

large numbers observed in things of the moral category. It will be seen 

that under the authority of the same legislation the conviction rate in 

all France scarcely varied from one year to another. It is therefore 

sufficient to consider about seven thousand cases, which is the number 

of judgements returned yearly by the jury panels, for that rate to 

become sufficiently permanent. In other problems, for example 
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concerning the mean life (see above), such a number, however, would 

have been far from sufficient for leading to a constant result. It is also 

strikingly seen that the influence of general causes varies each time 

that the legislation changes. 

    It is therefore impossible to doubt that the law of large numbers 

suits the moral things depending on human volition, interests, 

enlightenment and passions on a par with physical things. Actually, 

not the nature of causes that has to do with this [?] problem, but rather 

the variation of their isolated effects and the number of cases 

necessary for the irregularity of the observed facts to be balanced out 

in the mean results. 

    The magnitude of those numbers can not be assigned in advance, it 

differs in different problems, and, as stated above, they are the larger, 

in general, the greater is the amplitude of those irregularities. And on 

this point it should not be thought that the effects of spontaneous 

volition, infatuation with passion, lack of enlightenment vary greater 

than human life with some babies dying at birth and other becoming 

centenarians. It is more difficult to foresee them than the 

circumstances leading to the loss of a ship during her long voyage; 

they are more capricious than the chance that determines a certain card 

or a certain number of points on a die. No, we do not attach these ideas 

to those effects and their causes. Only the calculus and observations 

can establish probable limits of their variation in a very large number 

of trials. 

    It follows from those examples of all kinds that for us the universal 

law of large numbers is already a general and incontestable fact 

resulting [derived] from experience that will never be contradicted. 

And in addition it is the foundation of all the applications of the 

calculus of probability, and we understand now their independence 

from the nature of the pertinent problems, and their perfect similitude, 

whether when concerning physical or moral things, if only the special 

data required by the calculus is provided by observations. However, 

because of the importance of the law of large numbers it is necessary 

to demonstrate it directly, and this is what I have attempted to do, and I 

believe that I have finally succeeded, as seen farther in this 

contribution.  

    The Jakob Bernoulli theorem cited above coincides with that law in 

the particular case in which the chances of the events remain constant 

during the series of trials. The author, who is known to have pondered 

for twenty years, essentially presumed this requirement in his 

demonstration. His theorem does not therefore suffice for considering 

problems concerning the repetition of moral things or physical 

phenomena whose chances are in general continuously varying, and 

most often without any regularity. For supplementing that theorem it 

was necessary to study the problem more generally and more 

completely than the state of mathematical analysis then permitted. 

    [7] The constancy of ratios between the number of times that an 

event had occurred and the very large number of trials, which 

establishes itself and is manifested in spite of the variations of the 

chance of that event during these trials, tempts us to attribute this 

remarkable regularity to some ceaselessly acting occult cause. 
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However, the theory of probability determines that the constancy of 

those ratios is a natural state of things belonging to physical and moral 

categories and maintains all by itself without any aid by some alien 

cause. On the contrary, it can only be hindered or disturbed by an 

intervention of a similar [alien] cause. 

    The government has published the Comptes généraux de 
l’administration de la justice criminelle for the nine years 1825 – 

1833. It is from this authentic compilation that I have drawn all the 

documents made use of
13

. The number of yearly cases judged by the 

assize courts of the kingdom was very near to 5000 with about 7000 

accused. From 1825 to 1830 inclusive the criminal legislation did not 

change and convictions by jury panels had been returned by majority 

verdicts of at least 7 votes against 5 but not when the cases in which 

that majority verdict was the least possible and the court had to 

intervene. In 1831, such interventions were suppressed and the 

required least majority verdict of 8 votes against 4 was introduced.  

    Acquittals became more frequent; neglecting the third significant 

digit, the acquittal rate during the six first years had been equal to 0.39. 

In one year only it lowered to 0.38 and another year it heightened to 

0.40. This means that during those years it only deviated from the 

mean value by 0.01
14

. For the period of legislation valid until 1831 the 

value of that rate can be therefore taken as 0.39 with 0.61 being the 

conviction rate. At the same time the ratio of the number of 

convictions pronounced by the minimal majority verdict of 7 votes 

against 5 to the total number of the accused equalled 0.07 and it also 

scarcely varied from year to year. When subtracting this value from 

0.61, the rate of convictions returned by a majority verdict of more 

than 7 votes against less than 5 becomes equal to 0.54. The acquittal 

rate was therefore 0.46.  

    And so it actually occurred because during 1831 the difference 

between this rate derived for the previous years and observed in 1831 

was barely 0.005. In 1832 the minimal majority verdict of 1831 was 

preserved and the law prescribed that mitigating circumstances15
 be 

considered so that in affirmative cases the penalties were reduced. The 

effect of this novelty should have made conviction by jury panels 

easier, but by how much? Only experience could have allowed us to 

evaluate it. It could not have been calculated in advance, as was the 

increase in the number of acquittals which took place due to changing 

the least possible majority verdict.  

    Experience showed that in 1832 the acquittal rate had lowered to 

0.41. During 1833, under the same legislation, it only changed by 

0.001. The conviction rate in 1831 and later was 0.61, 0.54, 0.59, so 

that after lowering by 0.7 [0.07] because the minimal majority verdict 

was increased by one vote, it increased only by 0.5 [0.05] under the 

influence of the mitigating circumstances on the mind of the jurymen, 

see the Comptes for 1834
16

.  

    During 1832 and 1833, the number of political cases submitted to 

the assize courts was considerable. When estimating the acquittal rate 

at 0.41, those cases were subtracted from the total number of criminal 

cases. If these are taken into account, that rate becomes equal to 0.43 
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which already proved the influence of the kind of cases on the number 

of acquittals pronounced by jury panels.  

    This influence is distinctly evident in the Comptes généraux. 

Criminal cases are there separated into two main categories: crimes 

against property (theft, robbery, or other encroachments), and outrages 

against the person numbering about 1/3 of the former, or 1/4 of the 

total number of cases. From 1825 to 1830 the rate of acquittals only 

amounted to 0.34 in the first category and increased to 0.52 in the 

latter. In other words, it exceeded the conviction rate by 0.04 [0.52 − 

0.48 = 0.04].The yearly values of each of these rates only varied not 

more than by 0.02 in either direction of those fractions, 0.34 and 0.52. 

It should also be noted that the number of convictions pronounced by 

the minimal majority verdict of 7 votes against 5 only amounted to 

0.05 of the number of accused of crimes against property but rose to 

0.11 in the other category. And, not only were the convictions 

proportionally more numerous in the first case, they were in general 

returned by a stronger majority.  

    Those differences can partly depend on a less severity of jurymen in 

cases of outrages against the person than encroachments on property 

which are doubtless considered more dangerous for the society 

because of being more frequent. However, this cause is not sufficient 

for producing the large inequality in the rates of acquittals as provided 

by experience. And calculation proves that such inequalities also 

originate from the greater presumption of guilt of the accused of theft 

or robbery than of the other accused which resulted from the 

information gained prior to the judgement.  

    [8] The Comptes généraux provide other ratios which, owing to 

large numbers, are almost invariable, but which I do not make use of at 

all. Thus, from 1826, when the sex of the accused began to be shown 

there, and until 1833 there were among the accused almost exactly 

18/100 women yearly. Once only their share rose to ca. 0.20, and only 

once it lowered to 0.16. And it was always higher when concerned 

with theft than in crimes against the person. The acquittal rate was 

considerably higher for women than for men and reached almost 0.43 

whereas it only was 0.39 for both sexes together.  

    However, the constancy of these diverse proportions observed each 

year for the entire France did not take place for separate assize courts. 

In the same départements and under the same legislation the acquittal 

rate remarkably varies from one year to another. This proves that for 

such courts the yearly number of criminal cases is not at all large 

enough for balancing out the irregularities of the judges’ votes or for 

the acquittal rate to become permanent. That rate varies still more from 

one département to another and the number of cases in each assize 

court is not considerable enough for deciding with sufficient 

probability in which part of France the judges (jurys) tend more or less 

to severity.  

    Only in the département de la Seine are criminal cases sufficiently 

numerous for the observed acquittal rate not to be too variable and 

therefore allow to compare it with that rate for France as a whole. 

About 800 accused, or about 1/9 of the total for the entire kingdom, 

are yearly brought to the Paris assize court. From 1825 to 1830 the 
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acquittal rate there varied between 0.33 and 0.40 and its mean value 

was only 0.35 whereas for France it was 0.39, or 0.04 larger. The rate 

of convictions returned by the least majority verdict of 7 votes against 

5 is also a little less for Paris; it only reached 0.065 instead of 0.07 for 

the whole of France when calculated without distinguishing the kind of 

crimes. 

    Such are the data concerning the assize courts provided until now by 

experience. The precise aim of the theory is to calculate for a jury 

panel composed of a certain number of people and judging a very large 

number of cases by an also known majority verdict the future rates of 

acquittals and convictions likely to take place and the chance of 

mistaken judgement for those who were or will be randomly selected 

as jurymen. 

    I believe that determining that chance for convictions and acquittals 

at a given and isolated case is impossible if not basing the calculus on 

precarious presumptions, leading according to the adopted hypotheses 

almost to the desired results. However, for the society and the accused 

it is not the chance for a particular judgement that is most important, 

but the chance which concerns all the cases submitted to the assize 

courts during a year or many years, and which is determined by 

observation and calculation.  

    The probability of an error of some convicting judgement multiplied 

by the chance that it occurs is the veritable measure of the danger to 

which the society exposes an innocent accused. The product of the 

chance of an error in acquitting and the probability that such a 

judgement is pronounced is the measure of the danger to which the 

society itself is subjected and which should be known just as well. 

Indeed, it is the magnitude alone of this danger that can substantiate a 

possible unjust conviction.  

    In this important problem of humaneness and public order nothing 

can replace analytical formulas expressing these various probabilities. 

Without their aid, if a change of the number of jurymen is considered, 

or two countries where it differs are compared, how can we know 

whether a jury panel of 12 judging by a majority verdict of 8 votes 

against 4 offers more or less guarantee to the accused and the society 

than another panel of, for example, 9 jurymen selected from the same 

list as the former panel was, and judging by some majority verdict? 

How was it decided whether the situation existing in France before 

1831 of a least majority verdict by 7 votes against 5 supplemented 

with an intervention of judges in cases of that minimal majority had 

been more advantageous or, on the contrary, less favourable than what 

we have today, the same majority and the influence of mitigating 
circumstances? We can not know it since the observational data 

pertaining to our time is lacking. 

    [9] The formulas which define this aim and which are included in 

this work are derived without introducing any hypotheses by issuing 

from the general and known laws of the calculus of probability. They 

include two special magnitudes which depend on the moral state of the 

nation, the methods of the adopted criminal proceedings and the ability 

of those charged with directing them. One of those formulas expresses 

the probability that a juryman randomly selected from a list covering 
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the jurisdiction of an assize court does not err in his vote. The other 

one is the probability that the accused is guilty existing before the 

beginning of the pleading. 

    These are the two essential elements in the problem of criminal 

judgements. Their numerical values should be determined by the 

observational data just as the constants included in astronomical 

formulas are deduced from observations. The entire solution of the 

problem proposed in these researches requires an interaction of theory 

and experience. 

    The observational figures which I made use of, two in number, just 

equal to the number of elements to be determined, are the number of 

convictions by least majority verdicts of 7 votes against 5, and of the 

accused convicted by that least majority, each figure divided by the 

total number of the accused. The obtained ratios are very different for 

crimes against the person and encroachments on property, and I 

consider them separately. They are not the same in all the 

départements, but the need to deduce them from very large numbers 

compelled me to unite, again separately, the judgements of all the 

assize courts of the kingdom. The values that I derived, as though 

these elements did not vary much from one département to another, are 

therefore only approximate.  

    However, the new law re-established the least majority convictive 

verdicts of 7 votes against 5 and stipulated that the jury panels should 

make known the convictions returned with that least majority. For 

each département we know therefore the considerable enough number 

of convictions decided by that, and, separately, by any other majority 

which is necessary for deducing our two elements. And we will find 

out whether the chance of the juryman’s error remarkably varies from 

place to place. For the département de la Seine taken all by itself 

calculation had already established that that chance is a bit less than 

for the rest of France. Following are the main numerical results 

contained in this work; it seemed useful to present here their summary. 

    Before 1831, for the entire France the probability of a juryman’s 

faultless vote was a bit higher than 2/3 for crimes against the person, 

and almost equal to 13/17 for crimes against property. Without 

distinguishing between these categories of crime, that chance was very 

little lower than 3/4, once more for the whole kingdom, and a bit 

higher for the département de la Seine. At the same time, the other 

element of criminal judgement, the preliminary probability of the 

defendant’s guilt for the entire France and crimes against the person 

did not much exceed 1/2, was constant and contained between 0.53 

and 0.54. It somewhat exceeded 2/3 for crimes against property; 

without distinguishing between these categories of crime it was almost 

equal to 0.64, but amounted to 0.68 for the jurisdiction of the Paris 

assize court. When subtracting these diverse fractions from unity we 

will obtain the probabilities corresponding to the juryman’s error and 

to an erroneous conviction. 

    [10] It can be remarked that the preliminary probability of the 

defendant’s guilt was always higher than the conviction rate. For 

example, in the case in which that probability was the lowest, and only 

exceeded 1/2 by 0.03 or 0.04, that rate, as stated above, was about 0.02 
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lower than 1/2. This is a general result, and the formulas of probability 

show that it always takes place whichever is the ability of the jurymen, 

the chance of their error, and the required majority convicting verdict. 

It should also be noted that that prior estimate only expresses the 

probability that the accused will be convicted by a jury panel 

according to their method of judging; that is, according to the 

unknown level of probability which they require for conviction and 

which is doubtless lower than the probability that an accused is really 

guilty as results from preliminary information. 

    Actually, no one will hesitate to stake more than even money that an 

accused is guilty when brought to an assize court on charges of crime 

against the person, and this in spite of the prior probability only a bit 

higher than 1/2 as found out for those crimes.  

    In 1831, only the majority required for conviction was changed and 

the two elements which we consider should have remained the same. 

In the following years the problem of mitigating circumstances 

doubtless influenced the values of those elements. However, for 1832 

and 1833 we only know the conviction rate which is insufficient for 

determining the two elements, and we do not know whether the chance 

of a juryman’s faultlessness had increased or decreased. We are unable 

to decide this without imposing on the other element a hypothesis and 

risking to deviate considerably from the truth. Just the same, the 

present legislation had imposed a secret vote on the jurymen
17

, and we 

do not know whether this chance of faultlessness changed once more.  

    When it, as well as the chance of guilt, resulting from the 

information gathered before the judgement, will be determined by a 

sufficient number of observations, we will also know, by repeating our 

calculations for ever more distant times, whether these two elements 

have been varying in France progressively in one or another sense, 

which will provide an important document about the moral state of our 

country.  

    Although the judges are doubtless more experienced in criminal 

cases, their chance of faultlessly voting seem to differ little from that 

of the jurymen. Actually, from 1826 to 1830 in the entire France 

convicting verdicts by majority verdicts of 7 votes against 5 were 

returned 1911 times. The assize courts, then consisting of 5 judges, 

had appropriately been called for intervening, and in 314 cases 

accepted the minority vote. Assuming that the probability of 

faultlessness was the same for judges and jurymen, calculation will 

prove that that should have happened ca. 282 times. These two 

numbers, 314 and 282, are not sufficiently considerable for deciding 

with a very high probability just how did this assumption deviate from 

verity.  

    The small difference between them is a cause for believing that 

there should also be a very small difference between the chances of 

error by judges and jurymen. For the jurymen, that chance does not 

therefore originate, as it is possible to think, from their want of skill. 

All other things being equal, it is evident that the conviction rate 

diminishes when a greater majority convicting verdict is demanded. 

    If, as in England, a unanimous vote of the 12 jurymen is required 

both for convictions and acquittals, and if adopting for England the 
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values of the two elements of criminal justice pertaining to the entire 

France without distinguishing between the categories of crime, the 

probability of such convicting verdicts will little differ from 1/50 and 

be about a half lower for acquittals. This makes decisions very 

difficult, at least if some arrangement between the jurymen is not 

reached with a part of them sacrificing their opinion. It is also seen that 

otherwise unanimous acquittals will be twice more difficult and twice 

rarer that convictions. It is only possible to bet even money on a 

unanimous conviction or acquittal happening once in 22 randomly 

selected cases
18

. 

    [11] After the judgement is pronounced, the probability of the 

defendant’s guilt becomes much higher or much lower when he is 

convicted or acquitted respectively. The formulas in this work, if the 

two included there elements are determined by observation, provide 

the value [of change] according to the majority by which the 

judgement was returned. When the majority of a convicting verdict is 

at least 8 votes against 4, the probability of guilt of a convicted 

accused is a bit higher than 0.98 in cases of crimes against the person 

and a bit higher than 0.998 in cases of crimes against property. It 

reduces the chances of an erroneous judgement to a little less than 0.02 

and 0.002 respectively.  

    When taking into account the probability of not being acquitted, the 

chance of an erroneous conviction for crimes of the first category is 

about 1/150 and only 4/10,000 for the other crimes
19

. At the same time 

the probabilities of innocence of an acquitted accused are 

approximately equal to 0.72 and 0.82 respectively. When taking into 

account the probability of not being convicted, we can also establish 

that the chances of a guilty accused to be acquitted in these two cases 

are about 0.18 and 0.07 respectively. Therefore, among a very large 

number of those acquitted there will be more than 1/6 and about 1/14 

who should have been convicted.  

    During the seven years, 1825 – 1831, in the entire France the 

accused, convicted by that majority verdict of at least 8 votes against 

4, numbered about 6000 for crimes against the person and about  

22,000 for crimes against property. According to the chances of an 

erroneous conviction cited above, it can be thought that about 40 and 9 

were innocent
20

 which amounts to 7 people yearly [for both categories 

of crime taken together]. At the same time, the number of acquitted but 

guilty accused should have been 50 times larger
21

, or about 360 each 

year. However, we should not lose sight of the sense attached, as 

explained above, to the word guilty. According to that sense, the 

number 18 [?] is only the superior limit for the really innocent but 

convicted, whereas 360 is, on the contrary, the inferior limit of the 

number of those acquitted who were not at all innocent.  

    These results of calculations, far from injuring our proper respect 

for a judged thing or from diminishing our confidence in the decisions 

of jury panels, prevent, on the contrary, any exaggeration of the error 

to be feared in convictions. In truth, it is not in essence possible to 

verify them by experience; however, this circumstance is common to 

many other applications of mathematics whose certainty only rests, 
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just as it does here, upon the rigour of demonstration and precision of 

the observational data.  

    For the years preceding 1831 and for the entire France the 

probability of an erroneous conviction pronounced by the least 

majority verdict of 7 votes against 5 was about 0.16 and 0.04 for 

crimes against the person and against property respectively. Without 

distinguishing these categories, it was 0.06. According to the Laplace 

formula, that chance should have been the same for all cases and about 

five times greater than 0.06. However, it should also be noted that the 

intervention of a court was then necessary in cases of least majority 

verdicts. If decisions of jury panels were confirmed, it resulted in 

reducing that chance of error, 0.06, a little less than by 0.01. This 

means that [yearly] during 1826 – 1830 about 15 or 16 out of the 1597 

convictions by the majority verdicts mentioned can be supposed 

erroneous; the accused should not have been convicted which does not 

imply their innocence.  

    [12] The distinctive character of this new theory of probability of 

criminal judgements therefore consisted of ascertaining first of all, by 

issuing from a very large number of cases of the same nature, the 

chance of error in the jurymen’s voting and of the guilt of the accused 

existing before the beginning of pleadings. 

    It should be applicable to all the numerous kinds of judgements, to 

those made in police courts, by military justice and to the decisions in 

civil courts, if only there always exist sufficient data for determining 

those two elements. It should also be appropriate to judgements 

pronounced in a very large number by extraordinary tribunals during 

the ill-fated years of the revolution. On this point, however, it is 

necessary to enter into some explanation so that there will remain no 

doubt about the generality and exactitude of the theory. The difficulty 

that that exceptional case presents will not escape those who wish to 

hear attentively and are interested in the results of my work. 

    An accused can be convicted either because he is guilty and the 

judges did not err, or since he is innocent and the judges erred. The 

conviction rate does not vary if the prior probability of the defendant’s 

guilt and the probability of each judge’s faulty vote are changed into 

their complements to unity. It remains the same if, for example, those 

two probabilities are 2/3 and 3/4 or 1/3 and 1/4. It also retains its value 

when both probabilities are almost certain or very near to unity, and 

when they are almost zero. In these extreme cases the number of 

convictions will very little deviate from the number of accusations [of 

the accused].  

    The equation to be solved for determining those probabilities have 

two real roots making up unity, but each of those solutions has a 

distinguishing feature: when adopting one of them, the probability of 

guilt of a convicted accused will be higher than that of his innocence 

and lower otherwise. In ordinary cases we should therefore choose the 

first solution since it is unreasonable to suppose that the tribunals are 

in general unjust and most often judge contrary to common sense. 

This, however, is not so when the judgements are returned under the 

influence of passions; it is not the reasonable root of those equations, it 

is the other solution which should be chosen and which attaches such a 
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high probability to unjust convictions. A great proportion of 

convictions pronounced by the revolutionary tribunals had not been 

sufficiently justified by proving the legal guilt of the accused. Issuing 

from the laws which the tribunals had to apply, we can not at all find 

out how many convicted accused were guilty or innocent.  

    It should always be borne in mind that, according to that [new 

probability] theory, the injustice of judges and passions of prosecutors, 

just as great pity or extreme indulgence are considered as chances of 

error and that calculations are based on the results of votes whichever 

motives dictated them.  

    In the police courts, the mean conviction rate for nine consecutive 

years and for the entire France was contained between 0.86 and 0.85. 

This indication is not, however, sufficient for determining the 

probability of the accused guilt existing before the judgement and the 

probability of a faultless vote for a judge of those tribunals. Presuming 

that the judgements were returned by 3 judges, which seems to have 

generally taken place, we should also know the proportion of 

convictions decided unanimously or by simple majority verdicts of 2 

votes against 1. This proportion is not given by observations, and can 

only be supplied by some unjustified hypothesis. 

    In the case of military tribunals we also lack the two necessary data 

for determining the values of the two special elements included in the 

probability formulas. A court martial consisted of 7 judges and 

convictions could have only be decided by a majority verdict of at 

least 5 votes against 2. The overall conviction rate is estimated as 2/3 

but we do not know the proportion of convictions returned 

unanimously or by a simple majority. Lacking this indication, we can 

not precisely compare military justice and the assize courts with 

respect to the chance of erroneous convictions and acquittals which, 

however, would have been very interesting. 

    [13] When describing civil matters, the probability formulas contain 

only one special magnitude rather than two of them, − that which 

expresses the chance of a judge’s faultless vote. According to the 

information I had been given, judgements in tribunals of the first 

instance are generally returned by 3 judges. We do not know, however, 

the ratio of the number of cases in which decisions had been made 

unanimously and by a simple majority ruling of 2 votes against 1, and 

it is therefore impossible to determine directly the chance of an 

erroneous voting. 

    We are able to calculate that chance for the judgements appealed to 

the royal courts by comparing the number of confirmed and not 

confirmed cases and assuming an equal chance of error for the judges 

of those two tribunals. Although this hypothesis deviates perhaps 

considerably from the truth, I admit it for providing an example of 

calculating the error to be feared in civil judgements. The truth or 

justice results from a decision, necessarily unanimous, of judges 

having no chance of error. In each case, that absolute justice is an 

unknown thing; nevertheless, we reveal those cases which are decided 

contrary to it by the erroneous votes and judgements. The problem 

consists in determining their probabilities and, consequently, the 
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proportion according to which they likely and almost exactly occur in 

a sufficiently large number of cases. 

    The Compte général de l’administration de la justice civile 

published by the government cites the number of judgements in courts 

of first instance confirmed or disaffirmed by the royal courts during 

the three last months of 1831 and the two following years, 1832 and 

1833. For the entire France, the ratio of the first of those two numbers 

to their sum is almost equal to 0.68 and only varied from year to year 

by 1/70 of its value.  

    In spite of the diversity of cases that should have existed and 

doubtless of the kingdom’s magistrates unequal enlightenment, about 

8000 yearly decisions were sufficient for that ratio to attain an almost 

constant value. This presents one more very remarkable example of 

the universal law of large numbers. In the jurisdiction of the Paris 

royal court that ratio was considerably larger amounting to about 0.76.  

    When applying a value for France as a whole, and assuming that in 

each royal court of appeal there were 7 counsellors pronouncing 

decisions in civil matters, we find that 0.68 is the probability that one 

of them or of the judges in the courts of first instance randomly 

selected from those in all the kingdom will not err when opining about 

a case, again randomly selected among those yearly submitted to two 

degrees of jurisdiction. That probability is possibly different for the 

cases judged in courts of first instance without being appealed by 

either of the two sides.  

    Issuing from that fraction, 0.68, we find, when neglecting the 

thousandths, 0.76 for the probability of virtue of a judgement in courts 

of first instance. In courts of appeal it is 0.95 when its judgement 

confirms the decision of a court of first instance and 0.64 otherwise. 

Finally, that probability is 0.75 for a decision of a royal court, whether 

confirming or disaffirming the judgement in a court of first instance, 

confirmed by a second royal court issuing from the same information 

as the first royal court did.  

    The approximate probabilities that the court of first instance and 

first court of appeal judged properly; that the former judged properly 

and the latter inappropriately; that it was otherwise for both courts; and 

that both courts judged improperly, are 0.649, 0.203, 0.113, and 0.035 

whose sum is unity. 

    The problems concerning the probability of judgements whose basis 

I describe and whose results I provide are in the fifth and last chapter 

of this work. The four preceding chapters include the rules and general 

formulas of the calculus of probability which disperses with searching 

for then elsewhere and enables the treatment of other problems alien to 

the special aim of these researches but proper for that calculus to 

explain. There also is the solution of a problem which proves how the 

majority of an elected assembly can be completely changed after a 

new election or to a larger extent than the change in the vote of those 

distributed among electoral colleges and voting by simple majority in 

each of them.  

 

Notes 
    1. The man about town was De Méré (1610 – 1685), and an austere Jansenist, 
Pascal. Jansen (1585 – 1638) was a theologian. 
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    2. More precisely: on the unequal number of points still lacking them. 

    3. In the 17
th

 century, political arithmetic and population statistics in particular as 

well as insurance of life were born. In addition, Huygens had studied mortality, but 

his pertinent manuscripts were only published by the end of the 19
th

 century. 

    4. Laplace considered that problem in Chapter 11 of, and the First Supplement to 

his Théorie. Unlike Laplace, Poisson had as a rule applied the term calculus of 
probability, especially in the main text of his work, and Bertrand, Poincaré and 

Markov followed suit. However, in his mimeographed lectures the last-mentioned 

had until 1900 written theory of probability. 

    5. This is wrong. The Bayes approach became the subject of debates and is still 

possibly argued about. 

    6. From 1774, Laplace (e. g., 1812/1886, p. 365) separated himself from the 
geometers and actually sided with applied mathematicians. 

    7. Assizes: it would have been important to indicate who voted there, judges, 

jurymen, or, as I found out about later times, both. However, Poisson did not clearly 

supply such information, and it appears that in different places he had in mind 

differing methods of voting. Then, in Chapter 5 he mentioned several kinds of courts 

dealing with civil cases without sufficiently explaining how those cases had passed 

from one of them to another. 

    8. Poisson invariably wrote experience and never mentioned statistics.  

    9. Poincaré is known to have repeated that interpretation of randomness. For him, 

however, the main pattern of the action of chance was small causes leading to large 

consequences. 

    10. Separate mortality tables for men and women began to appear even before 

1832 (Quetelet & Smit 1832, p. 33) whereas Corbaux (1833) followed this new 

practice and even somehow distinguished between several strata of population. 

    11. These other works were hardly studied in the stochastic sense. 

    12. At the end of 1837 they were suppressed. At that time, there were seven 

gambling houses in Paris (La Grande Enc., t. 21, p. 152), but I did not find any 

mention of the jeux de Paris. 

    13. Poisson actually made use of other sources as well, see his Chapter 5. 

    14. Poisson many times applied the same method of estimation. 

    15. Concerning these circumstances, see Chapter 5. O. S. 

    We see there that during that year, when legislation remained as it was in the two 

preceding years, the conviction rate amounted to 0.60 and thus only exceeded the 

rate for those years by 0.01. After the example of our country, the Belgian 

government publishes its own Compte général de l’administration de la justice 
criminelle. Jury panels were re-established there about mid-1831 and the required 

majority convicting verdict was at least 7 votes against 5. For the years 1832, 1833 

and 1834, the rate of acquittals was 0.41, 0.40 and 0.39. The mean rate, 0.40, 

remarkably only differed by 0.01 from its value in France for the same majority 

verdicts.  

    Before jury panels were re-established, criminal tribunals in Belgium consisted of 

5 judges and convictions were returned by simple majority of 3 votes against 2. From 

year to year, the rate of acquittals also varied very little, but it only reached about 

0.17, less than a half of the value taking place for judgements by jury panels. That 

difference of more than twice did not only result from the difference, either of the 

numbers 5 and 12 (judges and jurymen) or of the minimal votes in majority verdicts 

(3 against 2 or 7 against 5). It also suggests, as seen here below, that for convictions 

judges require a considerably lower probability [of guilt] than the jurymen whichever 

the chances of their error are. Poisson  

    16. Such references are not definite enough.  

    17. Although, after participating in a secret ballot, jurymen can not go back on 

their decision, there is a special case which can sometimes occur and is appropriate 

to be indicated. Two men, call them Pierre and Paul, are accused of theft. When 

asked whether Pierre was guilty of that theft, 4 jurymen answer yes, 3 others also say 

yes, and the 5 others, no. The accused is found guilty by 7 votes against 5. When 

asked about Paul, the first 4 jurymen answer yes, the same 3 of them say no, and the 

5 last ones, yes. Paul is declared guilty by 9 votes against 3. 

    Then comes the next question, whether the theft was done by many; when 

answered in the affirmative, it leads to a more severe punishment. [Necessarily] 

keeping to their preceding votes, the first 4 jurymen answer yes, and the 8 others, 
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who decided that either Pierre or Paul were innocent, say no. Without contradicting 

those votes, the decision of the panel will be that both the accused are guilty of the 

theft, but that it was not perpetrated by many. Poisson 

    18. According to documents published in England, and seem to earn confidence, 

the number of people yearly tried by jury panels had recently increased from year to 

year and the conviction rate had also increased progressively (Porter). Here are the 

results extracted from those documents; they can be compared with the situation in 

our country. The numbers only pertain to England and Wales.  

    Three periods are tabulated, each of them lasting 7 years and ending in 1818, 1825 

and 1832. During the first period which ended in 1817 [?] the [yearly] number of the 

accused did not amount to 35,000 and the conviction rate was a bit lower than 0.60 

[?]. Only once, in 1832, the last year of those periods, did the number of the accused 

reach 20,829 of whom 14,947, or about 3/4 were convicted. I do not know whether 

this number had increased or decreased in the following years.  

    In England and France, the proportions of the feeblest punishments little differ. 

The appended Table shows that almost 2/3 of the total number of convictions 

consisted in imprisonment. In France, the fist number exceeded a half of the second 

one. The Table also proved that during the last of the three periods the mean yearly 

number of the executed, the least of them, amounted to 60. In France, it is now twice 

less; the yearly number is not larger than 30. 

 

Table 
showing the appropriate numbers in periods 1 – 3 

 

    1. Accused 64,538; 93,718; 127,910 

    2. Convicted 41,054; 63,418; 90,240 

    3. Conviction rate 0.636; 0.677; 0.705 

    4. Sentences to death 5802; 7770; 9729 

    5. Executed 636; 579; 414 

    6. Sentenced to imprisonment for two years or less 27,168; 42,713; 58,757 

 

    19. Someone inserted the word dix before millièmes.  

    20. Someone crossed out 88 and wrote 9. 

    21. Someone crossed out vingt and wrote plus de cinquante.  
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Chapter 1. General Rules of Probabilities 
 

Misprints/Mistakes Unnoticed by the Author 
    1. In § 8, p. 41 of the original text, the signs of the terms in both 

series for (1 – p)
n
 are wrong.  

    2. At the very end of § 9, p. 43 of the original text, Poisson indicated 

in words that some magnitude was a bit less than 1/60·10
6
; instead of 

1/60·10
7
; a similar mistake was made a few lines below. 

   3. In § 17, p. 58 of the original text, line 7 from bottom. Urn U 

should be urn A. 

    4. In § 21, p. 66. The right side of the second equality on last line 

should be b/m rather than a/m. 

 

    1. The probability of an event is our reason to believe that it will 

occur or occurred. Suppose that it happened in one case, and that in 

another one it is only probable. For us, however, all other things being 

equal, its probability in those cases, so different by themselves, is the 

same. A ball is extracted from an urn containing some white and black 

balls whose numbers are known. Or [in another case] the colour of the 

extracted ball remains unknown to me. Evidently I have the same 

reason to believe that in both cases that ball is white. 

    Probability depends on our knowledge about an event; for the same 

event it can differ for different persons. Thus, if a person only knows 

that an urn contains white and black balls, whereas another person also 

knows that there are more white balls than black ones, the latter has 

more grounds to believe in the extraction of a white ball. In other 

words, for him, that event has a higher probability than for the former. 

It is for this reason that two persons, A and B, having different 

knowledge about the same event, sometimes judge contrary to each 

other about it. If A knows everything known to B and something else, 

his judgement is more competent. It is therefore reasonable to adopt 

his opinion when having to choose between the contrary judgements of 

A and B although it is possibly based on a lower probability than that 

which motivates B’s opinion. This means: even if A is less justified to 

believe in his own opinion than B is with respect to his. 

    In ordinary life, the words chance and probability are almost 

synonymous and most often used indifferently. However, if necessary 

to distinguish their meaning, we attach here the word chance to events 

taken independently from our knowledge, and retain its previous 

definition [!] for the word probability. Thus, by its nature an event has 

a greater or lesser chance, known or unknown, whereas its probability 

is relative to our knowledge about it
1
. 

    For example, in the game of heads or tails, the arrival of heads 

results from the constitution of the tossed coin. It can be regarded as 

physically impossible that the chances of both outcomes are the same; 

however, if that constitution is unknown to us, and we did not yet try 

out the coin, the probability of heads is for us absolutely the same as 

that of tails. Actually, we have no reason to believe in one of these 

events rather than in the other one. This will not be the same after 

many tosses of the coin: the chance of each side does not change 
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during the trials, but for someone who knows their results, the 

probability of the future occurrence of heads and tails varies in accord 

with the number of times they happened. 

    [2] The measure of the probability of an event is the ratio of the 

number of cases favourable for it to the total number of favourable and 

contrary cases, all of them equally possible or having the same 

chance
2
. That proposition signifies that when this ratio is the same for 

two events, we have the same reason to believe in the occurrence of 

either of them. Otherwise, we have more reason to believe in the 

arrival of that event for which it is larger.  

    Suppose for example that an urn contains 4 white balls and 6 black 

ones, and that another urn contains 10 and 15 respectively. The 

numbers of favourable cases for the occurrence of a white ball and of 

all the possible cases are 4 and 10 for the first urn, and 10 and 25 for 

the second one. For each urn the ratio of the first number to the second 

is 2/5; it should be proved first of all, that the probability of extracting 

a white ball is the same for both urns which means that if we are 

somewhat interested in the arrival of a white ball, we will have 

absolutely no reason to choose rather one urn than the other one. [A 

long proof follows.] 

    Now I will suppose that urn A contains 4 white balls and 3 black 

ones, and urn B, 3 white and 2 black balls. The same ratios are 4/7 and 

3/5. The second fraction exceeds the first one by 1/35 so that there is a 

greater reason to believe that a white ball will be extracted from B 

rather than from A. When reducing both these fractions to a common 

denominator, they will become 20/35 and 21/35, and, according to the 

proven statement, the probability of extracting a white ball is the same 

as when extracting it from an urn C containing 35 balls, 21 of them 

white, and 14 black. Just the same can be stated about urns B and D 

the latter containing 35 balls, 21 of them white and 15 black. The urns 

C and D contain the same number of balls but D has more white balls 

than C and there evidently is a greater reason to believe that the white 

ball was extracted from B rather than C, and, just the same, from D 

rather than A. And this concludes the demonstration of the proposition 

stated above. 

    It seems that the adopted measure of probability always leads to 

commensurable fractions
3
. However, if the numbers of all the possible 

cases and of those favourable to an event are infinite, the ratio of the 

second number to the first one can be an incommensurable magnitude. 

Suppose, for example, that s and σ are the extents of a plane surface 

and of one of its parts. When tossing a round coin whose centre will 

equally fall on any point of s, the probability of its landing on some 

point of σ will evidently be equal to the ratio of σ to s whose values 

can be incommensurable.  

    [3] In the preceding demonstration we selected some definite 

numbers of balls, but it is easy to see that the reasoning was general 

and independent from those particular numbers. It was also supposed 

that the event, whose probability had been considered, was an 

extraction of a white ball from an urn containing white and black balls 

so that their numbers represented favourable and contrary cases for 

that event. For simplifying the reasoning, it is always possible to 
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substitute [to adopt] a similar hypothesis in each problem concerning 

eventuality and things of quite another nature.  

    Thus, let E be an event of some kind; represent the number of cases 

favourable to its occurrence by a, of contrary cases by b, and by p, the 

probability of E. According to the demonstrated, the measure or 

numerical value of that last-mentioned magnitude will be 

 

    p = a/(a + b). 

 

At the same time, if F is an event contrary to E, then only one of these 

two events will necessarily arrive, just as in the preceding examples 

either a white, or a black ball will be extracted. And, denoting the 

probability of F by q, we will also have 

 

    q = b/(a + b)  

 

since the b cases contrary to E are favourable for F, and p + q = 1. The 

sum of the probabilities of two contrary events, as defined above, is 

always equal to unity. 

    If we have no greater reason to believe in the occurrence of E rather 

than F, their probabilities will be equal, p = q = 1/2. This
4
 takes place 

when tossing a coin, whose physical constitution is unknown to us, for 

the first time. E and F are here the occurrences of one or another of its 

two sides. Instead of being an event which can arrive or not, E can be a 

thing whose veracity or falsity we wish to know. Then, a and b will be 

the numbers of cases in which we believe it to be true or false, and p 

and q will express the probabilities of these alternatives. 

    In each example of either eventuality or doubt and criticism, when 

evaluating the numbers of favourable and contrary cases for E and F, 

and being certain that these numbers are a and b, the fractions p and q 

will be the chances of E and F. If, however, that evaluation only results 

from our knowledge about these two things, p and q will only be their 

probabilities which can differ, as we have explained, from their 

unknown chances. It is always necessary for the favourable and 

contrary cases to be equally possible either by themselves or according 

to our knowledge. 

    [4] In the theory of chances [!] certitude is considered as a particular 

case of probability, the case of an event having no contrary chances. In 

calculations, it is represented by unity whereas probabilities are 

fractions less than unity. Complete perplexity of our mind when 

selecting one of two contrary things is represented by 1/2, and 
impossibility, by 0. For us, that notion of certainty is sufficient; we do 

not need to define it by itself and in an absolute way which is also 

impossible.  

    Absolute certainty belongs to things about which we are only able to 

provide examples. Among those which are called certain there are 

very few rigorously such, like our own existence. Then, some axioms 

are not only certain, but evident; and propositions like geometrical 

theorems whose veracity we demonstrate, or whose contrariety we 

disprove. Things not contrary to the general laws of nature and attested 

by numerous testimonies, and those, confirmed by everyday 
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experience, are nevertheless only very likely, but so probable that there 

is no need, either in usual life or even in physical or historical 

sciences, to distinguish their probability from certainty.  

    The aim of the calculus of probability is to determine, in each 

problem of eventuality or doubt, the ratio of the number of cases 

favourable for the occurrence of an event or for the veracity of a thing, 

to the total number of all possible cases
5
. We will then be able to know 

precisely, according to that fraction more or less approaching unity, 

our reason to believe that that thing is real, or that that event occurred 

or will occur, and it will also be possible for us without any illusions to 

compare that reason in any of the two completely different problems 

of nature.  

   It [the calculus of probability] is based on a small number of rules 

which we will provide and which are demonstrated in full rigour as 

was shown in an example concerning a proposition from § 2. Those 

principles [?] should be regarded as a necessary supplement of logic
6
 

since there are so many problems in which the art of reasoning can not 

lead us to entire certainty. No other branch of mathematics is 

susceptible of more immediately useful applications. As shown in 

Chapter 2, it includes abstract and controversial problems of general 

philosophy and provides their clear and incontestable solutions. 

     [5] If p and p′ are the probabilities of two events, E and E′, 
independent from each other

7
, the probability of their concurrence or 

of an event consisting of those two, is pp′. Actually, let the event E be 

the extraction of a white ball from urn A containing c balls, a of them 

white, and b, black. And let E′ be a similar event concerning another 

urn, A′, containing c′ balls, a′ of then white, and b′, black. Then, 

according to the preceding,  

 

   p = a/c, p′ = a′/c′ 
 

are the probabilities of E and E′. The compound event will then be the 

arrival of two white balls, one of them extracted from A, the other one, 

from A′. When randomly extracting a ball from each of those two urns, 

each ball from A can occur with each from A′ so that there will be cc′ 
equally possible cases. From this total number, those favourable for 

the compound event result from the combinations of each white ball in 

A with each of them in A′, and the number of these favourable cases is 

aa′. Therefore, the probability of the compound event will be (§ 2) 

aa′/cc′, or, which is the same, pp′.  
    Just the same, if p, p′, p″, … are the probabilities of some number of 

events E, E′, E″, … independent from each other, the probability of 

their concurrence will be pp′p″ … This general proposition can also be 

derived from the particular case of an event consisting of two others. 

Indeed, the product of p and p′, or pp′, is the probability of the 

concurrence of E and E′; the probability of the concurrence of that 

compound event and E″ will be […] etc. 

    All those fractions, p, p′, p″ … are less than unity, at least when no 

event E, or E′, or E″, … is certain. It follows that the probability of a 

compound event is also lower than that of each of those events. It 

lowers ever more as their number increases; generally, it tends to zero 
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and is exactly equal to it or becomes infinitely low if that number 

becomes infinite. The only exception is the case in which the infinite 

series of the probabilities p, p′, p″, … is composed of terms infinitely 

approaching unity, or certitude. Their product can have a finite value 

less than unity. Thus, denote a positive magnitude α ≤ 1 and let 

 

    p = α, p′ = 1 − α2
, p″ = 1 − α2

/4, p′″ = 1 − α2
/9, … 

 

According to a known formula, their product, or the probability of the 

compound event, will be equal to (1/π)sinαπ; as usual, π is the ratio of 

a circumference to its diameter.  

    [6] Here is a problem about a probability of a compound event 

providing an example of the preceding rule. I suppose that one of the 

two randomly chosen numbers is subtracted from the other one. It is 

required to determine the probability that that operation is possible 

without having to increase any digit of the minuend.  

    Each of the corresponding digits of the minuend and subtrahend can 

take 10 different values from 0 to 9, and it follows that in each partial 

subtraction there are 100 distinct and equally possible cases. For being 

able to accomplish our task, the minuend’s digits should exceed the 

subtrahend’s corresponding digits or be equal to them.  

    This takes place in 55 of those 100 cases: only once if the 

minuend’s digit is 0, twice if that digit is unity, …, and 10 times if that 

is 9. These numbers form a geometric progression having 10 terms, 

and its sum is (1/2)10(1 + 10) = 55. In each subtraction there is a 

probability of 55/100 so that the whole operation done without 

increasing the minuend’s digits has probability 0.55
i
 where i is the 

number of the minuend’s (or subtrahend’s) digits. When subtracting, 

for example, the decimal parts [the mantissas] of the logarithms in the 

Callet’s table
8
, we have 

 

    i = 7, 0.55
i
 = 0.0152243 …

9
, 

 

that is, a probability contained between 1/66 and 1/65.  

    We also derive the same probability when adding two numbers 

containing i digits each without having to memorize a unity. 

    [7] If one and the same event E occurs m times successively, the 

product pp′p″ … becomes pm
 and expresses the probability that E will 

arrive m times in as many trials during which its probability p remains 

constant. Similarly, if the contrary events E and F have probabilities p 

and q, so that p + q = 1 (§ 3), and if their chances remain constant 

during the m + n trials, the product pmqn
 will be the probability of E 

arriving m times and F, n times at the other n trials, in a determined 

order. This follows from the rule of § 5 when supposing that the 

number of events E, E′, E″, … is equal to m + n and that E is 

substituted for m of them, and F, for the other n. The order in which E 

and F should occur does not influence that probability pmqn
 of the 

compound event. It remains the same whether E arrives at the first m 

trials, and F, at the last n of them or vice versa, or even if these events 

should happen in a determined irregular way. 
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    However, if the order which E and F should follow is not stated, and 

we only desire that in m + n trials E occurs m times, and F, n times in 

whichever order, it is evident that the probability of that other 

compound event will exceed the one corresponding to some 

determined order. Actually, it will be a multiple of pmqn
 and I will later 

provide its general expression.  

    If the chances of E and F are equal, p = q = 1/2; and if m + n = µ, 

the probability of the arrival of these events in a determined order m 

and n times will become (1/2)
µ
. It is thus independent not only from 

the order of their occurrences, but from the proportion of these as well, 

and only depends on the total number µ of the trials. Such is the case 

of an urn containing an equal number of white and black balls from 

which µ successive extractions with replacement are made. The 

probability of extracting µ white balls is the same as of having m white 

and n black balls in a determined order. Both probabilities should be 

very low, but none lower than the other one. Before the trials we have 

the same reason to believe in the occurrence of a sequence of balls of 

the same colour, or of the same number of balls, some of them white 

and the others black in any arbitrary order.  

    However, if we see a sequence of, say, 30 balls of the same colour 

and are quite certain that white and black balls are invariably equal in 

number; or see a very different event presenting some symmetry such 

as the appearance of 30 balls, alternately white and black; or 15 black 

balls following 15 white balls, we are led to believe that these regular 

events are not due to randomness and that the person who extracted the 

30 balls knew the colour of each and in selecting them had pursued a 

particular aim. In such cases, as will be seen below, an intervention of 

a non-random cause actually has probability very near to certainty
10

. 

    [8] The power qn
 is the probability that event F will arrive n times in 

succession, without interruption. Subtracting it from unity, we will 

therefore obtain the probability of the contrary event E occurring at 

least once in n consecutive trials. Therefore, when denoting the 

probability of that latter compound event by r, and substituting (1 − p) 

instead of q, we get  

 

    r = 1 − (1 – p)
n
.                                                                    (8.1) 

 

    When equating this value to 1/2, we will determine the number of 

trials necessary for having the same reason to believe that E either 

happens or not; that is, to believe that we can bet equal money on the 

arrival of E at least once. And so, 

 

    (1 − p)
2
 = 1/2, n = − lg2/lg(1 – p). 

 

If E is the occurrence of a six or another determined face in a throw of 

die with six faces, then p = 1/6, and n = 3.8018 … and it is 

advantageous to bet that a six will arrive at least once in 4 throws but 

disadvantageous to bet on 3 throws. If two dice are thrown, and E is 

the occurrence of a double-six, p = 1/36 and n = 24.614 … so that it is 

advantageous
11

 to bet that […]. 
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    The general expression (8.1) shows that however feeble is the 

chance p of event E, if only not exactly zero, it is always possible to 

choose a sufficiently large number n of trials for the probability of E 

arriving at least once to approach certitude as closely as desired. 

Indeed, however little (1 – p) differs from unity, it is always possible 

to choose a sufficiently large exponent n for (1 – p)
n
 to become smaller 

than a given magnitude. This leads to an essential difference between 

an absolutely impossible thing and an event E whose chance is 

extremely slim. An impossible thing never happens, whereas an event 

having an arbitrarily low probability will always likely occur in a 

sufficiently long series of trials. 

    According to the binomial formula 

 

    
2 2 3 3

(1 ) 1 ...,
n

n np np C p C p− = − + − +   

 

and, if n is a very large number, n − 1, n − 2, … can be replaced by n, 

so that  

 

    
2 2 3 3

(1 ) 1 ...
n

n np np C p C p− = − + − +  

 

which is the series for e−np
 where e is the base of the Naperian 

logarithms. Therefore, the approximate value of r is 

 

    r = 1 − e−np
. 

 

    If р = 1/n, it will be equal to (e – 1)/e so that, if the chance of some 

event E is 1/n where n is a very large number, that number will be 

sufficient for E to arrive at least once with probability (e – 1)/e ≈ 2/3. 

    9. If two events, Е и Е1, are not at all independent, which means that 

the occurrence of one of them influences the chance of the other event, 

the probability of the compound event consisting of Е и Е1 will be рр1, 

where р is the probability of E, which should occur before Е1 does and 

р1 expresses the probability that Е1 will follow.  

    And so, if а and b denote the numbers of white and black balls in 

urn A, and c is their sum; if E is the occurrence of a white ball in the 

first trial, and Е1 is the same event happening at the second drawing, 

then р = а/с, and р1 = (а − 1)/(с – 1) because before the second 

drawing c and a became c – 1 and a – 1. Therefore, 

 

    1

( 1)

( 1)

a a
pp

c c

−
=

−
  

 

According to the same rule,  

 

    1
( 1)

ab
pp

c c
=

−
. 

 

for the probability of the extraction of a white and a black ball in a 

determined order  and without replacing the first of them.  
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    Generally, the probability w of obtaining m white and n black balls 

in (m + n) successive drawings without replacement and in any 

determined order is  

 

    
( 1)...( 1) ( 1)...( 1)

.
( 1)...( 1)

a a a m b b b n
w

c c c m n

− − + − − +
=

− − − +
  

 

Actually, if after m1 + n1 first drawings, m1 white balls and n1 black 

ones are extracted, there will remain (а − m1) white and (b − n1) black 

balls. In a new drawing the probabilities of extracting balls of those 

colours will therefore be 

 

    1 1

1 1 1 1

,  .
a m b n

c m n c m n

− −

− − − −
 

 

    Assume for m1 all the [natural] numbers from 0 to m − 1, and from 0 

to n − 1 for n1; then the product of the (m + n) thus obtained 

magnitudes will evidently make up the value of w coinciding with the 

formula above. 

    When replacing the extracted balls of either colour, their chances 

will remain constant and equal to а/с and b/с. The probability of 

getting m white and n black balls in a determined order will be 

ambn/cm+n
. This is how the expression for w is actually transformed 

when а and b are extremely large and can be considered infinite with 

respect to m and n so that during the trials the chances of the balls of 

each colour remain invariable. If n = 0, we get the probability of 

extracting m white balls in succession  

 

( 1)...( 1)
.

( 1)...( 1)

a a a m
w

c c c m

− − +
=

− − +
 

 

    Instead of an urn [problem], consider a game with 16 red cards and 

the same number of black ones. If required to determine the 

probability of extracting all the red cards in succession in 16 drawings, 

we will have а = 16, с = 32, m = 16 so that 

 

    
16! 1

17 18 ... 31 32 601,080,390
w = =

⋅ ⋅ ⋅ ⋅
  

 

which is a little less than 1/60·10
7
. It will therefore be necessary to 

make somewhat more than 60·10
7
 trials for obtaining probability 2/3 

or for betting about 2 against 1 on the extraction of the 16 red cards at 

least once without interruption. 

    10. Suppose that an event E can occur in many distinct ways 

independent one from another with probabilities p1, p2, … Its 

composite probability p will be the sum of all these partial 

probabilities: 

 

    p = p1 + p2 + … 
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    For the sake of definiteness let there be a given number i of urns A 

containing white and black balls; the total number of balls and the 

number of white balls among them being c1 and a1 in the first urn, c2 

and a2 in the second urn etc. Suppose also that E is the extraction of a 

white ball from a randomly chosen urn which can therefore happen in i 
different ways, and that the probability of choosing one of these urns is 

the same for all of them and thus equal to 1/i. The chances of 

extracting a white ball are a1/c1, a2/c2 etc. According to the rule of § 5, 

the probabilities p1, p2, … of the different ways in which E can occur 

will be 

 

    1 2
1 2

1 2

,  ,  ...
a a

p p
ic ic

= =   

 

and it is required to prove that the composite probability p of 

extracting a white ball from any of the urns A will be 

 

    1 2

1 2

1
[    ...].
a a

p
i c c

= + +   

 

The demonstration is based on a lemma which will be equally useful 

on other occasions. 

    Consider some number i of urns C each containing µ white and 

black balls in diverse proportions. The probability of extracting a 

white ball from any of them will not change if we combine all the iµ 

balls in one single urn B. Actually, they will form somehow arranged 

groups containing one and the same number µ of balls taken from the 

same urn. This will suffice for the chance of randomly choosing a 

group to be the same for all of them and equal to 1/i as though each 

group were contained in one of the urns C. The chance of extracting a 

white ball from a randomly chosen group will not change and the 

probability of extracting a white ball will be the same for urn B and for 

the system of urns C. 

    That conclusion will not persist if the numbers of balls contained in 

urns C are unequal. For any number of them the chance of randomly 

choosing an urn remains the same and equals 1/i, but when all the balls 

are contained in B, the groups there will consist of unequal numbers of 

balls and the chances of randomly selecting a group will differ; it will 

evidently be larger for larger groups. And so, we will reduce all the 

fractions a1/c1, a2/c2, … to the same denominator µ. Let α1, α2, … be 

their numerators, so that 

 

    1 1 2 2

1 1 2 2

α α
,  ,...

µ µ
a a

c c
= =   

 

    The chance of extracting a white ball from each of the urns A and, 

therefore, from all of them taken together, will not change if each 

number c1, c2, … of the balls of either colour is replaced by one and 

the same number µ, and the numbers of white balls, a1, a2, …, by α1, 

α2, … The probability of extracting a white ball will not change either 
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if we then unite all the balls in urn C. And so, C contains the total 

number iµ of balls among which α1 + α2 + … are white. That 

probability will be  

 

    1 21
[ ...]
µ µ
a a

i
+ + .  

 

By virtue of the preceding equations, this magnitude coincides with 

the value of p, Q. E. D. 

    11. For applying this rule to examples let us suppose first of all that 

a person knows that a ball was extracted from urn A containing 5 

white balls and 1 black ball, or from urn B with 3 and 4 of those balls, 

and that he has no reason to believe that that ball was extracted from 

one of those urns rather than from another. For him, the probability 

that the extracted ball is white is  

 

    w = (1/2)(5/6) + (1/2)(3/7) = 53/84 

 

since that event could have happened in two different ways whose 

probabilities are the two terms written above.  

    For another person, who knows that the ball was extracted from B, 

the probability that it is black, is p = 4/7 = 48/84. Both fractions 

exceed 1/2, so the first person should think that the extracted ball is 

white, and the second, that it is black. Although 53/84 is larger than 

48/84, we should choose the latter opinion since the second person is 

better informed. This is a very simple example and it is easy to provide 

many others concerning the previous statement in § 1 about contrary 

opinions on the same question formed by differently informed persons.  

    Suppose also that we know that an urn A contains a given number 

of white and black balls whose proportion is absolutely unknown to us. 

We can formulate (n + 1) different and equally possible hypotheses 

about that proportion, and, at the same time, about the different ways 

in which a white ball can be extracted. These hypotheses are: n white 

balls; (n – 1) white balls and 1 black ball; (n – 2) white and 2 black 

balls; … n black balls. All these assumptions are equally possible and 

the probability of each is 1/(n + 1). The partial probabilities of 

extracting a white ball are, accordingly, 

 

    1 2 3

1 1 1 1 2
,  ,  ,...

1 1 1

n n n
p p p

n n n n n n

− −
= ⋅ = ⋅ = ⋅

+ + +
  

 

and the composite probability is 

 

    
1 1 2 1

( ... )
1 2

n n n n n
w

n n n n n

− − −
= + + + + =

+
 

 

as it should be since we have no reason to believe in the arrival of a 

white ball rather than a black ball. 

    If, however, we certainly know that there are more white balls in the 

urn than black ones, then w > 1/2. For determining it, we should 
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distinguish the cases of an odd and an even n. Let i be a natural 

number. If n = 2i + 1, we can only formulate i + 1 different and 

equally possible hypotheses: 2i + 1 white balls; 2i white balls and 1 

black ball; … (i + 1) white and i black balls. In this first case, the 

composite value of w is 

 

    
1 1 3 2

[(2 1) 2 (2 1) ... ( 1)]
( 1)(2 1) 2 2 1

i
w i i i i

i i i

+
= + + + − + + + =

+ + +
. 

 

It is unity, as it should be, if i = 0, and it indefinitely decreases and 

approaches 3/4 when i increases ever more.  

    If n = 2i + 2, we can also formulate (i + 1) equally possible 

hypotheses: A contains (2i + 2) white balls; (2i + 1) white balls and 1 

black ball; … (i + 2) white and i black balls. The composite value of w 

is 

 

    
1 1 3 4

[(2 2) (2 1) 2 ... ( 2)]
( 1)(2 2) 2 2 2

i
w i i i i

i i i

+
= + + + + + + + =

+ + +
. 

 

    Just like in the former case, w = 1 and 3/4 if i takes the extreme 

values 0 and ∞. For any other natural number i the probability exceeds 

the preceding by i/[4(i + 1)(2i + 1)] whose maximal value is 1/24 at 

i = 1.  

    An urn A contains c balls, a of them white. They are collected in 

groups the first of which has c1 balls, a1 of them white, the second has 

c2 balls, a2 of them white, etc. so that  

 

    c1 + c2 + + … = c, a1 + a2 + + … = a. 

 

    Let p be the probability of a white ball appearing from that urn. It 

should be equal to a/c, which only verifies the rule of § 10. A white 

ball can come from the first group, the chance of which is (c1/c)·(a1/a) 

and the composite value of p, equal to a/c according to the second of 

the two preceding equations, is 

 

    1 1 2 2

1 2

...
c a c a

p
c c c c

= ⋅ + ⋅ +   

 

    However, if we place all these groups in different urns A1, A2, …, 

and if all the numbers c1, c2, … are unequal, the chance of extracting a 

white ball will not be a/c anymore. Generally, that chance depends on 

the way that the white and black balls are distributed among A1, A2, … 

Without knowing it, calculation is impossible. Nevertheless, for 

someone who does not know it, the reason to believe in the appearance 

of a white ball when a ball is randomly extracted from those urns is 

evidently the same as believing in an appearance of the ball of that 

colour from A. Therefore, for that person, the probability of such an 

extraction, unlike its proper chance, will be equal to a/c. I assume, for 

example, that A contains 2 white balls and 1 black ball, 2 of them 

going to A1, and the third one, to A2. For that person there will be 3 
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equally possible distributions: both white balls from A1 and the black 

ball from A2; 1 white, and 1 black ball from A1 and the other white 

ball from A2; that second white ball and the black ball, from A1 and the 

first white ball from A2.  

    For these three cases the probability of extracting a white ball from 

either urn will be 

 

    (1/2) (1 + 0); (1/2) [(1/2) + 1)]; (1/2) [(1/2) + 1)]. 

 

Taking their sum and dividing it by three we have 2/3 for the 

composite probability of that extraction, just as it is for an appearance 

of a white ball from A. 

    Consider finally a system of urns D1, D2, … containing c1 balls, a1 

of them white, in D1; c2 balls, a2 of them white, in D2 … Suppose that 

for some reason the chances of choosing an urn for extracting a ball 

differ and are equal to k1, k2, … By the rule of § 5 the probabilities of 

extracting a white ball will be k1a1/c1, k2a2/c2, … These products 

express the partial probabilities p1, p2, … concerning the different 

ways of the extraction. The composite probability will therefore be 

 

    1 1 2 2

1 2

...
k a k a

w
c c

= + +  

 

    Regarding a system A1, A2, … of urns for which all the probabilities 

k1, k2, … are the same, will suffice for demonstrating the rule of § 10 

in all generality. And that rule being thus proved, its application to the 

other urns D1, D2, … for which the chances k1, k2, … take some 

values, leads, as is seen, to the expression of w of the general case. 

    13. Let now E and F be contrary events excluding each other, one of 

which should always occur. Their probabilities are p and q, p + q = 1. 

Suppose that each of these events can happen in various ways with 

probabilities p1, p2 … and q1, q2 … respectively. Successively 

applying the preceding rule, we will have 

 

    p = p1 + p2 + …, q = q1 + q2 + …, p1 + p2 + … + q1 + q2 + … = 1. 

 

    In problems of eventuality the terms on the left side of the last-

written equation are the probabilities of the diverse favourable and 

unfavourable combinations for the appearance of E. That equation 

therefore shows that their sum is always equal to unity or certitude 

which should indeed take place if all the possible combinations are 

exhausted.  

    It follows from that same equation that p can be written as  

 

    1 2

1 2 1 2

...

... ...

lp lp
p

lp lp lq lq

+ +
=

+ + + + +
  

 

where l is an arbitrary magnitude. The terms of this fraction are 

proportional to the chances p1, p2 …, q1, q2 … of the favourable and 

unfavourable cases for the arrival of E. And if we suppose that among 
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the terms of the numerator a′ terms are equal one to another and equal 

α′, a″ are equal one to another and equal α″, etc; that among the terms 

of the denominator c′ terms are equal one to another and equal γ′, c″ 
terms are equal one to another and equal γ″, etc, then  

 

    
α α ...

.
γ γ ...

a a
p

c c

′ ′ ′′ ′′+ +
=

′ ′ ′′ ′′+ +
  

 

    Thus, if those favourable and unfavourable cases do not have the 

same chance, the probability of E will be expressed by multiplying the 

numbers of equally probable cases by magnitudes proportional to their 

respective probabilities and then dividing by the sum of those products 

for all the possible cases. This rule is more general and often more 

handy for applying than that of § 2 since in no problem about the 

occurrence of an event whose probability we wish to know does it 

require an equality of chances of all the favourable and unfavourable 

cases. 

    14. The rules of §§ 5 and 10 suffice for deriving the formulas about 

the repetition of an event with known constant or variable chances 

during a series of trials. As always, we denote contrary events of some 

nature, one of which should occur at each trial, by E and F. Suppose 

first of all that their probabilities are constant and given and denote 

their chances by p and q respectively and also let the total number of 

trials be µ with E arriving during them m times and F, n times so that  

p + q = 1, m + n = µ.  

    The probability that E and F will arrive m and n times in some 

determined order is independent from that particular requirement and 

equal to pmqn
 (§ 7). Therefore, denoting the probability of such a result 

by П and the number of different ways in which it is possible by K, we 

will have in accordance to the rule of § 10  

 

    П = Kpmqn
. 

 

For determining K, I suppose first of all that the µ events A, B, C, … 

which should take place are all different. Then K will be the number of 

permutations of all the letters µ which is equal to µ!.  

    Then, if some m of those letters A, B, C, … represent one and the 

same event E, the number of different permutations will be µ!/m!. And 

if the other µ − m = n letters represent one and the same event F, the 

number of the appropriate permutations will be µ!/n!. Consequently, 

the number of various permutations with event E occurring m times, 

and F, n times, or the required value of K will be 

 

    K = µ!/m!n!. 

 

    Since µ = m + n, this magnitude will be symmetric with respect to 

m and n: 

 

    µ µ .m nK C C= =  
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This proves that П is the (m + 1)-th term of the expansion of (p + q)
µ
 

arranged in increasing powers of p, or its (n + 1)-th term arranged in 

increasing powers of q. It follows that in our case when the chances p 

and q of the contrary events E and F are constant, the chances of all the 

compound events that can occur in µ trials are expressed by different 

terms of (p + q)µ
. 

    Those events are (µ + 1) in number and they are unequally probable 

either because of the multiplicity K of the combinations which can 

lead to them, or since the chances p and q are unequal.  If p = q, the 

most probable event corresponds to m = n if µ is even, and to one of 

the two cases m – n = ± 1 for odd values of µ.  

    15. Let P be the probability that E occurs at least m times in µ trials. 

This compound event can take place in (m + 1) different ways, when E 

arrives µ, µ − 1, …, µ − n = m times. The corresponding probabilities 

can be derived from the preceding expression of П by consecutively 

substituting µ and 0, µ − 1 and 1, …, m and n instead of these two last-

mentioned numbers. By the rule of § 10 the composite probability of P 

will be the sum of these (n + 1) partial probabilities: 

 

    µ µ 1 2 µ 2 2

µ µµ   ...  .n m nP p p q C p q C p q− −= + + + +  

 

    In other words, P will be the sum of the (n + 1) first terms of  

(p + q)
µ
 arranged in increasing powers of q. For m = 0 or n = µ,  

P = (p + q)
µ
 = 1, as it should be since this compound event includes all 

the possible combinations of E and F arriving in all the trials so that its 

probability should become certainty. For m = 1 the corresponding 

event is contrary to F occurring at all trials; actually, the value of P 

will then be the entire expansion of (p + q)
µ
 less its last term, qµ

, 

which accords with the value of r from § 8.  

    If µ = 2i + 1 is odd, and it is required to determine the probability 

that E occurs oftener than F, it can be derived from the general 

expression of P when taking m = i + 1 and n = i. If, however, µ = 2i is 

even, the probability that E arrives at least as many times as F does, is 

obtained from the same expression by taking m = n = i. 
    16. The solution of the first probability problem, mentioned here at 

the very beginning of the Preamble and known as the problem of 
points, can also be provided from that formula. Gamblers A and B are 

playing some game in which one of them gains a point after each set 

with probabilities p and q. To win the game, they lack a and b points, 

and it is required to determine their probabilities, α and β, of achieving 

this aim. One of these contrary events will necessarily occur, so that 

α + β = 1 and it is only sufficient to determine α.  

    Note first of all that the game ends at most after (a + b − 1) sets 

since A will then win at least a points, or B, at least b points. 

Furthermore, without changing at all their respective chances of 

winning the game, the gamblers can agree to play (a + b − 1) sets 

since, whatever happens after that, only one of them can win his 

lacking points: either A wins a points before B wins b, or B wins b 
points before A wins a. 

    For determining α and β, we may therefore suppose that the number 

of sets is always (a + b − 1). And so, α is the probability that event E 
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having chance p at each trial will appear at least a times in that number 

of trials so that its value can be determined from the preceding 

expression of P by taking 

 

    µ = a + b − 1, m = a, and n = b − 1. 

 

Let for example p = 2/3, q = 1/3, a = 4 and b = 2. Then α = 112/243,  

β = 131/243 and β > α. It follows that a gambler A, twice more skilful 

than B, i. e., having a double chance of winning each set
12

, still can not 

bet without disadvantage on winning 4 points before B wins 2. 

    As will be shown below, if the gamblers agree to stop playing 

without ending, A and B will receive the stakes multiplied by the 

chances α and β of winning them which means that they ought to share 

the stakes in the proportion α:β. 

    17. Suppose that instead of events E and F there is a larger number 

of them, three for example, and call them E, F, and G with only one of 

them arriving at each trial. Let their constant probabilities be p, q and 

r, and µ, the number of trials. It is easy to generalize the method of  

§ 14 and arrive at the probability that E, F and G occur m, n and o 

times:  

 

    
µ!

,
! ! !

m n op q r

m n o
 p + q + r = 1, m + n + o = µ, 

 

so that the derived probability is the general term of the expansion of 

(p + q + r)
µ
.  

    Such is the case of an urn containing balls of three different 

colours in proportion p:q:r and the events E, F and G being 

extractions with replacement of these three kinds of balls. Taking 

the sum of the terms of the expansion of (p + q + r)
µ containing p 

to the power equal or larger than m, we will have the probability 

that E occurs at least m times in µ trials. Whichever is the number 

of the events E, F, G, …, only one of which arrives at each trial, we 

can immediately derive that probability by issuing from the preceding 

expression for P. 

    As always, denote the constant chances p, q, r, … of the occurrence 

of one of the events E, F, G, … in each trial. This pattern can be 

considered as a compound event
13

, call it F′, and its probability, q′. 
Then 

 

    q′ = q + r + …, p + q′ = 1. 

 

Events E and F' are therefore contrary and only one of them will arrive 

at each trial. Therefore, the probability that E occurs at least m times in 

µ trials will be obtained by substituting q′ instead of q in the 

expression of P.  

    To provide an example of this rule based on the expansion of a 

power of a polynomial, I suppose that an urn A contains m balls 

numbered 1, 2, …, m. When extracting a ball with replacement µ times 



 46 

in succession, the chance of the arrival of a ball with a fixed number is 

equal to 1/m. Let  

 

    n1, n2, …, nm                                                                      (17.1) 

 

be given numbers including zero or not and 

 

    n1 + n2 + …+ nm = µ. 

 

Then denote by U the probability that ball No. 1 will occur n1 times in 

some particular order, ball No. 2, n2 times, … and let 

 

    (t1 + t2 + … + tm)
µ
 = θ.                                                      (17.2)  

 

    When expanding θ in powers and products of the undetermined 

magnitudes t1, t2, …, tm, U will be the term of that expansion 

containing 

 

    1 2

1 2 ... mnn n
mt t t  

 

with all these magnitudes made equal to 1/m. Denote the numerical 

coefficient of that product by N, then  

 

    U = N/mµ
. 

 

    N is a natural number depending on µ and numbers (17.1); it is 

equal to 

 

    
1 2

µ!

! !... !mn n n
 

 

with 0! = 1 in all such products.  

    Let now s be the sum of the numbers extracted in µ drawings: 

 

    s = n1 + 2n2 + … + mnm. 

 

If s is given and all the natural numbers and zero satisfying that 

equation and adding up to µ are consecutively substituted for n1, n2, 

…, nm; if N', N″, … are the corresponding values of N; and if V is the 

sum of the corresponding values of U, − then 

 

    V = (1/mµ
)(N' + N″ + …) 

 

will be the probability of obtaining the given sum s.  
    It is easier to calculate V by replacing the undetermined magnitudes 

t1, t2, …, tm by the powers t, t2
, …, tm

 of the same magnitude t. Denote 

the new value of θ, see (17.2), by T, then
14

 

 

    T = (t + t2
 + … + tm

)
µ
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and it will be easy to see that the sum (N' + N″ + …) is just the 

numerical coefficient Ms of ts
 in the expansion of T so that 

 

    V = Ms/m
µ
. 

 

That coefficient depends on the given numbers µ, m and s and is easily 

calculated in each example [in each problem]. 

    Instead of a single urn A we may suppose that there are µ urns A1, 

A2, …, Aµ each containing m balls numbered 1, 2, …, m, and that a 

ball is extracted from each. Or, we may also replace these urns by the 

same number of ordinary dice with six faces numbered 1, 2, …, 5, 6. 

So m = 6 and V expresses the probability that in a throw of µ dice the 

sum of the obtained points will be s. Let µ = 3, then 

 

    T = t3
(1 + t + t2

 + … + t5
)
3
, V = Ms/6

3
. 

 

    The expansion of T consists of 16 terms with their coefficients 

equally remote from the extremes, such as M3 and M18, M4, and M17, 

…, M10 and M11, being equal. The sum of all the coefficients will be 

equal to the value of T at t = 1, or 6
3
. The sum of the first 8 

coefficients, M3, M4, …, M10, just as the sum of the last 8 of them, M11, 

M12, …, M18, will be equal to 6
3
/2.  

    We conclude that in a throw of three dice the probability of gaining 

10 points or less is 1/2, the same as when obtaining 11 or more. It will 

therefore be a fair bet that the sum of the arrived three numbers is 

smaller or larger than 10. It is on this result that the game passe-dix is 

based. Without being aided by calculation, it is easy to become assured 

in the equality of chances of the two gamblers when noting that the 

sum of the points on each pair of opposing faces of the same die equals 

7 (6 and 1, 5 and 2, 4 and 3)
15

. It also follows that the sum of the three 

superior and inferior numbers is always 21, so that, when the three 

dice are falling on the gaming table, and the first sum is larger than 10, 

the second [the next] sum is less, and vice versa. […] 

    For finding the chances of the diverse values of s from s = 3 to 18, it 

is necessary to turn to the expansion of T. We get 

 

    M3 = M18 = 1, M4 = M17 = 3, M5 = M16 = 6, M6 = M15 = 10, 

    M7 = M14 = 15, M8 = M13 = 21, M9 = M12 = 25, M10 = M11 = 27 

 

    These are the numbers of the combinations of three throws for 

achieving the appropriate sums. By dividing those numbers by  

6
3
 = 216, we get the chances of those sums. 

    18. When the chance of event E varies during the trials, the 

probability of its being repeated a given number of times, depends on 

the law of that variation. Suppose, as it was done in § 9, that E is the 

extraction of a white ball without replacement from an urn A 

containing a white and b black balls. Denote the number of drawings 

by µ and the probability of the arrival of m white and n black balls in 

some determined order by w. The value of w is provided by the 

formula in that § 9 and is independent from the order of the 

appearance of those balls. 
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    Denote the probability that they arrive in some fixed order by П, 

then 

 

    П = Kw 

 

where K is the same as in § 14. Let, as always,  

 

    m + n = µ, a + b = c; a – m = a′, b – n = b′, c − µ = a′ + b′ = c′. 
 

Then a′, b′, c′ will be the numbers of balls of both colours and their 

sum, which were initially a, b and c, and which are left after the 

drawings. When considering the expressions of K and w, we will have 

 

    П = 
µ! ! ! !

! ! ! ! !

a b c

m n a b c

′

′ ′
. 

 

    This formula can easily be extended to the case in which A includes 

balls of three or more different colours. After suppressing common 

factors in the numerator and denominator that formula becomes 

simpler
16

: 

 

        µ

( 1)...( 1) ( 1)...( 1)
.

( 1)...( µ+1)

n a a a m b b b n
C

c c c

− − + − − +
Π =

− −
 

 

    The probability of extracting not less than m white balls in µ 

drawings will be the sum of (n + 1) values of П obtained by replacing 

m and n by µ и 0; by µ − 1 and 1; …, µ − n and n. Denoting that 

probability by Р, we will get 

 

    ( 1)...( µ 1) ( 1)...( µ 1)Pc c c a a a− − + = − − + +  

    µ ( 1)...( µ 2)ba a a− − + +  2

µ ( 1) ( 1)...( µ 3)C b b a a a− − − + +  

    3

µ ( 1)( 2) ( 1)...( µ 4)C b b b a a a− − − − + +   

    µ... ( 1)...( 1) ( 1)...( 1).nC b b b n a a a m+ − − + − − +   

 

If m = 0 and n = µ , then Р = 1 and we conclude that 

 

    ( 1)...( µ 1) ( 1)...( µ 1)c c c a a a− − + = − − + +  

    µ ( 1)...( µ 2)ba a a− − + +  2

µ ( 1) ( 1)...( µ 3)C b b a a a− − − + +  

    3

µ ( 1)( 2) ( 1)...( µ 4)C b b b a a a− − − − + +  … + 

    µb(b – 1) … (b − µ + 2a) + b(b – 1) … (b − µ + 1) 

 

which coincides with the generally known formula similar to that of 

the binomial. In this [in my] formula and in all others of the same kind, 

each magnitude such as a(a – 1)(a – 2) … (a – m + 1), being a product 

of m factors, should be supposed to equal unity at m = 0. Therefore, 

that magnitude is not suited for the case in which µ = 0 and the same 

exception is just as applicable to a binomial to the power of zero. 
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    19. When drawing µ times without replacement, the probability of 

obtaining m white and n black balls will be the same whether drawing 

consecutively or all at once. This can be verified in the following 

way
17

. 

    I denote the number of groups, each consisting of µ balls, by  

Gµ = 
µ
cC which can be formed given the c balls contained in the urn. 

Actually, to form those groups from groups of (µ − 1) balls it is 

necessary to combine each of them with the (c − µ + 1) balls not 

contained there. The number of groups containing µ balls will be  

(c − µ + 1)Gµ−1 but µ groups of (µ − 1) balls will produce one and the 

same group of µ balls, and we should therefore divide the product  

(c − µ + 1)Gµ−1 by µ, to get the number of different groups of µ balls. 

And so, 

 

    Gµ = Gµ−1(c − µ + 1)/µ. 

 

    For µ = 1, evidently G1 = c. Taking µ = 2, 3, 4, … we will obtain 

 

    
2 3

2 1 3 2[( 1) / 2] ,  [( 2) / 3] ,c cG c G C G c G C= − = = − =   

    
4

4 3[( 3) / 4] cG c G C= − = , … 

 

and finally, Gµ. 

    Denote now the value of Gm when c and µ are replaced by a, and m 

by G′m; and by G″n when those two magnitudes are replaced by b and 

n. Then 

 

    , .
m n

m a n bG C G C′ ′′= =  

 

The product G′mG″n is the number of groups consisting of m + n = µ 

balls, each containing m white and n black balls, which can be formed 

from a + b = c balls. The probability of obtaining one of those groups 

when drawing µ balls at once is equal to their number divided by the 

number of all the groups of µ balls in the urn 

 

    П = G′mG″n/Gµ 

 

and coincides with П of § 18. The expression of P in the same section 

is also the probability of obtaining at least m white balls when drawing 

µ balls at once. 

    20. In the example of § 18 the chance of event E varied during the 

trials since at each new trial it depended on the number of the previous 

arrivals of that E and of the contrary event F. However, there are other 

problems in which the proper chances of these two events of some 

nature are independent from previous trials but vary from one trial to 

another.  

    Generally, in a series of µ past or future trials let p1 and q1 be the 

chances of E and F at the first trial, p2 and q2, at the second trial, …, 

and pµ and qµ at the last trial. Then p1 + q1 = p2 + q2 = … = pµ + qµ = 1. 

It is required to determine the probability that E will arrive or arrived 

m times, and F, n = µ − m times in some definite order. I denote the 
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product of m of the fractions p1p2 … pµ by Pm, and, by Qn, the product 

of n fractions q1q2 … qµ. Here, if Pm includes or not the fraction pi, 

then qi is not, is included in Qn.  

    I then multiply Pm by Qn and form the sum of all the possible 

magnitudes PmQn whose number was denoted by K in § 14. And that 

sum expresses the required probability. It is also possible to formulate 

that rule in another way which will be useful below. 

    Let u and v be two undetermined magnitudes and  

 

    R = (up1 + vq1)(up2 + vq2) … (upµ + vqµ). 

 

That R is the product of µ = m + n factors
18

, and when actually 

multiplying them we will get a polynomial of (µ + 1) terms arranged in 

powers of u and v. The coefficient of umvn
 in that polynomial will be 

the required probability of the arrival of E and F m and n times 

respectively in some definite order. Suppose for example that m = 3, 

then  

 

    R = u3p1p2p3 + u2v (p1p2q3 + p1p3q2 + p2p3q1) + 

           uv2
 (p1q2q3 + p2q1q3 + p3q1q2) + v3q1q2q3. 

 

The coefficient of u3
 is evidently the probability that E occurred three 

times; of u2v, the probability that E arrives at the first two trials, and F, 

at the third; or, F at the second trial, and E, at the two others; or, F at 

the first, and E, at the last two trials. The coefficient of uv2
 expresses 

the probability that F occurs twice, and E, once; and, finally, the 

coefficient of v3
 is evidently the probability of the appearance of F 

three times. 

    Now, if at each trial E can occur in many equally possible ways, we 

adopt the sum of the [partial] probabilities of those diverse ways 

divided by their number as the chance of E at that trial, and note that 

this procedure conforms to the rule of § 10. Subtracting that mean 

chance of E from unity, we get that chance of F. Those mean chances 

for each trial should be applied for calculating the probability that E 

and F will arrive m and n times in m + n trials, and the same holds for 

any other compound event consisting of E and F. However the partial 

chances of E and F vary in number and magnitude from one trial to 

another, if their mean chances remain constant, the probabilities of the 

compound events obey the same laws as when the chances of those 

events are invariable.  

    21. One of the most frequent applications of the calculus of 

probability aims at determining the advantages and damages attached 

to possible things as against the gains and losses which they produce 

and the chances of their occurrence. That aim is based on the 

following rule. 

    Suppose that one of the events E, F, G, … should appear and denote 

their probabilities by p, q, r, … so that p + q + r + … = 1. Suppose 

also that for some person gain g is attached to the arrival of E, that for 

another person, it is attached to F, etc. If all those interested agree to 

share g before chance will decide the problem, or if they are obliged to 

share that gain by some cause, it should be shared between them 
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proportionally to their probabilities of winning it, so that gp will be the 

share of the first person, gq, the share of the second person, etc.  

    Actually, if m is the number of all the equally possible cases among 

which a, b, c, … are favourable for E, F, G, …, then 

 

    a + b + c + … = m, p = a/m, q = b/m, r = c/m, … 

 

If there are m people and each of them is to gain by the appearance of 

one of the m possible causes, then evidently g should be equally shared 

among all of them so that each will get g/m. And the person who 

enjoys probability p of gaining or who has a possible chances for 

gaining, should then receive ag/m = pg. The shares of the other people 

will similarly be qg, rg, …  

    If a game has begun, that rule will indicate what will each gambler 

get according to his probability of winning the game, should those 

gamblers agree to separate without concluding it. And the share of 

each gambler before the game begins should be proportional to his 

chance of winning. Indeed, if the gamblers decide to separate instead 

of playing, each of them should get his share back. By the preceding 

rule, the sum returned to him should also be equal to the sum of the 

stakes multiplied by the probability of [his] winning the game. In 

games of chance that probability depends on the rules of the game and 

can be calculated in advance if only they are not too complicated. In 

games in which success depends on the skill of each participant, the 

probability of winning it is usually based on their reputations and can 

only be determined with some precision by long experience. 

    Let the probabilities of two contrary events E and F be p and q,  

p + q = 1. If A bets α on the arrival of E, and B bets β on F, those sums 

α and β should be in the same ratio as p and q, pβ = qα. However, it 

should not be forgotten that those probabilities p and q differ in 

general from the proper chances of E and F and depend on the 

knowledge which A and B could have obtained about those events. If 

the probabilities mentioned are based on the same knowledge of both 

gamblers, the bet will be equitable even if it favours one of them at the 

expense of the other. Otherwise, the ratio α:β will not be equal to the 

ratio of their probabilities and there will be no means equitably to 

regulate the bet. 

    22. The formulas of § 19 allow to calculate without difficulty the 

diverse chances of the Lottery of France, happily suppressed by a 

recent law. Comparing them with the multiples of the stakes paid by 

the Lottery for the winning tickets, we see that their multiples are 

much smaller than those for a fair game. For the Lottery, this resulted 

in an exorbitant advantage at the gamblers’ expense which the law 

should have punished as being illegal.  

    Let in general n be the number of the numbers included in a lottery, 

m of them being extracted at each drawing, l, the number of winning 

numbers chosen by a gambler, and λ, the probability that those last-

mentioned numbers will be drawn. According to the formulas of § 19, 

the quantities of possible groups consisting of l numbers formed either 

from the n numbers of the lottery, or from the m numbers extracted at 
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each drawing, are  and  
l l
n mC C  and the probability λ will be the ratio of 

the latter to the former:  

 

    
( 1)...( 1)

λ .
( 1)...( 1)

l l
m n

m m m l
C C

n n n l

− − +
= ÷ =

− − +
  

 

    Suppose that a gambler’s stake is unity, then the stake of the lottery 

should be (1 − λ)/λ, and if a gambler wins, the lottery should also give 

him back his stake. Let µ be the just multiple of the gambler’s stake, 

then 

 

    µ = [(1 − λ)/λ] + 1 = 1/λ. 

 

Let also x be the number of consecutive drawings for betting even 

money on the numbers chosen by the gambler to win at least once. By 

the rule of § 8 

 

    (1 − λ)
x
 = 1/2, 

 

and, if λ is a very small fraction, x ≈ 0.69315/λ where the coefficient is 

the Naperian logarithm of x. 

    In the Lottery of France n = 90 and m = 5. For gambling on three 

winning numbers l = 3 and  

 

    
5 4 3

λ ,  µ 11,748,  8143.13... 
90 89 88

x
⋅ ⋅

= = =
⋅ ⋅

 

 

In case of his winning, the Lottery should have paid the gambler 

11,748 times more than his stake, but actually paid 5500 times more, i. 

e., less than a half of the indicated. The disproportion was even greater 

for betting on 4 or 5 numbers, and less when gambling on 2 or 1. 

    It was advantageous to bet even money on three chosen numbers to 

be extracted at least once in 8144 drawings and disadvantageous to bet 

on 8143. With respect to one number chosen in advance  

 

    (1 − 1/18)
x
 = 1/2, x = lg2/(lg18 – lg17) = 12.137 … 

 

so it was disadvantageous to bet even money on the extraction of that 

number at least once in 12 drawings and advantageous to bet on 13. It 

would have also been advantageous to bet even money on the 

extraction of the 90 numbers at least once in 85 or 84 drawings 

(Laplace 1812/1886, pp. 200 – 201)
19

.  

    Some gamblers choose numbers which had not been drawn for a 

long time; others, on the contrary, choose those which had been most 

often drawn
20

. Both these preferences are equally ill-considered. For 

example, suppose that there exists a probability [1 − (17/18)]
100

 ≈ 

0.997 very nearly a certitude, that some fixed number will appear at 

least once in a 100 consecutive drawings, but that it was not extracted 

in the first 88 of them. The probability of its being drawn in the 12 last 

extractions will be almost 1/2, just as for any other determined 
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number. As to the most often drawn numbers, that circumstance 

should not be thought to be due to chance compatible with the obvious 

equality of chances of all the numbers at each drawing. In no games of 

chance in which equal or unequal chances are known in a certain 

manner, past events have any influence on the probability of future 

events
21

, and no combinations imagined by gamblers can augment the 

gain or diminish the loss resulting from chances as described by the 

rule of § 21. 

    In the Paris public games
22

, the advantages of the banker at each set 

is inconsiderable. Thus, for the game thirty-and-forty it is a little less 

than 0.011 of the stake, see my paper (1825). However, because of the 

rapidity of that game and the large number of sets played during a few 

hours, the banker enjoys assured benefit almost constant from year to 

year for which he has to pay yearly five or six millions to the public 

administration which granted him the monopoly. Those games are 

more harmful than the Lottery since only in the capital the moneys in 

those games amount to many hundred millions, much more than in the 

Lottery over all France. 

    Any discussion of the reasons put forward to preserve those public 

games is here out of place. I had never been able to consider them 

good enough; suffice it to mention that these games have caused many 

misfortunes and perhaps crimes so that the administration should 

suppress them rather than share the benefits they provide with those 

whom they sell the privilege
23

. 

    23. The product of a gain and the probability of obtaining it is what 

is called mathematical expectation of anyone interested in some 

speculation
24

. If the gain is 60,000 francs, say, and 1/3 is the chance of 

the event to which it is attached, the person who is to receive that sum 

under some circumstances may consider a third of that sum as his 

property and ought to include it in the list of his actual fortunes. 

    In general, if someone is to get g at the arrival of an event E, g′ at 

the occurrence of E′, … and if the chances of those events are p, p′, …, 

his mathematical expectation will be gp + g′p′ + … And if one or 

many magnitudes g, g′, … express losses to be feared by that person, 

those magnitudes should be reckoned with a minus. According to the 

total expectation being positive or negative, it will represent an 

increase or decrease of fortune. And if the man does not wish to wait 

for the events to occur, that expectation should be actually included in 

his credits or debts.  

    It is well known that when the gains or losses will only happen after 

a long time, they should be discounted and thus converted into actual 

values independent from eventualities. If g should only be paid to the 

person who evaluates his fortune after n years, g′, after n′ years, … 

those sums will be today worth g/(1 + θ)
n
, /(1 θ) ,ng ′′ +  … where θ is 

the yearly interest. Therefore, when denoting by ε the part of the 

fortune resulting from the mathematical expectation of that person, we 

will have  

 

    ε = gp/(1 + θ)
n
 + /(1 θ)ng p ′′ ′ + + … 
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    When taking account of the gains and losses following from those 

events, ε is the sum that another person should pay or receive 

depending on ε being positive or negative. Calculations of annuities on 

one or more lives, of life insurance and pensions are based on that 

formula and on mortality tables as can be seen in special contributions 

treating those problems. 

    24. Since the advantage procured for someone by a gain depends on 

his fortune, we distinguish that relative advantage from mathematical 

expectation and call it moral expectation. If it is an infinitely small 

magnitude, its ratio to the actual fortune of the person is admitted as 

the measure of moral expectation which can be either positive or 

negative depending on whether that fortune eventually increases or 

decreases. 

    By issuing from that measure, integral calculus provides 

consequences, according with the rules that prudence indicates about 

the way in which everyone should direct his speculations. By that 

calculus we also discover the reason for abstaining from gambling 

even when the game is fair. True, that reason is perhaps not the best 

possible. An irrefutable argument against games of chance, if they 

cease to be a simple amusement, is that they do not create values and 

that winning gamblers can only attain advantage when causing 

misfortune to, and sometimes ruin of the losers.  

    Commerce is also a game in the sense that success of most prudent 

speculations is always only likely and leaves room for chances of loss 

which ability and prudence can only lessen. However, commerce 

increases the value of things by transporting them from one place to 

another, and it is in this increase that the merchant finds his benefit and 

at the same time advantages the consumer
25

.  

    25. The rule of § 21, simple and natural as it is, is fraught with a 

difficulty which we sometimes have to deal with. A and B play heads 

and tails under the following conditions: 1. A game ends when heads 

appear. 2. B gives A 2 francs if heads appear at once, 4 if it only 

arrives at the second toss, …, and in general 2
n
 francs if heads [first] 

occurs at the n-th toss. 3. The game ends in a draw if heads do not 

happen in the first m tosses. Without this restriction the game could 

have lasted for an infinite time. 

    It is supposed that the coin does not tend to fall on one side rather 

than on the other so that at each toss the chances of both heads and 

tails are 1/2. It follows that the probability of heads first appearing at 

the n-th throw is 1/2
n
. Indeed, for that event to happen, tails should 

have occurred (n – 1) times consecutively with probability 1/2
n−1

. 

After that, the appearance of heads has probability 1/2 and 

(1/2
n−1

)(1/2) = 1/2
n
. In such a case, A gets 2

n
 francs and increases his 

mathematical expectation by 1 franc
26

. This happens, however, at each 

of the m tosses of the game so that the entire value of his mathematical 

expectation is 1 franc multiplied by m.  

    For the game to be fair, A ought to give m francs to B; that is, give a 

thousand, a million francs, even an infinite sum if the game can be 

indefinitely prolonged. However, no one will risk a thousand francs, 

say, on such a game. Here, the rule of mathematical expectation seems 

to be defective. For eliminating this difficulty, which we indicate, the 
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rule of moral expectation and its measure were introduced. We ought 

to remark, however, that that difficulty was caused by the conditions 

of the game which disregarded the possibility of B to pay all the 

moneys that the chance can deliver to A. No matter how great is B’s 

fortune, it is necessarily limited; let it be b francs, then A will never 

receive a greater sum from B which decreases his mathematical 

expectation to a very large extent. Actually, we always have 

 

    b = 2
β
(1 + h)                                                                    (25.1) 

 

where β is a natural number and h is a positive number less than unity. 

If β ≥ m, B can pay any sum due A; otherwise, however, B will be 

unable to pay if heads first appears after more than β tosses. For those 

first tosses, the mathematical expectation of A is therefore equal to β, 

but for the rest m − β tosses it becomes constant and equal to b, see 

formula (25.1), multiplied by their respective probabilities from 1/2
β+1

 

to 1/2
m
. Denoting the composite value of A’s mathematical 

expectation by ε, which is what he should give B for the game to 

become fair, we have  

 

    β 1

1 1 1 1
ε β (1 )[1 ... ] 

2 2 4 2m
h

− −
= + + + + + + = β

1
 β (1 )[1 ]

2m
h

−
+ + − . 

 

    This magnitude does not increase with m; on the contrary [?], it is 

almost independent from that number and, when being very large, it is 

appreciably reduced to 

 

    ε = β + 1 + h. 
 
B’s fortune can never be sufficiently great for β to become 

considerable, and A should only risk a rather small sum between β + 1 

and β + 2. If B is a banker having a hundred million francs, we will 

find out that the largest power of 2 in formula (25.1) is 26 so that A 

will really be at a disadvantage to bet 28 francs or more against the 

proprietor of that great fortune. 

    The rule of moral expectation applied to that problem (Laplace 

1812/1886, p. 451) leads to a different sum which A can risk and 

which depends on the fortune of A rather than of B, but it seems to me 

that it is the possibility of B to pay in full that should restrict the sum 

which A must give him in advance. 

    26. I conclude this chapter by some remarks on the influence of a 

chance favourable for an event without knowing which one
27

. It 

always increases, as will be seen, the probability of repeated events in 

a series of trials. Thus, when playing heads and tails, it is always 

possible to believe that the coin, according to its physical constitution, 

tends to fall on one side rather than on the other. We do not know in 

advance whether that circumstance favours the occurrence of heads or 

tails which does not prevent the heightening of the probability of the 

same side to arrive many times in succession. 

    For showing it, let us denote the chance of the favoured side by  



 56 

(1 + δ)/2; consequently, the chance of the other side will be (1 − δ)/2. 

Here, δ is a small positive fraction whose value is unknown, and we do 

not know which of these two chances corresponds to heads or tails. If 

the coin should be tossed only once, there will be no reason to believe 

that the side chosen by one of the gamblers is more favoured or less, 

and the probability of its occurrence is 1/2, as though δ = 0. If, 

however, there ought to be two tosses, it is advantageous to bet on the 

coincidence of the arrived sides. Four combinations are possible, two 

for coincidence (heads, heads; or, tails, tails) and two for 

dissimilitude. The chances of the first two outcomes are [(1 + δ)/2]
2
 

and [(1 − δ)/2]
2
, so that the probability that one of them takes place is, 

by the rule of § 10, their sum, (1 + δ2
)/2. The chances of the two other 

combinations are the same, each of them being expressed by  

[(1 + δ)/2][(1 − δ)/2], and their sum is (1 − δ2
)/2 which is less than the 

previous sum in the ratio of  

 

        
2 2

2 2

1 δ 2δ
1 .

1 δ 1 δ
−

= −
+ +

  

 

    If, in a fair game, A bets a franc against B on coincidence, B should 

bet 1 franc less 2δ2
/(1 + δ2

); and if δ = 1/10, less by about 2 centimes. 

When the coin should be tossed three times in succession, 8 different 

combinations will be possible: three times heads, and three times tails, 

and 6 more, three of them consisting of 2 heads and 1 tails, and the 

three last ones, of 2 tails and 1 heads. Supposing that δ 
is exactly zero, 

the chances of those 8 combinations will be equal one to another. 

Therefore, A, betting always on coincidence, should stake three times 

less than B; however, doubtless δ ≠ 0 and that proportion of chances 

will even be more advantageous for A than in the case of two tosses. 

The probability of coincidence will be  

 

    
3 3 21 1 1

[ (1 δ)] (1 δ)] (1 3δ ).
2 2 4

+ + − = +  

 

    […] This reasoning can easily be generalized on more than three 

trials, and, if desired, on other games in which more than two events 

are possible with their unknown chances possibly being unequal.  

    Suppose that in a game for two the gamblers’ skills somewhat 

influence the result. Equality of skills is unlikely, and if it is unknown 

who plays better, we should bet on the same gambler winning the two 

first games. But even if we know who is more skilful, it is not always 

advantageous to bet on his winning both these games. Indeed, four 

combinations can take place, three of which are unfavourable to him 

and only one is favourable. And although that last-mentioned is the 

most probable, his chance probably will not offset the three others 

taken together. 

    Let p be the known probability of event E of some nature, and q, the 

probability of the contrary event F, so that p + q = 1. Suppose that 

some cause can increase the chance of one of those events, which 

remains unknown, and at the same time decrease the chance of the 

other by an unknown fraction α. Denote by w the probability that in m 
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trials one of those events will always appear. If E is the favoured 

event, the probability of coincidences of an outcome during the m 

trials will be, according to the rule of § 10, 

 

    (p + α)
m
 + (q − α)

m
 

 

since the coincidence can happen in two different ways with either E 

or F arriving all the time. If, however, the favoured event is F, then the 

similar probability will be 

 

    (p − α)
m
 + (q + α)

m
. 

 

    We do not know the chance of which event had increased or 

decreased and for us those two different values are equally possible 

with the probabilities of each being 1/2. By the rule of § 10 the 

composite probability of coincidence will be  
 

    w = (1/2)[(p + α)
m
 + (q − α)

m
 + (p − α)

m
 + (q + α)

m
] = P + Q, 

    
2 2 2 4 4 4α α ...,  

m m m
m mP p C p C p− −= + + +  

    
2 2 2 4 4 4α α ...

m m m
m mQ q C q C q− −= + + +  

 

    If, however, α = 0, the probability of coincidence will simply be  

(pm + qm
) so that any cause that increases the chance of one of the two 

contrary events E and F without it being known which one of them, 

increases the probability of coincidences of the events in a series of 

trials since the value of w evidently becomes larger than (pm + qm
). 

 

Notes 
 
    1. Poisson invariably applied both terms, chance and probability, and in a letter of 

1836 to Cournot (1843/1984, p. 6) indicated that he beaucoup insisté on 

distinguishing between them. Later authors have however adopted much more 

convenient terms, theoretical and statistical probabilities whereas subjective 

probabilities have much less significance than Poisson attached to them. Moreover, 

his attitude was fraught with difficulties, see Sheynin (2002). 
    2. Poisson repeated this restriction at the end of § 3. De Moivre (1712/1984, p. 

237) introduced a more general definition adopted by Poisson (§ 13) as well. 

    3. Here and in some other instances Poisson’s terminology is dated, but 

understandable. 

    4. In the theory of information, probabilities equal to 1/2 are also tantamount to 

complete ignorance. 

    5. According to Chebyshev (1845/1951, p. 29), the theory of probability aims at 

determining the probability of an event given its connection with other events whose 

probabilities are known. Laplace did not offer any similar definitions. Just below, 

Poisson indirectly stated that really important are cases in which a probability more 
or less approaches unity.  

    6. This statement ought to be noted. 

    7. Poisson indirectly defined independence of events in the beginning of § 9. The 

direct definition is due to De Moivre (1718/1738, p. 6). 

    8. François Callet published a table of logarithms with seven digits (Paris, 1795). 

    9. Calculations with superfluous digits had been universally practised up to the 

mid-20
th

 century. 

    10. A similar statement was due to Laplace (1776/1891, p. 152; 1814/1995, p. 9). 

    11. De Moivre (1718/1756, pp. 37 – 38) had stated the same. 

    12. Poisson discussed a game of chance, but introduced skill! 
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    13. More precisely, the compound event should be E + (F + G + …) so that  

F′ = F + G + … without the E. 

    14. The sequence a0 + a1t+ a2t
2
+ … + amtm

 is called the generating function of {a}.  

    15. Poisson introduces a sufficient condition. 

    16. After µ drawings with m white and n black balls having arrived, the chance of 

extracting a white ball in a new drawing will depend on those numbers and equal 

a'/c'. However, for a person who only knows that µ balls were extracted and does not 

know the ratio of the arrived white and black balls, that chance is quite different. 

According to a note sent me by Mondesir, a graduate of the Ecole Polytechnique, the 

required probability is independent from m and n and equals a/c as it was previous to 

the drawings.  

    For verifying this proposition by an example, let 

 

    a = 4, b = 3, c = 7, µ = 2 and c' = 5. 

 

Concerning m and n there are three possible but unequally probable cases: m = 2 and 

n = 0; m = 1 and n = 1; and m = 0 and n = 2.  Their probabilities derived from the 

expression of П are 2/7, 4/7 and 1/7. And the chances of extracting a white ball in the 

next drawing will be 2/5, 3/5 and 4/5. By the rules of §§ 5 and 10 the composite 

probability of such an extraction will be 

 

    
2 2 4 3 1 4 4

.
7 5 7 5 7 5 7

a

c
⋅ + ⋅ + ⋅ = =  

 

    For the general demonstration I refer to the note of Mondesir [see Bibliography]. 

That [Mondesir’s] proposition is evident if a = b since in that case, for a person who 

does not know which balls had arrived previously, there is no reason to believe, 

either before or after that result, in the occurrence of a white rather than a black ball. 

Consequently, the probability of drawing a white ball always remains 1/2. We can 

also note that, if a and b are infinite, that proposition is in agreement with another 

one which will be proved below and according to which it is certain that m:n = a:b. 

And so, we are assured in that a' and b', the numbers of balls left in the urn, are also 

in the same ratio; the chance and the probability of the arrival of a new white ball do 

not anymore differ and a'/c' = a/c. Poisson 

    Poisson considered subjective probabilities, see Sheynin (2002). O. S.  

    17. Was it really necessary to prove this statement? 

    18. The bivariate generating function of the probabilities of E and F. 

    19. Laplace’s calculations were extremely complicated. He solved the same 

problem in his early memoirs of 1774 and 1786. De Moivre (1712/1984, Problems 

18 and 19; 1718/1756, Problem 39) investigated the appearance of any outcomes in a 

throw of an arbitrary number of dice with an arbitrary number of faces. 

    20. Montmort (1708, Préface) already mentioned both these useless systems. 

    21. Bertrand (1888, p. XXII) formulated this idea in the best possible way: la 
roulette n’a ni conscience, ni mémoire. 

    22. Jeux publics de Paris, as might be thought, were regularly played games in 

registered casinos.  

    23. This section was written before the latest issued law on finances suppressed 

games of chance beginning 1 January 1838. Poisson 

    24. Laplace (1812/1886, p. 189) replaced the term expectation by mathematical 

expectation to distinguish it from moral expectation which had come into vogue. His 

specification took root in French and Russian literature, but it became unnecessary 

long ago. 

    25. This statement is obviously lame. 

    26. A strange demonstration! The described Petersburg game (Montmort 

1708/1713, p. 402) was due to Niklaus Bernoulli. It became generally known after 

Daniel Bernoulli (1738), who published his memoir in Petersburg, suggested to solve 

its paradox by means of the moral expectation.  

    Poisson considered it superficially. Condorcet and Lacroix suggested that even an 

infinite Petersburg game was only one single trial, and that a set of such games was 

necessary for studying the game. Freudenthal (1951) proposed the same and 
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additionally recommended that at each game the gamblers should choose their roles 

by lot. 

    27. Laplace (1812, Chapter 7) and earlier, in his memoirs, considered that problem 

in lesser detail. 
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Chapter 2. General Rules, Continued. Probabilities of Causes  

and Future Events Derived from Observing Past Events 

 

Misprints/Mistakes Unnoticed by the Author 

 
    1. In § 34, p. 95 of the original text, line 2 from bottom. Probability 

p1 should be pn. 

    2. In § 37, p. 101 of the original text, formulas for y1 and y2 in a 

single displayed line. In the second formula, in the second term of the 

denominator y2 is printed instead of y1. There also, when passing from 

yx to yx−1, (x − 1), rather than (y − 1) as printed, was substituted instead 

of x.  
    3. In § 38, p. 104 of the original text. On line 10 of the second 

paragraph n′ is printed instead of n. In the same section, p. 106 of the 

original text, formulas for wn and wi in a single displayed line. In the 

second formula, in the first term of the denominator, qnpn is printed 

instead of qipi. 

    4. In § 39, p. 109 of the original text, line 6. The number of balls is 

stated as an and ax instead of an and ai. 

    5. In § 40, p. 113 of the original text. The particular case of the 

displayed formula coincides with pn of § 38 rather than of the 

preceding section, as printed. 

    6. At the end of § 45, p. 124 of the original text, the reference to  

§ 27 is printed instead of to § 26. 

    7. In § 46, p. 125 of the original text. The integrand xm
(1 – x)

m
 

should be xm
(1 – x)

n
. 

    8. In § 53, p. 141 of the original text. In proving the third main 
proposition, magnitude A is stated as taking µ, instead of taking λ 

values. 

    9. In § 55, p. 145 of the original text. Extraction of balls from some 

urns. The number of drawings is printed as being equal to m instead of 

µ.  

    10. In § 56, p. 149 of the original text. Two inequalities are printed 

twice instead of changing their signs in the second case. 

    11. In § 60, p. 156 of the original text. Just above the last displayed 

line α + u is substituted instead of z rather than instead of 2, as printed. 

    All those mistakes/misprints are corrected in the translation. 

 

    27. The rules provided in the preceding chapter assumed that the 

chances of certain events were known and aimed at deducing the 

probabilities of other events composed of those given
1
. Here, I put 

forward rules for calculating probabilities of causes given observed 

events and, after that, probabilities of future events. However, before 

going on, it is convenient to elucidate the exact sense which we attach 

to the word cause and which differs from that in ordinary language. 

    Usually, when stating that a thing is the cause of another thing, we 

attribute to the former a possibility of necessarily producing the latter, 

without, however, wishing either to imply that we know the nature of 

that power or how is it exercised. At the end of this chapter we return 

to this notion of causality, but at present suffice it to say that for the 

calculus of probability the word cause has a more general meaning. 
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We consider a cause C relative to some event E as a thing that attaches 

to its arrival a determined chance properly belonging to it
2
. In ordinary 

language, C is the cause of that chance, not of the event itself. And 

when E actually happens, it occurs because C coincided with other 

causes or circumstances which do not influence E’s proper chance. 

    Let p be that known or unknown chance generally differing from 

probability; at the same time, C provides chance 1 – p to the contrary 

event F. When p = 1, the thing C necessarily produces the event E and 

is its cause in the restricted sense. When p = 0, C is a similar cause of 

F. 

    The set of causes which combine in the production of an event 

without influencing the magnitude of its chance, or the ratio of cases 

favourable for its appearance to all possible cases, is what should be 

understood as hazard (hasard)
3
. Thus, in a dice game the event 

occurring at each throw is the consequence of the number of the faces 

of the die, of the possible irregularities of form and density of the dice, 

and of the numerous shakes to which they are subjected before being 

thrown. These shakes are the causes which do not at all influence the 

chance of the occurrence of any fixed face; they aim at eliminating the 

influence of the dices’ preliminary position in their box, so that that 

position will not be known anymore to the gamblers. And if that aim is 

attained, the relative chance of the arrival of each face will only 

depend on their number and the dice’s defects which can lead to an 

inequality of the chances of different faces.  

    It is said that a thing happened randomly if it was executed without 

at all changing the respective chances of various possible events. An 

urn contains white and black balls; a ball is drawn at random if their 

arrangement in the urn was not taken into account. Supposing that all 

the balls had the same diameter
4
, the chance of extracting a white ball 

can evidently only depend on the numbers of white and black balls and 

proved to be equal to the ratio of the former to the sum of both 

numbers. 

    A cause C can be a physical or a moral thing. At the game of heads 

and tails, it is the physical constitution of the coin that results in the 

chances of heads and tails generally differing a little from 1/2. When 

deciding a criminal case in court, the chance of a correct or mistaken 

vote of each juryman is determined by his moral principles, i. e., his 

own ability and conscience as applied to that case. Sometimes a cause 

C results from the coincidence of a moral and physical thing. Thus, in 

each kind of measurement or observation the chance of making an 

error of a given magnitude depends on the ability of the observer and 

the more or less perfect construction of his instrument
5
. However, in 

the calculus of probabilities the diverse causes of events are invariably 

considered independently from their particular nature, only regarding 

the magnitude of the chances they produce. And it is for this reason 

that that calculus is equally applicable to moral and physical things.  

    However, in most problems the chance determined by a given cause 

C is not known in advance and the cause itself or its chance is 

sometimes unknown either. If the chance is constant, it is determined, 

as is seen below, by a sufficiently long series of trials, but when 

jurymen vote the chance of error varies from one of them to another 
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and doubtless differs for the same juryman in different cases. 

Repetition of trials concerning each juryman and each kind of cases is 

impossible, so that it is not the chance of error proper to each juryman 

that can be derived from observation, but, as it will be seen below, a 

certain probability concerning the set of all of them in the jurisdiction 

of an assize court, and this knowledge is sufficient for solving the 

problems which constitute the special goal of this work. 

   There often are many different causes which, when combined with 

randomness, can bring about a given event E or the contrary event F. 

Before one of those events takes place, each of these causes has a 

certain probability that changes according to which of the events E or 

F was observed. Supposing that the chance which each of those 

possible causes, if they are certain, provides to the arrival of E or F is 

known, we determine, first of all, the probabilities of all those causes 

existing after the observation, and then the probability of any other 

future event depending on the same causes as E and F.  

    28. Let E be the observed event. We suppose that its arrival can be 

attributed to m distinct and only possible incompatible causes, equally 

probable before the observation. The occurrence of E renders those 

hypothetical causes unequally probable, and it is required to determine 

the probability of each resulting from the observation. This is achieved 

by means of the following theorem. 

    The probability of each of the possible causes of an observed event, 

if being certain, is equal to that which it provides to the event divided 

by the sum of the probabilities of that event resulting from all the 

causes which can be attributed to it. 

    And so, denote the m possible causes of event E by C1, C2, …, Cm. 

Let p1, p2, …, pm be the known probabilities of its occurrence relative 

to those diverse causes so that pn is the probability that E will take 

place if the cause Cn is unique; or, which is the same, if it is certain, so 

that all other causes are excluded. Also denote by w1, w2, …, wm the 

unknown probabilities of those same causes so that wn is the 

probability of Cn; or, in other words, the probability that the arrival of 

E was due to that cause. It is required to prove that 

 

    wn = pn/(p1 + p2 + … + pn + … + pm). 

 

    No matter what is the nature of E, we may liken it to an extraction 

of a white ball from an urn containing white and black balls. Suppose 

then that there are m such urns, A1, A2, …, Am, from which a white 

ball can be drawn with the ratio of white balls to the total number of 

balls in urn An being pn. A white ball can be extracted from each of 

those randomly chosen urns, and each of them represents one of the 

causes of its arrival; urn An corresponds to cause Cn. The problem 

consists in determining the probability that the white ball was drawn 

from An. 

    Suppose that all fractions p1, p2, …, pm are reduced to one and the 

same denominator: 

 

    p1 = α1/µ, p2 = α2/µ, … 
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Here, µ and α1, α2, … are natural numbers. The chance of extracting a 

white ball from urn An will not change at all if the balls contained 

there are replaced [represented] by numbers αn of white, and µ of all 

the balls, and a similar statement holds for all other urns. The total 

number of balls in all the urns will not change. It follows from the 

lemma of § 10 that if all the balls are united in one and the same urn A, 

and if those that had come from urn A1 are provided with number 1; 

from urn A2, with number 2 etc., the probability wn that a white ball 

drawn from the set A1, A2, …, Am originated in An is the same as when 

it was extracted from A bearing the number n. This probability is equal 

to the ratio of αn to the sum of α1, α2, …, αm since that sum is the total 

number of white balls contained in A, and αn balls had number n. 

Therefore, 

 

    wn = αn/(α1 + α2 + … + αm) 

 

and coincides, according to the preceding equations, with wn which is 

what we should have derived. 

    29. When calculating the probability of many consecutive events, it 

is necessary to take into account the possible influence of the arrival of 

one of them on the chances of the next one (§ 9). And sometimes, 

when evaluating that chance, the probabilities of the diverse causes of 

the preceding event, or of the different ways in which it can take place, 

should also be allowed for. This will be seen for example in the 

following problem. 

    I suppose that there are m urns A, B, C, … containing white and 

black balls and that the chances of drawing a white ball from them are 

a, b, c, … A ball is extracted at random from one of those urns; then a 

second ball from one of the urns excepting that from which the first 

ball was drawn; then a third ball from an urn differing from those two, 

etc. This means that, after each drawing, the urn from which a ball was 

extracted is excluded. It is required to determine the probability of 

drawing n white balls in n extractions, n ≤ m. 

    Denote for brevity 

 

    a + b + c + d + … = s1, ab + ac + ad + bc + bd + cd + … = s2, 

    abc + abd + bcd + … = s3, abcd + … = s4, … 

 

    Here, s1 is the sum of a, b, c, …; s2 is the sum of their products with 

a, b, c, … taken two at a time with their number being 
2

mC ; s3, the sum 

of their products with a, b, c, … taken three at a time with their 

number being 
3

mC  etc. The probability of drawing a white ball at the 

first extraction is s1/m. If the ball, be it white or black, was drawn from 

A, the probability of extracting a white ball at the second trial will be 

(s1 − a)/(m – 1), or (s1 − b)/(m – 1) had the first ball come from B etc. 

By the rules of §§ 9 и 10  

 

    1 1 1

1
[α( ) β( ) γ( ) ...]

1
s a s b s c

m
− + − + − +

−
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is the composite probability of the occurrence of a white ball at the 

second drawing. Here, α, β, γ, … are the probabilities that it was first 

extracted from A, B, C, … These probabilities are certainly different
6
. 

According to what was shown in § 28, we have α = a/s1, β = b/s1,  

γ = c/s1, … and  

 

    a(s1 − a) + b(s1 − b) + c(s1 − c) + … = 2s2, 

 
so that the probability of extracting a white ball at the second drawing 

is 2s2/(m − 1)s1. Similarly, the probability for the same occurring at the 

third trial is (s1 − a − b)/(m − 2) if the first two white or black balls 

came from A and B, (s1 − a − c)/(m − 2) if they were extracted from A 

and C, etc. 

    Therefore, the composite probability of a white ball arriving at the 

third trial is 

 

        1 1 1

1
[ ( ) ( ) ( ) ...].

2
g s a b h s a c k s b c

m
− − + − − + − − +

−
  

 

Here, g, h, k, … are the probabilities that the two first white balls came 

from A and B; from A and C; from B and C, etc. According to § 28, 

these probabilities are 

 

    g = ab/s2, h = ac/s2, k = bc/s2, … 

 

and also 

 

    ab(s1 − a – b) + ac(s1 − a – c) + bc(s1 − b – c) + … = 3s3. 

 

    Therefore, the probability of the occurrence of a white ball at the 

third drawing is 3s3/[(m – 3)s2]. This reasoning can easily be continued 

as far as desired. And the result is that 

 

    1 2 3

1 2 1

2 3
,  ,  ,...,  

( 1) ( 2) ( 1)

n

n

s s s ns

m m s m s m n s −− − − +
  

 

are the probabilities of the arrival of white balls in each of the n first 

drawings. The required probability is therefore the product of these n 

fractions, see § 5, /
n

n ms C . 

    This answer can be verified by noting that each of the products is 

the probability of extracting n white balls from n fixed urns randomly 

chosen among A, B, C, … so that the sum of all those products divided 

by their number is the probability of extracting n white balls from n 

randomly chosen urns. That probability is evidently the same as the 

required. If n = m, then 
m
mC  = 1 and the probability is sm which 

immediately follows from the rule of § 5.  

    30. Let E′ be another event differing from E but depending on the 

same causes C1, C2, … and denote the chances of E′ resulting from 

those diverse causes by p1′, p2′, …, pm′, so that pn′ is the known 

probability of the arrival of E′ if Cn is certain. That cause becomes the 



 65 

only probable and its probability is wn. The arrival of E′ due to cause 

Cn will be a compound event whose chance is the product of those two 

probabilities (§ 5). Then, also, the composite probability w′ of E′ will 

be the sum of those chances relative to the m different ways in which it 

can occur (§ 10), i. e., the sum of pn′wn, 

 

    w′ = p′1w1 + p′2w2 + … + p′nwn + … + p′mwm. 

 

Substituting the values of w1, w2, …, we get 

 

    1 1 2 2

1 2

... ...
.

... ...

n n m m

n m

p p p p p p p p
w

p p p p

′ ′ ′ ′+ + + + +
′ =

+ + + + +
  

 

    This is the formula for calculating the probability of future events 

given observations of past events. The same expression can be derived 

without introducing common causes of E and E′ by considering them 

as compound events depending on the same simple event. And our 

reasoning is equally applicable to that other manner of contemplating 

our problem. However, if desired, it is possible to return immediately 

to the preceding. 

    Actually, suppose that E and E′ are two events composed from the 

same event G susceptible of chances g1, g2, …, gn, …, gm, all of them 

being equally probable before E is observed. Then they can be 

considered as so many distinct causes of E and E′. Therefore regard gn 

as the cause called Cn in the reasoning above and the probability of gn 

will be the value of wn as already deduced. In other words, wn will be 

the probability that the chance of G is gn, and the preceding expression 

of w′ will be the probability of the arrival of E′ resulting from the m 

possible values of the chance of G. In that formula [for w′], pn and pn′ 
express the given probabilities of the arrival of E and E′ provided that 

gn is certainly the chance of G. 

    31. That determination of the probability of E′ given the 

observations of E should not be confused with some influence of the 

arrival of past events on future events, which is absurd to suppose. If I 

am sure, for example, that an urn A contains 3 white balls and 1 black 

ball, it is certain for me that the chance of drawing a white ball is 3/4. 

Therefore, if E′ is the extraction of two white balls from A with 

replacement of the first one, the chance of E′ will be (3/4)
2
 = 9/16 

independently from the possibly observed event E. And supposing that 

E is the appearance of a certain number of white and black balls 

successively drawn from A and returned there each time, I should 

always, without taking into account the ratio of those two numbers, bet 

9 against 7 on the appearance of E′.  
    However, if the chance of the simple event G is unknown, and I 

only know that it is susceptible of certain values, the observation of E 

will provide the probabilities of each and I can then derive the 

probability of E′. That observation increases or decreases the reason I 

have to believe in the arrival of E′ without influencing at all that future 

event or the chance proper to it. For someone who observes another 

event E1 depending on the same simple event G the reason to believe 
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in the arrival of E′ can be much stronger or much weaker than for me, 

but this will not at all change the chance proper to E′. 
    Concerning that case of two people who observed E and E1 

respectively, both these events composed of the same event G, we 

should not forget that if E1 includes E and something else as well, the 

opinion of the second person about the arrival of a new event E′, also 

depending on G, will be more informed than that of the first one and 

should be preferably adopted (§ 1). 

    Supposing that the observation of E1 and E provide probabilities k 

and h to the future event E′, the second person will be more justified to 

bet k against (1 – k) than the first one to bet h against (1 – h) on the 

arrival of E′ whether the fractions h and k be larger or smaller than 1/2, 

and the difference (h – k) positive or negative. 

    32. Before going ahead, it is appropriate to provide some simple 

examples of the use of the preceding expressions of wn and w′ which 

we will write down in an abbreviated form  

 

    wn = pn/∑pn, w′ = ∑pnpn′/∑pn 

 

where ∑ indicates a sum from n = 1 to m. 

    It is known that an urn B contains m white or black balls. A white 

ball is drawn, and it is required to determine the probability that the 

urn contains n white balls. We can formulate m different hypotheses 

about the number of those balls in the urn: m white balls; (m – 1) white 

balls and 1 black ball; (m – 2) white and 2 black balls; …; 1 white ball 

and (m – 1) black balls. All of them are equally possible and mutually 

incompatible; they can be considered as m causes C1, C2, … of event 

E, the drawing of a white ball from B. 

    If n white balls are among the m balls in B, then the probability of 

such a drawing will be p = n/m so that  

 

    
1 2

,  .
2 ( 1)

n n

m n
p w

m m

+
= =

+
∑   

 

That probability can only be 1/2 if m = n = 3. In general, the 

probability that B contains only white balls, or that n = m, after one 

such ball had arrived, is 2/(m + 1). If E′ is the extraction of a new 

white ball, its probability w′ will differ depending on whether the first 

one was, or was not replaced. In the first case 

  

    
2

2

1
,  ,n n n n

n
p p p p n

m m
′ ′= = =∑ ∑   

 

but, as is known, 

 

    
( 1) ( 1)( 2) ( 1)

,  
1 2 3! 1 2
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n

+ + + +
= =
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∑ ∑  

 

and therefore 
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    In the second case, the number of the white balls and the total 

number of balls in B had decreased by unity, so that 

  

    
1 1

,  ( 1).
1 ( 1)

n n n

n
p p p n n

m m m

−
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− −
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However, we always have pn = n/m, ∑pn = (m + 1)/2 and w′ = 2/3 since  

 

    
( 1) ( 1) ( 1)

  . 
1 2 3!

n n m m m− − +
=

⋅
∑  

 

    The probability of drawing a white ball from an urn after a ball of 

that colour had already been extracted from it without replacement is 

therefore independent from the number m of white or black balls in the 

urn and always equal to 2/3. The value of w′ in the first case is also 

reduced to 2/3 as it should be if m is a very large number considered 

infinite. 

    If it is known that (m – 1) white balls have been drawn out of the m 

white or black balls initially contained in B, there will be probability 

m/(m + 1) that the last ball is also white. We can only formulate two 

hypotheses, C1 and C2, that all the m balls are white, or that one is 

black. According to C1, the probability of the observed event is unity; 

according to C2, it, or the chance of extracting (m – 1) white balls from 

B, is the same as when one black ball is left; and since that last ball 

could have initially been any of the m balls in B, the probability that it 

is black equals 1/m. Therefore, p1 = 1, p2 = 1/m, w1 = p1/( p1 + p2) = 

m/(m + 1) for the probability of the first hypothesis; that is, for the 

probability that the last ball is white like all those extracted. The case 

of m = 1 is not included in that value of w1 which is then equal to 1/2, 

as was evident from the very beginning. [The author’s correction of 

the phrase in the text is taken account of in the translation.] 

    33. Here is one more immediate application of the preceding 

formulas in which we do not know the total number of white or black 

balls in an urn B. We only know, for example, that that number can 

not exceed three. The observed event is the appearance of x white balls 

in a series of n drawings with replacement. If x ≠ 0 and ≠ n, we can 

only formulate three hypotheses about the balls contained in B: C1, 

there is 1 white and 1 black ball; C2, 2 white balls and 1 black ball; C3, 

2 black balls and 1 white ball. The probabilities of E with respect to 

these three distinct causes are  

 

    p1 = (1/2)
x
(1/2)

n−x
 = 1/2

n
, p2 = (2/3)

x
(1/3)

n−x
 = 2

x
/3

n
,  

    p3 = (1/3)
x
(2/3)

n−x
 = 2

n−x
/3

n
. 

 

    Denote for the sake of brevity 

 

    3
n
 + 2

n+x
 + 2

2n−x
 = µ, 
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then w1 = 3
n
/µ, w2 = 2

n+x
/µ, w3 = 2

2n−x
/µ will be the probabilities of C1, 

C2, C3. Let the future event be E′, an extraction of a new white ball. Its 

probabilities relative to those three hypotheses will be p′1 = 1/2,  

p′2 = 2/3, p′3 = 1/3, and the composite probability 

 

    
2

2
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    If n = 2x  

 

    1 2 3
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,  ,  .
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So w′ = 1/2 as it should have been. Indeed, white and black balls have 

arrived the same number of times, and there is no reason to believe in 

the occurrence, in a new drawing, of a white rather than of a black 

ball. Nevertheless, the ratio 9
x
/8

x
, should be larger than 2, or x > 5 for 

being able to bet more than one against one on the equality of the 

numbers of white and black balls in the urn or that it contains 1 white 

and 1 black ball. If x is a very large number, the probability w1 of that 

hypothesis will very little differ from certainty.  

    If i is a natural number, х = 2i and n = 3i, then 

 

    
(1/2)27 (2/3)32 (1/3)16

.
27 32 16

i i i

i i i
w

+ +
′ =

+ +
  

 

For very large values of i this expression very little differs from 2/3. At 

the same time, probability w2 that B contains 2 white balls and 1 black 

ball also very little differs from certitude. Suppose now that n = 3х. 
Then  
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    If x is very large, this expression will be almost equal to 1/3 and the 

probability w3 that B includes 1 white ball and 2 black balls is almost 

unity. In the third case, when the number of drawings is supposed to 

be very large, the probability w′ of the arrival of a new white ball 

becomes very near to the ratio of the number of white balls extracted 

from B to the total number of trials, and at the same time with 

probability closely approaching certainty, that ratio is also equal to the 

ratio of the number of white balls to the total number of balls in B, i. 

e., to the chance proper to the drawing of a white ball from that urn.  

    It will be seen below, that when an event of some nature is observed 

a certain number of times in a very large number of trials, the ratio of 

the first number to the second is a very close and likely value of the 

known or unknown chance of that event. In our example, this chance 

can only be 1/2, 2/3 or 1/3, so that x/n = 1/2, 2/3 or 1/3 are the only 

values which can be thought likely when x and n are very large. 
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    34. In the preceding, we have supposed that before the arrival of E 

all the causes C1, C2, … which can be attributed to that event were 

equally possible. However, if there exists some prior reason to believe 

in the existence of one of those causes rather than of another one, then, 

when evaluating the probabilities which those diverse causes will 

acquire after the arrival of E, it will be necessary to account for that 

inequality of the chances of C1, C2, … That necessity is an important 

point of the theory of probability
7
, especially, as described in the 

Preamble, in problems pertaining to the judgements of tribunals. And 

the demonstration in § 28 is in addition easy to extend on the general 

case in which before the observation the causes of E had some known 

probabilities. Actually, like in that section, let us replace the event E 

by a drawing of a white ball from one of the urns A1, A2, … and first 

of all suppose that its extraction from each of them is equally possible. 

The probability that the ball has arrived from An will be pn/∑pn where, 

as always, pn is the ratio of the number of white balls to the total 

number of balls in An and the sum extends over all the urns. Similar 

expressions take place for all the other urns and, by the rule of § 10, 

the probability that the white ball is drawn from one of them is the sum 

of all such expressions. When the partial probabilities are equal one to 

another, that sum reduces to one of such fractions multiplied by their 

number. 

    Let now p1 be the same ratio as above for a1 urns A1; p2, the same 

ratio for a2 urns A2, …, pi, the same ratio for ai urns Ai where i 
expresses the number of groups of similar urns. If the number of all the 

urns is s, then 

 

    s = a1 + a2 + … + ai. 

 

    The sum ∑pn extending over all the urns can be replaced by ∑anpn 

extending over all the groups from n = 1 to n = i. And if some group 

consists of an urns, the probability that the white ball arrived from it 

will be  

 

    wn = anpn/∑anpn. 

 

However, before the observation the probability of drawing a ball from 

that group was evidently qn = an/s, so that an= sqn. Substituting this 

value of an in wn, and suppressing the common factors in the numerator 

and denominator, we will therefore have 

 

    wn = qnpn/∑qnpn.  
 

    Now, the different groups of urns which we consider represent all 

the i possible and initially unequally probable causes C1, C2, … of 

event E. The fraction qn expresses the probability existing before the 

observation that the event will be due to cause Cn. After the 

observation, its arrival due to the same cause will have probability wn. 

Since the causes C1, C2, … are mutually incompatible, qn and wn are 

the probabilities that that cause exists. The latter proves that the 

probability of each of the possible causes of the observed event is 
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equal to the product of qn and the probability pn which it provides, if 

being certain, divided by the sum ∑qnpn of such products relative to all 

the causes to which the event can be attributed. 

    The probability w′ of a future event E′ depending on the same 

causes as E, will be, as above, ∑wnp′n where wn is its determined 

value, so that 
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Suppose that E′ was also observed after E, that E″ is the third event 

depending on those same causes, and that p″n is the chance that the 

cause Cn, if certain, provides to the future arrival of E″. According to 

the preceding rule, the probability of that cause, wn, existing between 

observations of E and E′, becomes  
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    Multiplying it by p″n, we get the probability of the arrival of Е″ due 

to the cause Сn. The composite probability of that event is 
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This expression can also be derived like w′ was by substituting p″n and  

pnp′n instead of p′n and pn. Actually, this product pnp′n is the chance of 

the observed event, i. e., of the succession of E and Е′, relative to the 

cause Сn.  

    35. For providing a very simple example of the preceding rule, 

which can also verify its exactitude and necessity, I suppose that two 

cards whose colour is unknown are lying on a table. Turning over one 

of them, I see that it is red. Only two hypotheses can be formulated 

about their colour: red, red; and red, black. If I do not at all know their 

provenance, prior to observation those hypotheses are equally 

probable. After the observation, the probability of the first one is 2/3, 

as seen in one of the examples in § 32. We can bet 2 against 1 on the 

second card to be also red. But it will not be the same anymore if it is 

known that, for example, these cards were chosen at random from [a 

pack for] the game of piquet consisting of 16 red and 16 black cards.  

    Before the observation we had (§ 18) the probabilities of the two 

hypotheses q1 = 16·15/32·31, q2 = 2·16·16/32·31, and at the same time 

p1 = 1, p2 = 1/2 so that the probability of the first hypothesis after the 

observation is 
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On the contrary, instead of betting 2 against 1, we can only bet 15 

against 16 on the same event. This value of w1 can immediately be 

verified since it is evident that the problem is tantamount to requiring 

the probability of drawing one more red card from the pack after one 

such had been extracted and only 15 red cards had been left. 

    In general, if n cards, a of them red and b, black, are randomly 

extracted from a pack of m cards, and (n – 1) of them turned over, a′ of 

them red, and b′ black, then, by the preceding rule, we have 

 

    1 2,  
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for the probabilities of the n-th card to be red and black.  

    That value of w1 is also, as it should be, the probability of drawing a 

red card from the initial pack reduced to (m – n + 1) cards, (a − a′) of 

them red, by extracting a′ red and b′ black. Since a + b =m, and  

a′ + b′ = n – 1, we have w1 + w2 = 1 so that w2 can also be verified. 

    36. The general consequence of the rule of § 34 is that when two 

events, E and E′, depend on the same cause, the probability of the 

future event E′ does not only result from the observed E; when 

evaluating it, we should account for the possible prior knowledge 

about that common cause. The probability of E′ can differ for two 

people who observed the same event E but had different previous 

knowledge about that problem. 

    It is just the same in problems of doubt or criticism to which the 

calculus of probability is also applicable (§ 3). When required to find 

out whether a fact attested by a witness is true or false, we should 

allow for the chance of his error and, in addition, for our knowledge 

prior to his testimony. Let us denote the probability that the witness is 

not deceiving us, involuntarily or otherwise, by p, and, by q, the 

probability of the truth of the attested fact existing before his 

testimony. The probability of the fact after the testimony depends on p 

and q and is determined in the following way. 

    Here, the observed event will be the attesting of a fact, not 

incontestable at all. Supposing that it is true, and the witness did not 

deceive us, its probability is p. And it is (1 – p) if the fact is false 

because the witness deceived us. Before the testimony, q was the 

probability of the first hypothesis, and (1 – q), of the second. Denote 

the probability of the former, or the truth of the fact existing after the 

testimony, by r. Then, by the rule of § 34,  
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pq q q p
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pq p q pq p q

− −
= − =
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which proves that the difference (r − q) has the same sign as (р − 1/2) 

so that the witness heightens or lowers the prior probability of the fact 

according to the inequalities p > 1/2 or < 1/2. That difference 

disappears if p = 1/2, if the witness did not change the prior probability 

at all. We can bet even money on whether he tells the truth or not. If 

initially there was no reason to believe in the truth of the attested fact 

rather than in its falsity, the probability q = 1/2 and r = p. In this case, 
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the probability of the fact being true only depends on the truthfulness 

and knowledge of the witness. 

   It is impossible to suppose that one of the two magnitudes, p and q, 

is unity, and the other, zero, but if p closely approaches certainty, and 

q, more closely approaches impossibility, so that q/(1 – p) becomes a 

very small fraction, the probability r will also be very low, almost 

equal to that ratio. Such is a case of a fact contrary to the general laws 

of nature but attested by a witness to which, without taking into 

account that opposition, a high degree of confidence is attached.  

    For us, those general laws are the result of a long series of 

experiences which provides them, if not absolute certainty, a very high 

probability, still more strengthened by the harmony which they present 

and which no testimony can offset. So, if the attested fact is contrary to 

those laws, the prior probability that it is exactly described, is almost 

zero. And, even supposing that the witness is honest, suffice it that he 

is not at all infallible so that his chance of error (1 – p) is extremely 

high as compared with that prior probability q, and the probability r 

existing after the testimony can still be considered insensible. In such 

cases, it is reasonable to reject our own testimony and believe that our 

senses had deceived us by presenting as true a thing contrary to the 

laws of nature. 

    37. Suppose that the fact, whose probability we are considering, is 

additionally attested by a second witness
8
. Let the probability that he is 

not deceiving us by p′, and by r′, the probability that the fact, as 

testified by both witnesses, is true. Noting that, independently from the 

second testimony, that probability was already equal to r, we conclude 

that r′ should be derived from r by substituting p′ and r instead of p 

and q: 
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    Suppose that the second witness attests that the fact is false and thus 

contradicts his predecessor and note that, independently from that, the 

falsity of the fact already had probability (1 – r). Denote by r1 the 

probability that the fact is false as results from both contrary 

testimonies. It should be deduced from r of § 36 by substituting р′ and 

(1 − r) instead of p and q: 
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If p = p′, r1 = 1 – q. Two contrary testimonies of the same weight 

nullify each other, and the probability of the fact’s falsity remains as it 

was from the beginning. 

    The probability of the fact being true or false is similarly and easily 

determined when some witnesses contradict a number of others. But 

when the fact is unanimously attested by all the witnesses, the 

probability of its truthfulness takes the following form. 
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    As before, let q be the probability of the fact’s truthfulness that 

existed prior to all the testimonies, and yx and yx−1 be that probability 

after x and (x – 1) witnesses had attested the same. Denote also by 

p(x−1)
 the probability that another witness, not included in those former, 

does not deceive us by stating the truthfulness of the fact as well. Then 

yx is derived from r of § 36 by substituting p(x−1)
 and yx−1 instead of p 

and q: 
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and y0 = q. Taking х = 1, 2, 3, …, we deduce the following formulas 
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    Thus, y2 is calculated by excluding y1; y3, by excluding y2; … 

Denote for the sake of brevity 
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and the preceding difference equation of the first order (and its 

complete solution) will become 
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Here, c is an arbitrary constant. Substituting (х − 1) instead of х, we 

have 
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Together with yx, these values render the given equation identical and 

c is determined by a particular value of yx by taking for example х = 0.  

Accordingly, assuming that ρ1ρ2 …ρx = 1, we get y0 = q = c.  
    For x witnesses  
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and for witness i the magnitude ρi is equal to the ratio of the 

probabilities that he deceives or not deceives us so that ρi > 1 or < 1 

when the former is higher or lower than the latter. And ρi = 1 when 

they are equal. When a very large number of witnesses are considered 

infinite and ρi > 1 for all of them, the probability yx of the truth of the 

attested fact becomes zero with an exceptional case. On the contrary, 
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again when x is infinite and ρi < 1 for all of them, that probability is 

unity or certitude, also with an exception.  

    That exception takes place when ρ1, ρ2, … continuously decrease or 

increase and indefinitely approach unity. For example, let 
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(2 1) πi

g

i
= −

−
  

 

where π is the ratio of a circumference to its diameter and g is a given 

constant not exceeding unity so that no magnitude ρi becomes 

negative. According to a known formula, their product is equal to 

cosg, 
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and will differ much from unity if g differs from π/2. Let 1,g h= −  

then the new constant h can be smaller or larger than unity. Denoting 

the base of the Naperian logarithms by e, we will have 
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and if h ≤ 1, or at least is not very large, that probability yx will not be 

very low. Still, it is easy to be assured in that the first value of yx will 

always be higher than the probability q existing before the testimonies, 

and its second value, always lower. 

    These formulas assume that all the testimonies are direct, but we 

will now examine the case in which only one of them is direct, and all 

the others are traditional [traditionally prompted]. 

    38. Suppose that a witness does not at all restrict himself by saying 

whether a thing is true or false, but attests to the arrival of an event in 

the case in which many of them were possible. The event which he is 

able to announce, if mistaken or wishing to deceive, is not unique and 

only ought to be one of the non-existent or those in which he does not 

believe. We will show that, independently from the prior probability, 

that circumstance influences the probability of the event existing after 

the testimony.  

    To fix the ideas, I suppose that an urn A contains µ balls, a1 of them 

having number 1, a2, number 2, …, am, number m, so that 

 

    µ = a1+ a2  + … + am. 

 

If a ball is extracted, we can formulate m different hypotheses, C1, C2, 

…, Cm about its number. Let their probabilities before any testimony 

be 

 

    q1 = a1/µ, q2 = a2/µ, …, qm = am/µ. 
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    If a witness announces that the number of the drawn ball was n, the 

probabilities of those hypotheses become w1, w2, …, wm, and it is 

required to determine them according to the rule of § 34. Here, the 

observed event is the announcement of the arrival of number n. Each 

hypothesis provides a certain probability pn, whose expression we 

ought to form first of all, to that event, so that Cn, qn, wn, pn correspond 

to the announced number n. I denote by u the probability that the 

witness was not mistaken, and by v, the probability that he did not 

wish to deceive. Then (1 – u) will be the probability that he was 

mistaken, and (1 – v), the probability that he wished to deceive. 

According to the n-th hypothesis, the witness will announce the 

drawing of that number provided he was not mistaken and did not wish 

to deceive.  

    That combination of circumstances has probability uv (§ 5). If he 

was mistaken, he believed that the arrived ball had number n′ ≠ n; at 

the same time, when wishing to deceive, he will announce a number 

differing from n′ and taken from the (m – 1) other numbers. The 

chance that the witness chooses the number n is 1/(m – 1), assuming 

however that he does not prefer one number rather than another. By 

the cited rule it follows that the probability that that number will be 

announced by a witness who was mistaken and wished to deceive, will 

be the product of three factors, (1 – u), (1 – v), and 1/(m – 1). If the 

witness was mistaken and did not wish to deceive, or was not mistaken 

and wished to deceive, he will not announce the extraction of number 

n. Indeed, in the first case he wishes to announce the number which he 

believes to be drawn, and which is not n; in the second case, he knows 

that that number was extracted and does not wish to announce it. All 

that discussion taken together with the rule of § 10 leads to the 

composite probability 
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which hypothesis Cn, if certain, attaches to the observed event. 

According to hypothesis Ci, corresponding to the arrival of number  

i ≠ n, the witness, if not mistaken and not wishing to deceive, does not 

announce number n. If he is not mistaken and wishes to deceive, he 

knows that i has arrived but announces a number among the (m – 1) 

others. The chance that that number will be n, is 1/(m – 1), so that  

u(1 – v)/(m – 1) is the probability that he actually announces number n. 

If he is mistaken and does not wish to deceive that probability will be 

v(1 – u)/(m – 1). Finally, if the witness is mistaken and wishes to 

deceive he will first of all believe that the arrived ball was one of the 

(m – 1) numbers differing from those which he announces. Fraction 

1/(m – 1) will be the probability that he announces n.  

    Therefore, the probability that he believes that the drawn ball had 

number n′ but announces n is (m – 1)
2
. The resulting chance for that 

number n to be announced is therefore 1/(m – 1)
2
 multiplied by the 

number of such numbers like n′ which the witness can believe to have 

arrived. That number is only (m – 2) since the mistaken witness 

wishing to deceive can not believe that the drawn number was i (which 
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really happened) or the number n which he announces. On the other 

hand, the probability of this double error is the product (1 – u)(1 – v). 

Therefore, the probability that n will be actually announced by that 

witness is (1 – u)(1 – v)(m – 2)/(m – 1)
2
. 

    I combine the probabilities of that announcement with the three 

distinct possible cases: 
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This is the composite probability of the observed event according to 

one of the (m – 1) hypotheses contrary to the truth of that event. It is 

connected with pn by the equation 

 

    pn + (m – 1) pi = 1,                                                      (38.1) 

 

since the sum of the probabilities corresponding to the announcement 

of number n according to the m hypotheses C1, C2, …, Cm should equal 

unity. Then, by the rule of § 34, we have 
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where the sums extend from i = 1 to m except n. And since pi is 

independent from i, and the sum of qi less its value at i = n is  

(µ − аn)/µ, after substituting the values of pn, qn, pi, qi and multiplying 

the numerator and denominator by µ(m – 1)
2
, the expression of wn 

becomes 
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 α = (m – 1)[uv + (1 – u)(1 – v)]an,  

    β = (m – 1)(1 – v)u + (m – 1)(1 – u)v + (m – 2)(1 – u)(1 – v). 

 

    So this is the probability that number n announced by the witness 

had really come from A; the probability that it did not, is (1 − wn). In 

particular, the probability of the drawing of any other fixed number i is 

derived from (1 − wn) when multiplying it by qipi/∑qipi or by  

ai/(µ − an), so that 
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    It should be noted that, for deriving this result, we assumed that 

when the witness is mistaken or wishes to deceive, the number he 

announces is only determined by chance rather than some particular 

reason. It will not be the same either if he wishes to deceive because 

he has some reason to believe in the arrival of one number rather than 

another, or when he is mistaken because, for example, he believed that 

the announced number arrived, but that it was similar to the number 
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really extracted. It is difficult to evaluate such circumstances, and we 

leave them aside although they can seriously influence the probability 

of the announced number.  

    Instead of balls carrying different numbers the urn could have 

contained balls of the same number of different colours. If there are 

only white and black balls in the ratio a/(µ − a), and the witness 

announces the arrival of a white ball, then, in the expression 

representing wn, m = 2, an = a. Denoting the result by r, we have 
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We may liken this particular case with the case of a true or false fact 

attested by a witness by supposing that the drawing of the white ball is 

that fact. The probability of its truthfulness will be r, and its expression 

should coincide with that of § 36. 

    We have first of all the probability that the witness did not deceive 

 

    p = uv + (1 – u)(1 – v). 

 

That can happen either if he is not mistaken and does not wish to 

deceive, or if he is mistaken and wishes to deceive. Only in these two 

possible cases the drawing of a white and a black ball represent the 

truth and falsity of the attested fact; the witness believes the contrary 

to what happened, and testifies contrary to what he believes. At the 

same time, the probability that he deceives us is 

  

    1 – p = (1 –v)u + (1 – u)v,  

 

which can be derived from the value of р or obtained directly when 

noting that the witness can deceive us either when he is not mistaken 

but wishes to deceive, or when mistaken and not wishing to deceive. 

And in addition q = a/µ and 1 – q = (µ − a)/µ are the probabilities of 

the truth and falsity of the testified fact existing before the testimony. 

These diverse values actually identify the expression of r in § 36 with 

the just obtained formula. 

    If the urn contains only one ball of each number from 1 to m, then  

an = 1 and µ = m, and the general expression of wn will become much 

simpler:  
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The probability that the number n announced by the witness is indeed 

extracted, does not then differ from what was above denoted by pn; 

that is, from the probability that the witness announcing that number 

supposes the same. It lowers as the number m of balls in the urn 

increases and, if m can become infinite, becomes equal to the 

probability that the witness was not mistaken and did not wish to 

deceive. 
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    39. It remains to consider the general case of many witnesses, some 

of whom have direct knowledge of the fact they attest, and the others 

only know about it by tradition. However, for narrowing the extent of 

this digression from the probability of testimonies, we restrict our 

attention to resolving one particular problem of that kind. 

    Denote the (x + 1) witnesses by T, T1, T2, …, Tx−1, Tx. Just like in 

the preceding problem, a ball is extracted from urn A, and T directly 

knows its number whereas each of the other witnesses repeats after his 

predecessor that its number is n. The information is thus transmitted 

from T to Tx and from him to us by a traditional and uninterrupted 

chain. So Tx is our only witness, and he testifies, as borrowed from 

Tx−1, that the arrived ball had number n. It is required to determine the 

probability that that number was indeed extracted. 

    Let yx and y′x be the probabilities of the observed events, the 

drawing of number n according to hypothesis Cn, and of number i ≠ n 

according to hypothesis Ci. Like previously, denote also the number of 

balls having numbers n and i by an and ai and let µ be the total number 

of balls in the urn. Then the fractions an/µ and ai/µ will be the prior 

chances of the arrival of numbers n and i. By the rule of § 34 we have 

the probability of the hypothesis Cn 
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The sum extends over all values of i from 1 to m except n. We see at 

once that y′x is independent from i, and that the sum of the values of ai 

except an equals (µ − an). And so, 
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    Probability wi of any other hypothesis Ci is obtained when 

multiplying (1 − wn) by ai/(µ − an). Our problem is now reduced to 

determining the unknowns yx and y′x as functions of x. I therefore 

represent by kx the probability that witness Tx does not deceive; then  

(1 − kx) will be the probability of deception, involuntary or intended. 

That witness announces the extraction of number n if he does not 

deceive and Tx−1 had stated the same. According to hypothesis Cn that 

combination has probability kxyx−1. With regard to Tx−1, yx−1 expresses 

the same as yx with regard to Tx. Then, he can announce the drawing of 

n if he deceives and Tx−1 testified to another number. By the 

hypothesis Cn the probability of that combination is (1 − kx)(1 − yx−1). 

But the chance that Tx announces number n taken from (m – 1) 

numbers, which he does not believe to be announced by Tx−1, is  

1/(m – 1), so the probability that n will be announced should be 

reduced to (1 − kx)(1 − yx−1)/(m – 1). Finally, Tx does not announce the 

arrival of that number, either because he deceives us and Tx−1 did 

announce it, or if he does not deceive us and Tx−1 announced the 

arrival of another number. So we have the composite probabilities of 
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the observed event according to hypothesis Сn and all the other 

hypotheses Сi  

 

    1
1

(1 )(1 )
,  

1

x x
x x x

k y
y k y

m
−

−

− −
= +

−
1

1

(1 )(1 )
.

1

x x
x x x

k y
y k y

m
−

−

′− −
′ ′= +

−
 

 

    The two unknowns, yx and y′x, are included in the same difference 

equation of the first order and only differ one from another in the 

arbitrary constant.  
    When considering yx and denoting that constant by c, the complete 

solution of that equation is  
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and, substituting (х – 1) instead of x, we will derive 
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    These values together with yx transform the given equation into an 

identity. For determining с, I take х = 0 in the complete solution and 

note that the probability yx pertaining to the direct witness T, should 

coincide with pn in § 38. And, assuming unity at х = 0 for the product 

of the factors included in the solution, we will have 

 

    pn =(1/m) + c, c = (mpn − 1)/m.  

 

For some value of x we will therefore get 
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    Note that according to some hypothesis Ci differing from Cn the 

probability y′x concerning the direct witness Т should also be the 

probability denoted by pi in § 38 and  
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which, like pi, is independent from i. I substitute these values in wn and 

obtain the probability that the number n, announced by the last witness 

Tx, is actually extracted 
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which is what was required to determine.  

    The product X can be replaced by 
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Number m is always larger than unity, and kx represents a positive 

fraction which can not be larger than unity, so each of the factors of X 

can be positive or negative without ever exceeding the limits ± 1. 

When the number x of these factors is very large, the product is 

negligible and even zero if that number becomes infinite. However, if 

those factors h1, h2, … form a series, continuously converging to unity, 

the indicated statement is excluded.  

    If we neglect the terms including X in the formula for wn, it will be 

reduced to an/µ. Therefore, in general, the probability of an event 

transmitted to us by a traditional chain of a very large number of 

witnesses, does not sensibly differ from the chance proper to that event 

or independent from the testimonies. However, if a long number of 

direct witnesses attests an event, its probability will closely approach 

unity provided (§ 37) that it is possible to bet more than one against 

one on the honesty of each witness. 

    In the particular case in which the urn contains only one ball of each 

number, an = 1 and µ = m. Then because of equation (38.1) the value 

of wn becomes 

 

    wn = [1 + (mpn − 1)X]/m. 

 

This probability coincides with yx, that is, with the probability of the 

announcement of number n by witness Tx in accord with hypothesis Cn 

which stipulates that that number was really extracted from the urn. 

However, we can not admit that conclusion in advance, as Laplace 

(1812/1886, § 44) did when solving this problem. These probabilities, 

yx and wn, are only identical when (µ − an)/an = (m – 1).  

    40. If desired, it is possible to express each of the magnitudes k1, k2, 

… through m and the probabilities that the witness, to whom they 

correspond, is not mistaken and does not wish to deceive. I denote by 

ux' the probability that witness Tx' belonging to the traditional chain is 

not mistaken, and by vx', the probability that he does not wish to 

deceive. If these two circumstances coexist, the witness is not 

mistaken. He can also be not mistaken if he is mistaken and wishes to 

deceive. In that second case the chance that he will announce number 

n is 1/(m – 1) since n is taken from (m – 1) numbers in which he does 

not believe to have arrived. Those two cases are the only ones in which 

he is not mistaken when announcing that number, and the composite 

value of k x' is 
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    If x′ = 0 it coincides with pn of § 38 if ui and vi [?] are substituted in 

its expression. That magnitude k x' is the probability to be attached to 
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the testimony of Tx' or the value of the testimony itself, i. e., to the 

reason to believe that number n is extracted from an urn containing m 

kinds of different numbers when we only know that that arrival was 

attested by T x' for whom u x' and v x' are the probabilities of not being 

mistaken and not wishing to deceive. If Tx' is certainly mistaken and 

wishes to deceive, then u x' = v x' = 0 and the probability k x' that number 

n was drawn resulting from his testimony [from Tx'] will be 

nevertheless equal to 1/(m – 1).  

    This is certain for m = 2. And actually in this case the witness, when 

announcing a number in whose arrival he does not believe and 

believing in the extraction of the number which was not drawn, 

necessarily announces the truth. If m = 3, even money can be bet on 

the arrival of the announced number. This can easily be verified by 

enumerating all the possible combinations. Also verified can be the 

value 1/(m – 1) of probability k x' relative to some number m. 

    The case of a witness who is mistaken and certainly wishes to 

deceive should not be confused with that of an interrupted traditional 

chain in which witness Tx' −1 preceding Tx' does not exist so that Tx' 

certainly wishes to be mistaken since he supposes that Tx' −1 exists and 

therefore vx' = 0. But the probability that Tx' is not mistaken is not at all 

zero; he has no notion about the arrived event and the probability that 

he announces the really drawn number is 1/m, and this is therefore the 

value of his testimony. And with ux' = 1/m and vx' = 0 the preceding 

formula leads to kx' = 1/m. This brings about the condition hx' = 0 and 

reduces the probability wn of the arrival of number n to an/µ, to the 

chance proper to that event, as it should be evident. 

    41. By the rule concerning the probabilities of causes, we may 

actually complete what was stated at the end of § 7 about the tendency 

of our mind to believe that certain events undoubtedly have a special 

cause independent from chance. Suppose we observe an event which, 

taken by itself, has a very low probability. If it presents some 

symmetry or some other remarkable thing, we are naturally led to 

think that it is not the effect of chance or, more generally, of a unique 

cause attaching to it that feeble chance, but is due to a more powerful 

cause, such as the desire of someone who had a particular goal for 

producing it.  

   If for example
9
 we find 26 printed letters of the alphabet arranged on 

a table in their natural order a, b, c, …, x, y, z, we will not doubt that 

someone had wished to dispose them in that way. But still that 

arrangement is not by itself less probable than any other which does 

not present anything remarkable and which we therefore do not 

hesitate to attribute to chance. If these 26 letters were successively and 

randomly drawn from an urn, there would have been the same chance 

of their arrival in the natural order or an order determined in advance, 

as for example b, p, w, …, q, a, t, which I have chosen arbitrarily. That 

chance will be slim, but not slimmer than in the other case. 

    Similarly, if an urn contains an equal number of white and black 

balls and 30 of them had to be successively extracted with 

replacement, the probability that all of them are white will be (1/2)
30

 ≈ 

1/10
9
. However, the probability of some of them white, and some 

black in any order and any ratios will not be either higher or lower 
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than in the previous case. Just the same, we could have again bet about 

10
9
:1 against the appearance of that fixed arrangement. And 

nevertheless, when seeing the arrival of 30 white balls in succession, 

we can not believe that that event took place by chance whereas we 

easily attribute to chance the arrival of 30 balls presenting nothing 

regular or remarkable. 

    What we call hazard (§ 27) with the same facility produces, so to 

say, an event which we find remarkable and another one, 

unremarkable. If the equally possible events are very numerous, events 

of the first kind are much rarer than those of the second. It is for this 

reason that an arrival of events of the first kind is astonishing to us and 

leads us to search for their special cause. Actually, its existence is 

likely, but its high probability does not result from the rarity of 

remarkable events; it is founded on another principle which we will 

apply to the rules demonstrated above. 

    42. Let us denote the possible remarkable and unremarkable events 

by E1, E2, … and F1, F2, … When considering the 30 balls extracted 

from an urn containing an equal number of white and black balls, the 

events E1, E2, … will be the appearance of all 30 of the same colour; 

or alternatively white and black; or 15 of one colour followed by 15 of 

the other; etc. In the case of [about] 30 printed letters disposed one 

after another, those events will be an arrangement of those letters in 

the alphabetic order; or in the inverse order; or making up a phrase in 

the French or another language.  

    Denote the number of all the remarkable events by m, and, by n, the 

other events F1, F2, … Suppose that all are equally possible when only 

due to chance, then the probability of each of either kind will be  

p = 1/(m + n). It will not be the same if those events were produced by 

a particular cause C independent from the probability p and being, for 

the sake of definiteness, someone’s desire and choice.  

    We assume that this choice is determined by diverse circumstances 

rendering some of the possible events remarkable. Thus, there exists a 

certain probability p1 that the choice of that person attaches to E1, 

attaches probability p2 to E2, … If these various events are the only 

ones possible, it follows that p1 + p2 + … = 1. And if all those 

probabilities are the same, their common value is 1/m, very high 

compared with p if the total number (m + n) of the possible cases is 

very large by itself and when compared with m.  

    In general, these probabilities can be very unequal but we are unable 

to know them. For us, however, it suffices that they are very high 

compared with probability p. This should have certainly happened 

when that probability is extremely low, or the number (m + n) 

excessively large, like in the examples below. 

    So this is the principle from which we issue when determining the 

probability of cause C after observing one of the events E1, E2, …, F1, 

F2, … or at least when showing that it is very high if the observed 

event belongs to the first kind.  

    Suppose that that event is E1. It is possible to formulate two 

hypotheses: it is either due to cause C, or resulted from chance. If the 

first hypothesis is certain, p1 will be the probability of the arrival of E1; 

if the second one is certain, that probability will be p. Denote by r the 
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probability of the first hypothesis existing after the observation, and 

consider both of them equally probable before it. Then, by the rule of  

§ 28, 

 

    r = p1/(p1+ p). 

 

    Suffice it that probability p1 is very high compared with a very slim 

chance p for that value of r to differ very little from unity or certainty. 

In a preceding example, the number of possible events exceeded 10
9
, 

and p was lower than 1/10
9
. Suppose that thousand is the number of 

sufficiently remarkable events for choosing one of them, and assume 

1/1000 as the value of p1. Then r will differ from unity less than by 

1/10
6
 and much less if, as it is possible to believe, probability p1 is 

higher than 1/1000. If then one of those remarkable events will be 

observed, for example the extraction of 30 balls of the same colour 

from an urn containing equal numbers of balls of two colours, we 

should without any doubt attribute that fact to someone’s desire or to 

some other special cause, as it is certainly done, rather than to a simple 

effect of chance.  

    Nevertheless, the probability r of the cause C will be considerably 

lower if before the observation the latter’s existence and absence were 

not equally possible as was supposed in the preceding formula and if 

its absence was initially more probable. This is what happened in the 

example above when many precautions were taken before the 

drawings for excluding the influence of any desire from the extraction 

of the balls. By allowing for that circumstance taking place prior to the 

observation, the lowering of r according to the rule of § 34 becomes 

appreciable. 

    That probability will be heightened or lowered, sometimes greatly, 

when all the events E1, E2, …, F1, F2, …, are not at all equally 

possible; heightened, if the chance proper to each event is lower for 

those of the first kind than for the second, and lowered otherwise. 

    The harmony which we observe in nature is undoubtedly not 

occasioned by chance. By attentive examination over a very long 

period of time of a very large number of phenomena we came to 

discover their physical causes if not with absolute certainty, at least 

with a probability closely approaching it. Regarding phenomena 

presenting remarkable circumstances as things E1, E2, …, we will have 

the case in which those things possess by themselves a probability 

high enough for rendering interventions of the cause, which we 

denoted by C, very unlikely, sometimes for it being useless to consider 

such interventions.  

    It is reasonable to attribute physical phenomena whose causes are 

still unknown to causes similar to the known ones and to believe that 

they obey the same laws. With the progress of science their number 

decreases, however, from day to day
10

. Nowadays, we know, for 

example, what produces lightnings and how are the planets kept on 

their orbits, which was unknown to our predecessors. Those, who 

come after us, will discover the yet unknown causes of other 

phenomena. 
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    43. When the number of various causes which can be attributed to 

an observed event E is infinite, their probabilities either before or after 

the arrival of E become infinitely low, and the sums included in the 

formulas of §§ 32 and 34 are transformed into definite integrals.  

    For bringing about that transformation, let us suppose that the 

observed event E is the extraction of a white ball from an urn 

containing infinitely many white or black balls. We can formulate an 

infinity of hypotheses about the unknown ratio x of the number of 

white balls to the total number of balls. They can be thought to be so 

many mutually incompatible causes of the arrival of E. 

    Now, x is susceptible of all values increasing by infinitely small 

steps, from infinitely small corresponding to the case in which the 

drawn ball was the only white ball in A, to x = 1 corresponding to the 

other extreme case in which that urn contained only white balls. 

Represent by X, which always is a known function of x, whose value is 

supposed certain, the probability that that ratio attaches to the arrival 

of E. Considering that value as a possible cause of E, determine the 

infinitely low probability of x, whether all the causes are equally 

possible before the observation, or different from the beginning.  

    In the first case, the required probability is derived from wn of § 28 

by assuming an infinite m and substituting the values of x 

corresponding to X instead of p1, p2, … Understanding sums in the 

same way as in § 32, and denoting the probability of x by w, we will 

have w = X/∑X. However, by the fundamental theorem of the [theory 

of] definite integrals 

 

    

1

0

.Xdx Xdx=∑ ∫   

 

    Therefore, supposing that the differential dx is constant, and 

multiplying both sides of the preceding fraction w by it, we arrive at 

 

    

1

0

.w Xdx Xdx= ÷ ∫   

Denote by Х′ the probability, corresponding to x, of a future event Е′ 
depending on the same causes as Е, and by w′, the composite 

probability of the appearance of Е′. Then, by the rule of § 30, 

 

    

1 1

0 0

.w X w XX dx Xdx′ ′ ′= = ÷∑ ∫ ∫   

 

Here, w was replaced by its preceding value and the sum transformed 

into an integral. In each example [problem] Х′ will be a given function 

of x. If, before observing E, the diverse values of x are unequally 

probable, denote by Ydx the infinitely small probability of the chance x 

of E and replace qn in the formulas of § 34 by Ydx. Then 
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1

0

,w XYdx XYdx= ÷ ∫  

1 1

0 0

w XX Ydx XYdx′ ′= ÷∫ ∫  

 

will be the probabilities of the chances of the arrival of E and of the 

probability of the future arrival of Е.  

    44. If we are certain from the very beginning that x can not extend 

from 0 to 1, but should be confined between given limits, these limits 

must be applied as the limits of the definite integrals included in these 

[?] formulas. Alternatively, if desired to preserve their limits 0 and 1, Y 

will be a discontinuous function of x disappearing beyond the given 

limits of that variable.  

    Let x be susceptible of all values from 0 to 1, or contained in given 

limits of that variable. Denote by λ the probability that after the arrival 

of the observed event E its unknown value actually becomes contained 

in more narrow limits α and β. Then λ will be the sum of the values of 

w corresponding to the values of x thus contained: 

 

    

β 1

α 0

λ .XYdx XYdx= ÷∫ ∫  

 

That formula can be applied in approximate calculations when the 

number of causes, to which the event E can be attributed, is only very 

considerable instead of infinite. Suppose for example that E is the 

extraction of n white balls drawn successively with replacement, 

without interruption, from an urn B containing a very large number of 

white and black balls. The probability X of E corresponding to ratio x 

of the number of white balls to the total number of all balls in B will 

be the n-th power of that ratio. 

    When required the probability that the number of white balls 

exceeds the number of black balls, we take α = 1/2 and β = 1 in the 

expression of probability λ. And if in addition, before the drawings all 

possible values of x were equally probable, Y will not vary with x and 

therefore disappears from that expression: 

 

    

1 1

1

0 1/2

1 1 1
,  ,  (1 )

1 1 2

n

n
X x Xdx Xdx

n n +
= = = −

+ +∫ ∫  

 

and λ = (1 − 1/2
n+1

) with its precision increasing with the number of 

black or white balls in B. Before the drawings even money could have 

been bet on the number of white balls exceeding the number of black 

balls. However, after extracting just one white ball from B, λ = 3/4 and 

we can bet 3 against 1 on the number of white balls being larger than 

the number of black balls. After some small number of white balls has 

arrived in succession, the probability λ that there are more white balls 

than black considerably approaches certainty. 

    45. As I said above (§ 30), E and E′ can be considered as events 

composed of the same simple event G and connected with each other 

by their common dependence on that event
11

. The chance of G is 

unknown. Before E arrived, the probability of its taking value x is Ydx 
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and w after that. Since this value is certainly contained between x = 0 

and 1, the sum of the corresponding values of Ydx will be unity, just as 

the sum of the values of w. So, be the given function Y of x continuous 

or discontinuous, it should always satisfy the condition ∫Ydx = 1. By 

the rule [the definition] of mathematical expectation (§ 23)
12

 applied to 

the chance of G, we should assume as its value before the arrival of E 

the sum of all its possible values multiplied by their respective 

probabilities, i. e., the sum of all the products xYdx from х = 0 to х = 1. 

Denoting this chance, or, more precisely, denoting what should be 

assumed as its unknown chance before the arrival of E 

by γ, we will have 

 

    

1

0

γ .xYdx= ∫   

 

    When considering x and X as the abscissa and ordinate of a plane 

curve and noting that the entire area of that curve
13

 or the integral of 

Ydx is unity, γ will be the abscissa of the centre of gravity of that same 

area. It is this value of γ adopted as the chance of G that we should 

choose when betting on the first arrival of that event, but not on many 

successive arrivals. Indeed, depending on whether G takes place at the 

first trial or not, the probability of further arrivals will be heightened or 

lowered. 

    Let for example all the values of x be in advance equally probable, 

then Y should be independent from x. According to the two preceding 

equations, Y = 1 and γ = 1/2 and we have no reason to believe that G 

rather than the contrary event will arrive at the first trial. However, if 

considering E and E′ as the simple event G, we will have 

 

    X = x, X′ =x and 

1 1

0 0

2
  

3
w XX dx Xdx′ ′= ÷ =∫ ∫   

 

for the probability that, having arrived for the first time, G will arrive 

for the second time since the probability of that recurrence will after 

the first trial be heightened by 1/6 [ from 1/2 to 2/3]. That probability 

will be lowered by the same fraction and become 1/2 − 1/6 = 1/3 if the 

contrary event took place at the first trial. Indeed, assuming that event 

as E, and, as always, considering G as E′, that is, taking X = 1 − x and 

X′ = x, we conclude that 

 

    

1 1

0 0

1
(1 ) (1 )   

3
w x x dx x dx′ = − ÷ − =∫ ∫  

 

will be the probability that G, not arriving at the first trial, will appear 

at the second. 

    In advance, the probability of G occurring twice in succession is  

(§ 9) the product of the probability 1/2 that it takes place the first time 

and probability 2/3 that it arrives at the second trial, and is equal to 1/3 

instead of 1/4 which is its value had the probability of G been 1/2 at 
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the second trial. The coincidence of two events in the first two trials 

will have a double probability, i. e., 2/3, since it can occur by 

repetition of either G or of its equally probable contrary event. 

Comparing 2/3 = [1 + (1/3)]/2 with the probability (1 + δ2
)/2 of the 

coincidence as determined in § 26, we have δ = 1/√3. Therefore, when 

having no advance knowledge about the chance of an event G, we may 

have equal grounds for supposing that x takes any of all possible 

values
14

. 

    We will now determine the probability of coincidence in the case in 

which we know in advance that the values of x instead of being 

equally possible likely differ very little from a known or unknown 

fraction. 

    46. We always denote by G a simple event with an unknown 

chance; let H be the event contrary to G with chance equal to 1 less the 

chance of G. We suppose that 1) An observed event E is the arrival of 

G and H m and n times in some order. 2) A future event E′ is the 

arrival of these events m′ and n′ times, again in some order. 

    The chances of G and H are x and 1 − x, so the probabilities X and 

X′ of E and E′ are (§ 14) 

 

    X = Kxm
(1 – x)

n
, X′ = K′xm′(1 – x)

n′, 
 

where K and K′ do not depend on х. Therefore  

 

    

1 1

0 0

(1 ) (1 )m m n n m nw K Yx x dx Yx x dx′ ′+ +′ ′= − ÷ −∫ ∫   

 

is the probability of E′ existing after E was observed. Magnitude K has 

disappeared from this formula and  

 

    .
m
m nK C ′

′ ′+
′ =                                                                            (46.1) 

 

If Е′ is the occurrence of G and H m′ and n′ times in a fixed order, then 

K′ = 1. 

    If before observing E we had no reason to believe that some value 

of х is more probable than another, then Y = 1. And, integrating by 

parts, we get  

 

    

1

0

!
(1 )     

( 1)( 2)...( )( 1)

m n n
x x dx

m m m n m n
− = =

+ + + + +∫  

                                  m!n!/(m + n + 1)!. 

 

Similarly, 

 

    

1

0

( )!( )!
(1 )  = 

( 1)!

m m n n m m n n
x x dx

m m n n
′ ′+ + ′ ′+ +

−
′ ′+ + + +∫  

 

and, see (46.1), 
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( )!( )!( )!( 1)!

.
! ! ! !( 1)!

m n m m n n m n
w

m n m n m m n n

′ ′ ′ ′+ + + + +
′ =

′ ′ ′ ′+ + + +
 

 

    For that formula to include the case in which one of the magnitudes 

m, n, m′, n′ is zero, we should assume that 0! = 1. Then, if n = n′ = 0, 

 

    
1

.
1

m
w

m m

+
′ =

′+ +
  

 

This formula expresses the probability that G arrives m′ times without 

interruption after it had taken place m times in succession without H 

taking place. For m′ = 1 and n′ = 0, the value of w′ corresponding to  

Y = 1 is reduced to 

 

    
1

,
2

m
w

m n

+
′ =

+ +
 

 

and, for m′ = 0 and n′ = 1, 

 

    
1

.
2

n
w

m n

+
′ =

+ +
 

 

    The sum of these two fractions is unity which should have taken 

place since the former expresses the probability that after (m + n) trials 

G arrives at the next trial, whereas the latter expresses the contrary. 

The former is higher or lower than the latter depending on whether  

m > n or < n, i. e., on whether in the first (m + n) trials G had occurred 

more often or less than the contrary event H. These probabilities 

become equal to each other and equal to 1/2, as it was before the trials, 

when those two events had taken place the same number of times. 

However, in general this will not persist when we know in advance 

either by the nature of G, or by the results of previous trials that the 

unknown chance of G takes unequally probable values, so that Y ≠ 1.  

    The fraction γ (§ 45), which should have been assumed as the 

chance of G existing before the (m′ + n′) new trials, will not at all be 

1/2; at the next trial the probability of G, although arriving oftener than 

the contrary event H, can be lower than γ, or higher even in the 

opposite case. And this I will show in the next example. 

    47. I suppose that beforehand the chance of G likely very little 

deviates in either direction from a certain fraction r, 

 

    x = r + z. 

 

Magnitude Y is a function of z and is only appreciable at very small 

positive or negative values of that variable. The plane curve whose 

current coordinates are x and Y only noticeably deviates from the x-

axis on a very short interval extended on both sides from the ordinate 

corresponding to x = z. The centre of gravity of the curve’s area is 

therefore situated on this interval, and its abscissa very little deviates 
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from r. When neglecting that difference, r will become the value of γ 
from § 45. 

    The limits of the integrals will be z = − r and 1 – r corresponding to 

x = 0 and 1. So, adopting m′ = 1, n′ = 0 and dx = dz in the first 

expression of w′ in § 46, we will have 

 

    

1 1

1(1 ) (1 )

r r
m n m n

r r

w Yx x dz Yx x dz
− −

+

− −

′ = − ÷ −∫ ∫  

 

as the probability that G arrives after having occurred m times, and H, 

n times in (m + n) trials. However, due to the nature [to the behaviour] 

of Y, it is possible, if desired, to restrict the extent of the integrals to 

very small values of z. And, when expanding the other factors in 

power series of z, in general they will converge rapidly. The only 

exception occurs when r or 1 − r are also very small fractions. In all 

other cases only the first terms of the series can be left, so that when 

neglecting the square of z [?],  

 

    xm
(1 – x)

n
 = rm

(1 – r)
n
 + [mrm−1

(1 – r)
 n

 − nrm
(1 – r)

n−1
]z + 

    ½[m(m – 1)rm−2
(1 – r)

n
 − 2mnrm−1

(1 – r)
n−1

 +  

    n(n – 1)rm
(1 – r)

n−2
]z2

.  

 

Substituting (m + 1) instead of m I will derive xm+1
(1 – x)

n
.  

    Then, I insert xm
(1 – x)

n
 and xm+1

(1 – x)
n
 in the expression of w′; I 

also note that 

 

    

1 1

1,  0;

r r

r r

Ydz Yzdz
− −

− −

= =∫ ∫   

 

denote for the sake of brevity 

 

    

1

2  

r

r

Yz dz h
−

−

=∫ , 

 

and, when neglecting h2
, which can only be a very small fraction, 

come to 

 

    ( ) .
1

m n
w r h

r r
′ = + −

−
  

 

    This proves that the probability w′ of the arrival of G after (m + n) 

trials is higher if [m/r < n/(1 – r)], or lower otherwise, than r or γ, 
which should be assumed as the chance of G existing before those 

trials. If r certainly was the chance of G and m and n were large 

numbers, G and H will likely appear in the ratio of their respective 

chances, r and (1 – r). Equality m/r = n/(1 – r) renders the probability 

w′ equal to the chance r, as it should have been. 

   48. When m = 1 and n = 0, the preceding value of w′ becomes 
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    w′ = r + h/r, 

 

the probability that G, having arrived at the first trial, also occurs at the 

second. The probability of the former is r, so rw′ = r2
 + h expresses the 

probability of the repetition at those trials. Substituting (1 – r) instead 

of r, we get (1 – r)
2
 + h for the probability of the repetition of the 

contrary event, and the sum of those probabilities, 

 

    1 – 2r + 2r2
 + 2h, 

 

is the probability of the coincidence of the results of those trials.  

   If m = 0 and n = 1, w′ from § 47 becomes 

 

    w′ = r − h/(1 – r), 

 

which is the probability that G, not arriving at the first trial, occurs at 

the second. When multiplied by (1 – r), it will express the probability 

of the succession of two contrary events. The double of that product, 

 

    2r – 2r2
 – 2h,  

 

is the probability of different outcomes in those two trials. By 

subtracting from unity the probability of coinciding outcomes it will 

also be derived.  

    The difference of the probabilities of coinciding and contrary results 

is therefore 

 

    (1 – 2r)
2
 + 4h, 

 

which shows that this excess increases when r is not exactly the 

chance of G; we only know that this chance very little deviates from r. 

Even if knowing that r = 1/2, it will have still been advantageous to bet 

even money on coincidence. And this is what happens at playing heads 

and tails when first tossing the coin: equality of the chances of its two 

sides is physically impossible, but, in accord to its minting, the chance 

of each side likely very little deviates from 1/2.  

    49. Already here I announce a theorem whose demonstration 

follows in the next chapter. It determines the chances of an event by 

experience, not with certainty and rigour, but as being likely its very 

good approximant.  

    Let g be the known or unknown chance of an event G, i. e., the ratio 

of the number of equally possible cases favourable to it, to the number 

of all cases that can take place and are also equally possible. Suppose 

that µ trials are made during which that chance proper to G and 

differing from its probability (§ 1) remains constant. Let r be the ratio 

of the number of arrivals of G in that series of trials to its total number 

µ. If that µ is not very considerable, r varies with it and can much 

differ from g in either direction. However, when µ becomes large, the 

difference (r − g), abstracting its sign, will ever decrease with the 

further increasing µ; if µ can become infinite, then exactly r – g = 0.  
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    Denoting an arbitrarily small fraction by ε, we can always assign 

such a large µ that the probability of r – g < ε will approach certainty 

as closely as desired. Below, we provide an expression of the 

probability of that inequality as a function of µ and ε.  
    And so, suppose that urn A contains a white and b black balls. 

When successively drawing with replacement a very large number µ 

of balls, α of them white and β, black, we will have 

 

    
α β α

,  ,  
α β α β β

a b a

a b a b b
= = =

+ + + +
 

 

ever more exactly and with an ever higher probability as µ = α + β 

becomes larger. Conversely, if the ratio of the numbers of white and 

black balls in A is unknown, and during a very large number of trials 

that ratio does not vary, we may with a very high probability take for 

the approximate values of that unknown ratio and the unknown chance 

of extracting a white ball the magnitudes α/β and α/( α + β) whatever is 

the number a of balls in that urn. However, we should remark that if 

the number of white balls is very small as compared with the number b 

of black balls, α will also be very small as compared with β and vice 

versa. And the ratio of one of the fractions α/β and a/b to the other can 

much differ from unity, at least until the series of trials does not 

excessively extend. When the known or unknown chance of drawing a 

white ball is very slim, the approximate equality α/β = a/b only 

signifies that both fractions are very small. 

    The announced rule equally applies to chances of diverse and 

mutually incompatible causes which can be attributed to an event E 

observed a very large number of times. If γ is the known or unknown 

chance of one of these causes, C, the ratio γ/(1 − γ) will with a high 

probability closely approximate the ratio of the number of arrivals of E 

due to C to that number occasioned by all other causes. This is how 

that ratio can be determined if γ was known in advance or found out by 

experience. 

    Let the event E be the extraction of a white ball from either an urn A 

with a white and a′ black balls, or an urn B with b white and b′ black 

balls respectively. The values of the chance of A being the cause of E 

and of the contrary chance of B being that cause, are, by the rule of  

§ 28,  

 

    
( ) ( )

γ ,  1 γ .
( ) ( ) ( ) ( )

a b b b a a

a b b b a a a b b b a a

′ ′+ +
= − =

′ ′ ′ ′+ + + + + +
  

 

    When drawing with replacement a very large number µ of white 

balls from either urn, the ratio ρ of the number of them extracted from 

A to that of the extracted from B will likely very little deviate from  

γ/(1 − γ): 
 

    
γ ( )

ρ   .
1 γ ( )

a b b

b a a

′+
= =

′− +
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If а + а′ = b + b′, then ρ = а/b. In this case all the balls can be 

combined in a single urn D (§ 10) without changing the ratio of white 

balls extracted from A and B which will be drawn from D.  

    For a very large number of balls of that colour the ratio of the 

former number to the latter will be almost equal to a/b. This can be 

verified by differently marking the balls taken from A and B and 

replacing each ball after its arrival. 

    50. The work of Buffon (1777, § 18) contains numerical results of 

an experiment on the game of heads and tails which will provide an 

example and a verification of the preceding rule. In that game, the 

chance of each side of the coin depends on its physical constitution not 

sufficiently known to us. And even had we known it, it would be a 

problem of mechanics no one can solve for finding out the chance[s] 

of heads or tails. So an approximate value of that chance [of those 

chances] should be derived by experiment for each coin in particular. 

    Thus, if heads appeared m times in a very large number µ of trials, 

m/µ should be assumed as its chance. It will also be the probability or 

the reason to believe that that side will arrive in a new trial made with 

the same coin. After that series a fair bet on the arrival of heads can be 

made by betting m against (µ − m). It is also by means of that 

probability m/µ of the simple event that the probabilities of compound 

events should be calculated, at least if they are not very low. 

    Suppose now that a very large number m of series of trials is made, 

each of them, like in the cited experiment, ending when heads appear. 

Let a1, a2, a3, … be the number of arrivals of heads at the first; the 

second, … toss. The total number of tosses, or trials, and arrivals of 

heads will be 

 

    µ = a1 + 2a2 + 3a3 + …, m = a1 + a2 + … 

 

The chance of that side will be р = m/µ with the approximation being 

better and the precision higher, as µ becomes larger.  

    The probabilities of heads at the first toss, at only the second toss, at 

only the third one, … will be p, p(1 – p), p(1 – p)
2
, … Since the 

numbers of those arrivals in m series of trials are supposed to be a1, a2, 

…, the equalities 

 

    p = a1/m, p(1 – p) = a2/m, p(1 – p)
2
 = a3/m, … 

 

ought to take place almost exactly if that number is very large and the 

probabilities do not become too low. Dividing each of these equations 

by the preceding, we obtain different values of (1 – р) and therefore  

 

    p = a1/m = 1 − a2/a1 = 1 − a3/a2 …  

 

    These values, or at least a certain number of the first of them, will 

differ one from another and from m/µ the less, the larger are m and µ. 

For those values to become certainly equal one to another, m and µ 

should be infinite. When assuming the mean of those very little 

differing fractions as р or when taking p = m/µ, resulting from all the 

trials, then  
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    a1 = mp, a2 = mp(1 – p), a3 = mp(1 – p)
2
, … 

 

These calculated values, or at least the first terms of that decreasing 

geometric progression, should very little deviate from the respective 

observed numbers a1, a2, … In Buffon’s experiment m = 2048. From 

what he reported it follows that 

 

    a1 = 1061, a2 = 494, a3 = 232, a4 = 137, a5 = 56, 

    a6 = 29, a7 = 25, a8 = 8, a9 = 6.  

 

Numbers a10, a11, … are absent which means that the number m of the 

series of trials was not sufficiently large for heads not to appear at one 

or many of the preceding tosses. That number is the sum of the values 

of a1, a2, …, and µ = 4040 so that р = m/µ = 0.50693. Applying that 

value
15 

 and neglecting fractions, we have  

 

    a1 = 1038, a2 = 512, a3 = 252, a4 = 124, a5 = 61, 

    a6 = 30, a7 = 15, a8 = 7, a9 = 4, a10 = 1.  

 

The next numbers, a11, a12, … were less than unity. 

    When comparing this series of calculated values with the numbers 

resulting from observation, we see that their first terms do not much 

differ one from another. Then the deviations become larger; for 

example, the calculated value of a7 only amounts to 3/5 of the 

observed value. However, it corresponds to an event whose probability 

is lower than 1/100. When restricting the calculations to the three first 

terms of the series of the observed numbers, we get  

 

    p = a1/m = 0.51806, p = 1 – a2/a1 = 0.53441,  

    p = 1 – a3/a2 = 0.53033 

 

which very little differ one from another. Their mean, or the third of 

their sum, is p = 0.52760 and barely differs by 0.02 from the ratio m/µ 

of p as resulted from all the trials. 

    I have chosen this experiment owing to the name of its author and 

because the work where it is placed renders it authentic. Each reader 

can make many other experiments of the same kind either with a coin 

or a die having six faces. In the latter case, the number of arrivals of 

each in a very large number of trials will be about 1/6 of that number, 

at least if the die is fair and not poorly manufactured. 

    51. The theorem, on which the preceding rule is founded, is due to 

Jakob Bernoulli who had been thinking about its proof for 20 years. 

What he had done is derived from the binomial formula by means of 

the following propositions.  

    Let p and q be the given chances of contrary events E and F at each 

trial; suppose also that g, h and k are natural numbers, such that 

 

    p = g/k, q = h/k, g + h = k, p + q = 1. 
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Denote by m, n and µ other natural numbers connected with g, h and k 

by equations 

 

    m = gk, n = hk, µ = m + n = (g + h)k. 

 

Therefore, p/q = m/n. These numbers can be as large as desired if 

appropriately increasing g, h and k without changing their ratios. So, 

    [1] In the expansion of (p + q)
µ
 the largest term corresponds to pmqn

. 

And since that term is the probability of the arrival of E and F m and n 

times (§ 14), it follows that that compound event, i. e., the arrival of 

the events in a direct proportion of their respective chances, is the most 

probable of all the compound events which can take place in some 

number µ of trials. 

    [2] If this number µ is very large, the ratio of the largest term of the 

expansion of (p + q)µ
 to the sum of all the terms or to unity will be a 

very small fraction indefinitely decreasing as µ increases still more. 

Therefore, in a long series of trials that ratio for the most probable 

compound event will be nevertheless very small and ever smaller as 

the trials are continued.  

   [3] However, if we consider the largest term of (p + q)µ
 and the l 

next terms on both of its sides, and denote by λ the sum of these  

(2l + 1) consecutive terms, we can always, without changing either p 

or q16
, choose a sufficiently large µ for that fraction λ to differ from 

unity as little as desired. And as µ increases still more, λ will ever 

closer approach unity. 

    We conclude that in a large series of trials there always exists a high 

probability λ17
 that the number of arrivals of event E will be contained 

between m ± l, and F, between .n lm  Therefore, without changing the 

interval 2l of the limits of those two numbers, we can choose the 

number µ of the trials sufficiently large for the probability λ arbitrarily 

to approach certitude as well.  

    When assuming the ratios of these limits to the number µ of the 

trials; taking account of the preceding equations; and denoting 

 

    /µ  δ,  δ  ,  δ  ,l p p q q′ ′= ± = =m   

 

these ratios will be p′ and q′. And since δ indefinitely decreases 

as µ increases, it follows that these ratios, varying with µ, with a very 

high probability also indefinitely approach the chances p and q of E 

and F, which the excellent theorem of Jakob Bernoulli
18

 has 

announced. 

    Regarding the demonstration of these properties of the terms of the 

expansion of (p + q)
µ
, we refer to the works in which they are 

described, pt. 4 of the Ars Conjectandi and the first section of Lacroix 

(1816). As to the theorem itself, which is placed in the next chapter, it 

is based on the integral calculus. At present, it should be borne in mind 

that that theorem essentially supposes the invariability of the chances 

of the simple events E and F during all the trials. However, in the 

applications of the calculus of probability either to various physical 

phenomena or moral things those chances most often vary from one 

trial to another and, again most often, quite irregularly. Jakob 
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Bernoulli’s theorem is not suited for such kind of problems; however, 

there exist other more general propositions which are applicable for 

any variations of the successive chances of the events and serve as the 

foundation of the most important applications of the theory of 

probability. They are also demonstrated in the following chapters.  

    [Now, however,] we will derive the law of large numbers already 

considered in the Preamble as a general fact resulting from 

observations of all kinds. 

    52. Denote by p1 the chance of event E of some nature at the first of 

a very large number µ of trials; by p2, that chance at the second trial, 

…, by pµ, at the last one, and the mean of all these chances by p . The 

mean chance of the contrary event F is (1 – p1) + (1 – p2) + … +  

(1 – pµ) divided by µ. Denote it by ,  1.q p q+ =  Here is one of the 

general propositions which we intend to consider. Denote the number 

of arrivals of E and F in that series of trials by m and n. The ratio of m 

and n to µ = m + n will be very likely almost equal to p  and q , and 

conversely p  and q  will be the approximate values of m/µ and n/µ.  

    [1] If these ratios are calculated for a long series of trials, the mean 

chances p  and q  will become known as well as, by the rule of § 49, 

the chances themselves, p and q, of E and F when they are constant. 

However, for these approximate values p  and q  to serve, also 

approximately, for evaluating the number of arrivals of E and F in a 

new series of a large number of trials, they should certainly, or at least 

very probably remain the same for that new series as well as for the 

first one. This is indeed the case in virtue of another general 

proposition which we will now formulate. 

   [2] I suppose that, by the nature of the events E and F, the arrival of 

one of them at each trial can be due to one of the mutually 

incompatible causes C1, C2, …, Cν, which I regard at first as equally 

possible. I denote the chance which some cause Ci attaches to the 

arrival of E by ci, so that at some fixed trial, for example at the first 

one, that chance is c1, and c2, if the intervened cause is C2, … If only 

one cause is possible, the chance of E will necessarily be the same at 

all the trials; however, by our hypothesis at each trial it can have ν 
equally probable values and therefore varies from one trial to another.  

    The mean chance c  of E in a very large number of already made or 

future trials will likely be almost equal to γ whose magnitude is 

independent from the number of the trials. Therefore, the mean chance 

p  of E can be regarded as constant for two or more series, each 

consisting of a very large number of trials. 

    When combining this second proposition with the first one, we 

conclude that if E arrived, or will arrive m times in a very large 

number µ of trials, and m′ times in another very large number µ ′ of 

trials, then very probably and almost exactly m/µ = m′/µ ′. These two 

ratios will be exactly equal to each other and to the unknown γ if µ and 

µ ′ can be infinite. When their values derived from observation notably 

differ, there will be a reason to believe that during the time between 

the two series of trials some of the causes C1, C2, … ceased to be 

possible and other causes had appeared. This will change the chances 

c1, c2, … and therefore the value of γ. Nevertheless, such change will 
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not be certain and we will provide the expression of its probability in 

terms of the observed difference m/µ − m′/µ ′ and numbers µ and µ ′.  
    We will return to this consequence of the two preceding 

propositions in the [discussion of the] Jakob Bernoulli theorem itself. 

Note that, according to the hypothesis underlying the second 

proposition, γ is the chance of E, unknown but the same in both series 

of trials. Actually, because each cause C1, C2, … has probability 1/ν, 
that event can arrive at each trial. According to the rule of § 5 the 

chance of its arrival due to some cause Ci is ci/ν, and by the rule of  

§ 10 its composite chance will be the sum c1/ν + c2/ν + … = γ. 
    For simplifying my account, I assume that all the causes C1, C2, … 

are equally possible, but we can suppose that each of them enters into 

the total number ν of causes once or many times. They therefore 

become unequally probable. Denote by νγi the number of times that 

some cause Ci will be repeated and let γi be the probability of that 

cause. Then  

 

    γ = γ1c1 + γ2c2 + … + γνcν, 
 

and at the same time 

 

    γ1 + γ2 + … + γν= 1, 

 

since one of those causes should certainly take place at each trial. If 

the number of possible causes is infinite, the probability of each 

becomes infinitely low. Let then x be one of the chances с1, с2, …, сν 
whose values extend from 0 to 1 and Ydx, the probability of the cause 

which provides that chance x to event E. Then, just like in § 45,  

 

    

1 1

0 0

γ ,  1.Yxdx Ydx= =∫ ∫                                             (52.1а, b) 

 
    53. Suppose that instead of two possible events there actually is a 

given number λ of them only one of which should arrive at each trial. 

Such is the case in which we consider a thing A of some nature 

susceptible of λ known or unknown values a1, a2, … only one of 

which should take place or took place and is the observed or future 

event. Let also cij be the chance that the cause Ci, if certain, provides to 

the value aj of A. The values of cij for various indices from i = 1 to ν 
and from j = 1 to λ are known or unknown, but for each j we should 

have  

 
    ci1 + ci2 + … + ciλ = 1, 

 

since, if cause Сi is certain, one of the values a1, a2, …, aλ certainly 

arrives due to it.  

    Denote also by αj the sum of the chances aj taking place or having 

taken place in a very large number µ of consecutive trials divided by 

that number, i. e., the mean chance of that value aj of А in that series 

of trials. When considering aj as an event Е, and the set of the (λ − 1) 
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other values of A as the contrary event F, we may take, by the second 

general proposition of § 51, 

  

    αj = γ1c1j + γ2c2j + … +  γνcνj. 
 

Now, γ1, γ2, …, γν are as always the probabilities of the various causes 

which can bring about the events during the series of trials or in other 

words which can produce the observed or future values of A.  

    [3] The third general proposition, which I did not yet take up, 

consists in that the sum of these λ values of A divided by their number, 

or the mean value of that thing likely differs very little from the sum of 

all its possible values multiplied by their mean chances
19

. And so, 

denoting by s the sum of the actual values of A, the equality 

 

    s/µ = a1α1 + a2α2 + … + aλαλ 
 

will be almost exact and have a high probability so that when 

denoting by δ an arbitrarily small fraction, we may always 

suppose that µ is sufficiently large for the difference between the 

sides of that equation to become less than δ with probability 

arbitrarily close to 1.  

    Note also that, due to the preceding expression of αj and of the 

values of α1, α2, …, the right side is independent from µ. So, when 

that number is very large, the sum s will be appreciably proportional to 

it. Therefore, denoting by s′ the sum of the values of A in another 

series of a very large number µ ′ of trials, the difference (s/µ − s′/µ ′) 
will likely be very small. Neglecting it, we will have s/µ = s′/µ ′.  
    In most problems the number λ of the possible values of A is 

infinite. They increase by infinitely small degrees and are contained 

between given limits l1 and l2. The probability that the cause Ci 

provides to each of these values thus becomes infinitely low. Denote 

by Zidz the chance which Ci provides to some value z between l1 and 

l2, then 

 

    
2

1

1.

l

i

l

Z dz =∫                                                                      (53.1) 

 

   The total chance of this value of z, which is very close to its mean 

value during the series of trials, will be Zdz, where, for the sake of 

brevity, 

 

    γ1Z1 + γ2Z2 + … + γνZν = Z. 
 

It follows that 

 

    
2

1

 .
µ

l

l

s
Zzdz= ∫  
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    Z is a known or unknown function of z; however, the sum of the 

fractions γ1, γ2, … is unity as is each integral (53.1), and always 

 

    
2

1

1,

l

l

Zdz =∫  

 

whether the number ν of the possible causes is restricted or 

infinite. 

    54. The law of large numbers consists of two equations 

 
    m/µ = m′/µ ′, s/µ = s′/µ ′, 
 

applicable to all cases of eventuality pertaining to physical and moral 

things. It has two different exact meanings, each of them 

corresponding to one of those equations. They both are continuously 

verified, as is seen by the various examples provided in the Preamble. 

These examples of every kind can not leave any doubt about its [!] 

generality and exactness. However, owing to the importance of that 

law as being the necessary basis for applying the calculus of 

probability in the most interesting cases, it is proper to demonstrate it à 

priori. Moreover, its proof, based on the propositions of §§ 52 and 53, 

is advantageous by indicating the very cause of its existence.  

    By the first equation, the number m of the arrivals of event E of 

some nature in a very large number µ of trials can be regarded as 

proportional to µ. For each kind of things the ratio m/µ has a special 

value γ which it exactly reaches if µ can become infinite. And theory 

proves that this value is the sum of the possible chances of E at each 

trial respectively multiplied by the probabilities of the corresponding 

causes. 

    What characterizes the set of these causes is the relation which 

exists for each of them between its probability and the chance it 

provides, if it [the cause] is certain, to the arrival of E. Provided that 

that law of probabilities does not change, we observe the permanence 

of the ratio m/µ in various series comprised of large numbers of trials. 

If, on the contrary, that law will change between two series of trials, 

the mean chance γ also notably changes as a similar change in the 

value of m/µ will reveal. 

    If, in the interval between two series of observations, some 

circumstances render more probable physical or moral causes 

providing greatest chances to the arrival of E, the value of γ will 

increase, and the ratio m/µ will become larger in the second series than 

it was in the first one. A contrary result will occur when circumstances 

increase the probabilities of causes providing least chances to the 

arrival of E. By the nature of that event, if all possible causes are 

equally probable, we will have Y = 1 and γ = 1/2, and the number of 

arrivals of E in a long series of trials will likely very little deviate from 

a half of its number.  

    Similarly, if the causes of E have probabilities proportional to the 

chances provided by them to its arrival, and if their number is still 

infinite, we will have Y = ax, with a = 2 for satisfying condition 
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(52.1b) so that γ = 2/3. It follows that in a long series of trials there is a 

probability closely approaching certainty that the number of arrivals of 

E will almost double that of the contrary event. However, in most 

problems the law of probabilities of causes is unknown, the mean 

chance γ can not be calculated in advance, and it is experience that 

provides its approximate and likely value when the series of trials is 

sufficiently long for the ratio m/µ to become appreciably invariable 

and adopting it as the value of γ. 
    Bearing in mind all the variations of the chances during a long series 

of trials, the almost perfect invariability of that ratio m/µ for events of 

each nature is a fact worthy of remarking. We are tempted to attribute 

that invariability to an intervention of a mysterious power distinct from 

the physical or moral causes of the events and somehow aiming at 

order and invariability. However, theory proves that that permanence 

is necessary until the law of probabilities of causes relative to each 

kind of events does not begin to change. So in each case we should 

regard that permanence as a natural state of things which subsists all 

by itself without being aided by some alien cause. On the contrary, 

such a cause is needed for accomplishing a notable change. This can 

be compared with the state of repose of bodies which solely subsists 

by inertia of matter [unless and] until some alien cause does not begin 

to disturb it. 

    55. Before considering the second of the two preceding equations, it 

will be opportune to provide some examples concerning the first one, 

and proper for interpreting the problem.  

    Suppose that ν urns C1, C2, …, Cν contain white and black balls and 

denote by cn the chance of drawing a white ball from some urn Cn; that 

chance can be the same for many of these urns. One of them is chosen 

at random and replaced by a similar urn; the same is done with a 

second urn, then with a third, … so that the set of urns always remains 

the same. An indefinitely lengthened series of urns B1, B2, …, is thus 

formed only consisting of the given being repeated more or less times.  

    Denote the chance of extracting a white ball from B1 by b1, from B2, 

by b2, … The unbounded sequence of b1, b2, … only contains the 

possibly repeated given chances c1, c2, … A ball is drawn from B1, 

another from B2, …, and a ball from Bµ. Let β be the mean chance of 

extracting a white ball in these µ successive drawings, then 

 

    β = (b1 + b2 + … + bµ)/µ.  

 

Now, urns C1, C2, … represent the ν only possible causes of the arrival 

of a white ball at each trial. So, if µ is a large number, and, as above, 

 

    γ = (c1 + c2 + … + cν)/ν  
 

and m is the number of the drawn white balls, we will get, according to 

the above, almost exactly and with a high probability  

 

    m/µ = β, β = γ, m = µγ. 
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    Therefore, m does not appreciably change if the drawings from the 

same urns B1, B2, …, Bµ or from µ other urns are repeated. And if the 

balls are drawn from another very large number µ ′ of urns, the number 

of the extracted white balls will very probably be approximately 

µ ′m/µ. If we extract at random µ balls from the set of urns С1, С2, …, 

each time replacing it in its previous urn, the chance of drawing a 

white ball will be the same for all the trials, and, by the rule of § 10, 

equal to γ. According to the rule of § 49, when their number is very 

large, the number of drawn white balls, just like in the previous 

problem, will likely be almost equal to µγ. However, these two 

problems are essentially different and their results only coincide when 

µ is a very large number. Otherwise the chance of extracting a given 

number m of white balls depends, in the first problem, not only on the 

given system of urns С1, С2, …, but on the system of urns В1, В2, … 

derived by chance. For example, I reduce the given system to three 

urns, С1, С2, С3, and take µ = 2 and m = 1 and will, as required, 

determine the chance of drawing a white ball from one of the two urns, 

В1 and В2, and a black ball from the other urn. For those two urns nine 

different combinations are possible: 

 

    В1 = В2 = C1;   В1 = В2 = C2;   В1 = В2 = C3;   В1 = C1 and В2 = C2; 

    В1 = C1 and В2 = C3;   В1 = C2 and В2 = C3;   В1 = C2 and В2 = C1; 

    В1 = C3 and В2 = C1;   В1 = C3 and В2 = C2  

 

    For each of them the required chance has a determined value and its 

possible values will be 

 

    2c1(1 − c1); 2c2(1 − c2); 2c3(1 − c3) 
 

for the first three of them, 

 

    c1(1 − c2) + c2(1 − c1); c1(1 − c3) + c3(1 − c1);  

    c2(1 − c3) + c3(1 − c2) 
 

for the three intermediate, and the same for the three last ones.  

    It is easy to see that the mean value of these nine chances should be 

the chance of extracting one white and one black ball when drawing at 

random for the first time from the group of the three urns С1, С2, С3, 

and then, for the second time, after replacing the extracted ball in the 

urn from which it was drawn. Actually, that chance will equal twice 

the product 

 

    1/3(c1 + c2 + c3)[1 − 1/3(c1 + c2 + c3)], 

 

which is also 1/9 of the sum of the preceding nine chances. 

    Before the system of urns B1, B2, B3, … was formed out of the 

system of given urns, we had no reason to believe that urn Bn will be 

rather one than another of С1, С2, С3 … For us, the probability of 

extracting a white ball at the n-th drawing will be the sum of the 

chances c1, c2, c3, … divided by their number, i. e., will be γ. However, 

although it is the same for all the drawings, and their number µ is as 
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large as desired, we are not authorized to conclude, solely by the rule 

of § 49, that the number of extractions m of a white ball from the urns 

B1, B2, B3, … should likely very little deviate from µγ. Indeed, we 

should not overlook that that rule is based on the chance proper to the 

considered event rather than on its probability or on the reason we can 

have for believing in its arrival.  

    56. As a second example, I suppose that there is a very large number 

of 5-franc coins which I denote by A1, A2, … Each one is tossed and 

falls to the ground. Let the chance of heads for coin Ai depending on 

its physical constitution be ai. It is not known in advance but 

determined by experience after tossing the coin a very large number m 

of times. And since this chance remains constant during that series of 

trials, we may, by the rule of § 49, take ai = ni/m where n is the number 

of arrivals of heads, as a likely and close approximant of that value. It 

will serve for calculating the probabilities of various future events 

concerning the same coin. We can fairly bet m against (m − ni) on the 

appearance of heads at a new trial, m2
 against (m2

 − ni
2
) on its 

appearance twice in succession, 2ni(m − ni) against [m2
 − 2ni(m − ni)] 

on its appearance only once in two trials etc.  

    In a new series of a very large number m′ of trials the number n′i of 

the arrivals of heads, again by the rule of § 49, will likely be very 

close to m′ai. Two ratios, ni/m and n′i/m′, should very little deviate 

from each other. However, the value of ai given by experience is only 

very probable but not certain, so the probability of a small difference 

between these ratios will not be as high as it would have been if that 

value were certain and given in advance, see below. 

    Suppose that, instead of taking the same coin a very large number of 

times, we toss successively a very large number µ of such coins 

randomly chosen from those minted in the same way, and let n be the 

number of arrivals of heads. Denote by α, the mean chance of that 

event, not only for those being tossed, but for all the coins of the same 

kind and minting. In virtue of the two general propositions of § 52 we 

will likely have an almost exact equality α = n/µ as though the 

unknown chances a1, a2, … were equal one to another.  

    Depending on n/µ > 1/2 or < 1/2, we conclude that for the 5-franc 

coins of that minting the chance of the arrival of heads is generally 

greater or less than that for tails. In particular, for coin Ai the chance ai 

will differ from α; if n/µ > 1/2, it can happen that ni/µ < 1/2 or vice 

versa. 

   If those coins are tossed again, or, more generally, when tossing a 

very large number µ ′ of other coins of the same kind and minting, with 

the same images, the magnitude α, as defined, will not change, and if 

n′ is the number of the arrivals of heads in that new series of trials, we 

should have  

 

    n′/µ ′ = n/µ                                                                          (56.1) 

 

and, for the same coin Ai in those two different series of trials,  

ni/m = ni′/m′. However, when the coins in those series are not of the 

same kind or minting, those ratios are in general unequal; just the 

same, the ratio ni/m varies from one coin to another. 
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    57. Although the constant chances and the mean chances of the 

events are determined by experience in the same way and with the 

same probability
20

, there are essential differences in their possible 

usages. Both the mean and the constant chance immediately lead to the 

probability of the arrival of the event under consideration in a new 

isolated trial. This, however, is not always so when dealing with the 

arrival of a compound event consisting of them.  

    As an example, I consider the coincidence of the outcomes of two 

consecutive tosses of a 5-franc coin. Two different cases should be 

examined. We may suppose that the two trials are made with two 

coins, either different or not, chosen at random from all the λ coins A1, 

A2, … of the same minting or with a single coin, also selected at 

random. In the first case, the probability of coincidence only depends 

on α of § 56 and the same happens when the chances are constant. In 

the second case, the probability additionally depends on another 

unknown magnitude by which it differs from its value when the 

chances are invariable. 

    To explain this, I note that for two coins, Ai and Aj, the probability 

of the coincidence of the outcomes will be 

 

    aiaj + (1 − ai)(1 − aj). 

 

In the first case each of the coins А1, А2, … can be combined with 

itself or with any other coin so that the number of all the equally 

possible combinations is λ2
. Denoting by s the composite probability 

of coincidence, we will have by the rule of § 10  

 

    s = (1/λ2
)[∑ai∑aj + ∑(1 − ai)∑(1 − aj)], 

 

where the sums extend from i, j = 1 to i, j = λ.  

    Let 

 

    α = 1/2(1 + k), ai = 1/2(1 + k + δi), aj = 1/2(1 + k + δj),  

 

where k, δi, δj, k + δi, k + δj are positive or negative fractions, the first 

of which is derived from n/µ of § 56 and given by observations, and 

the others vary from one coin to another, so that 

 

    ∑δi = 0, ∑δj = 0. 

 

 At the same time 

 

    1 − ai = 1/2(1 − k − δi), 1 − aj = 1/2(1 − k − δj). 

 

    Because of the preceding equations, the sums which enter the 

expression of s are 

 

    ∑ai = ∑aj = 1/2λ(1 + k), ∑(1 − ai) = ∑(1 − aj) = 1/2λ(1 − k) 

 

so that 
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    s = 1/2(1 + k2
). 

 

This magnitude only depends on k or the mean chance α of the arrival 

of heads, but not on the inequalities of the chances δ1, δ2, …  

    When repeating the tossing of the two coins chosen at random a 

very large number а of times, s will also be the mean chance of 

coincidences in double trials at that series. Denoting by b the number 

of coincidences, we will according to § 52 approximately get b = as, 

which can be verified by experience. 

    In the second case, each double trial should be made with the same 

coin; the probability of coincidence for coin Ai will be 

 

    ai
2
 + (1 − ai)

2
. 

 

Denoting by s′ the composite probability of coincidence, we conclude 

that 

 

    s′ = (1/λ)[∑ai
2
 + ∑(1 − ai)

2
] = 1/2(1 + k2

 + h2
), h2

 = (1/λ)∑δi
2
. 

 

It is seen that this probability exceeds the probability s of the first case 

and depends on a new unknown h which in turn depends on the 

inequalities between δ1, δ2, … 

    When repeating a very large number а′ of times the double trials of 

the same randomly chosen coin, s′ will express the probability of 

coincidence in that series. Denote by b′ the number of the 

coincidences, then almost exactly b′ =a′s′, which will serve for 

determining the value of h, whereas k is already known. 

    58. I note that, when tossing the same coin randomly chosen from 

A1, A2, …, the probability of coincidence of three outcomes is 

expressed by the preceding probability s′ and is therefore known 

without making new trials. For some coin Аi that probability is 

 

    ai
3
 + (1 − ai)

3
, 

 

and the composite probability 

 

    
3 3 2 21 1 1

[ (1 )]  [1 3( )] (3 1).
λ 4 2

i is a a k h s′′ ′= + − = + + = −∑ ∑   

 

Magnitude s″ is also the mean chance of triple coincidences in a very 

long series of such trials. Denote the number of triples by а″, and the 

number of coincidences by b″, then b″ = а″s″. Substituting b′/a′ and 

b″/a″ instead of s′ and s″, we will derive the relation 

 

    a′a″ = 3b′a″ − 2b″a′ 
 

between a′, a″, b′, b″ which will be the more precise and the more 

probable the greater are those numbers.  

    Since it is independent from the law of a1, a2, … it therefore subsists 

just as well when all these are the same, i. e., when instead of changing 

the coin for each double and triple trial we always toss the same one. 
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Therefore, if tossing the same coin a very large number 6c of times, 

then separating that series in double trials consisting of the first two 

simple trials, of the third and fourth, …; then separating that series in 

triple trials consisting of the first three, then of the fourth, fifth and 

sixth trial, … and applying the preceding equation to these two new 

series, we will have  

 

    a′ = 3c, a″ = 2c, 

 

so that c = b′ − b″, which signifies that the number of double 

coincidences less that number of triple coincidences equals 1/6 of the 

total number of simple trials. Simple relations can be obtained for 

cases in which more trials are combined. 

    59. These coincidences are immediately applicable to the births of 

boys and girls. For this, suffice it to replace the coins A1, A2, … by so 

many different marriages and assume that the chance of the birth of a 

boy in some marriage Ai is ai. 

    In France, the yearly number of births of both sexes amounts to 

almost a million and for that total number observations prove that the 

ratio of male to female births exceeds unity by about 1/15. During 10 

years from 1817 to 1826, its mean value was 1.0656 from which its 

extreme values barely deviated by 0.005 in either direction. I based my 

memoir (1830) on the sex ratio at birth of that period. From 1817 to 

1833 inclusive the mean ratio was 1.0619, not more than 0.005 

different from its value during the 10 first years of those 17.  

    The cause of the excess of male births is unknown, and there is 

room to believe that it essentially differs from one marriage to another 

and that the chances a1, a2, … are very unequal so that many of them 

are undoubtedly lower than 1/2. Nevertheless, it is seen that the yearly 

sex ratio very little varied during 17 years which provides a 

remarkable verification of the law of large numbers.  

    When taking 16/31 for that ratio for a large number of male births 

and the corresponding total number of them, it will also be the mean 

chance of a male birth, so that the magnitude k from § 57 is 1/31. We 

do not know whether the chance of a male birth remains the same for 

each infant born into the same family or whether it varies, for example, 

as it does from one marriage to another. In the second case, the mean 

chance of the coincidence of the sexes of two first-born will be  

(1 + k2
)/2 which only exceeds 1/2 by about 0.0005. […] In the first 

case the first of these two numbers can exceed the second much more 

than by a half of the second because of the unknown magnitude h 

included in the expression (1 + k2
 + h2

)/2 of the mean chance of 

coincidences. 

    The relation of § 58 is always is applicable to the coincidences of 

the sexes of the two and three first-born in a very large number of 

families.  

    60. By virtue of the second equation of § 54, if A is a thing, 

susceptible of different values at each trial, the sum of its values 

observed in a long series of trials will likely be almost proportional to 

their number. For a given thing A the ratio of that sum to that number, 

as it increases still more, indefinitely converges to a special value, 
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which it reaches if that number can become infinite and which depends 

on the law of probabilities of the diverse possible values of A. 

Remarks similar to those, which we stated in § 54 when considering its 

first equation, can be formulated about that ratio. 

    The second equation, or rather 

 

    
2

1

,
µ

l

l

s
Zzdz= ∫   

 

just like the first one, leads to numerous and useful applications. I 

suppose for example that α is an angle which we desire to measure; it 

exists, its value is unique and fixed. However, because of variable 

inevitable errors of observation, a measured angle is a thing 

susceptible of an infinite number of different values. 

    I take this angle, measured many times successively, as a thing A, 

so that Zdz expresses the chance of some value z of A, resulting from 

the construction of the instrument and the ability of the observer. Let k 

be the abscissa of the centre of gravity of the area of a plane curve, 

whose abscissa and ordinate are z and Z extending from z = l1 to l2, 

when denoting, like in § 53, the possible limits of A by l1 and l2. Let 

also 

 

    z = k + x, l1 = k + h1, l2 = k + h2 

 

and represent by Х the value of Z when z = k + x. Then 

 

    
2 2 2

1 1 1

  1,  0

l h h

l h h

Zdz Xdx Xxdx= = =∫ ∫ ∫ . 

 

Therefore, by the equation above, almost exactly s/µ = k where s is the 

sum of the values of A obtained in a large number µ of trials. It is the 

constant k to which the mean value s/µ converges ever closer as µ 

increases further. However, even when that ratio becomes appreciably 

constant, i. e., when it becomes appreciably the same in many series of 

other large numbers of measurements, it can sometimes happen that 

that mean essentially differs from the angle α which we wish to 

measure. It will always be the approximate value of the constant γ, 
which possibly will not at all coincide with that angle

21
. Actually, let 

 

    z = α + u, l1 = α + g1, l2 = α + g2. 

 

    Denote by U the value of Z when (α + u) is substituted instead of z, 

then 

 

    
2 2 2

1 1 1

    1,    α .

l g g

l g g

Zdz Udu k Uudu= = = +∫ ∫ ∫  

 

The difference u between the angle α and a possible value z of the 

measured angle A is a possible error of the instrument and the 
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observer; it can be positive or negative and extends from u = g1 to g2 

and its infinitely small probability is Udu. And if there is no cause 

connected with the construction of the instrument for attaching greater 

chances to positive rather than to negative errors or vice versa, and if it 

is the same about the method of the observer’s work, the limits g1 and 
g2 will be equal in magnitude and have opposite signs and the function 

U will take equal values when the variable u has values equal in 

magnitude and opposite in signs. Then  

 

    
2

1

   0,    α. 

g

g

Uudu k= =∫  

 

    In this most usual case the ratio s/µ will be the approximate value of 

α. However, if the instrument, owing to its construction, or the 

observer, because of his manner of sighting, attach more weight to 

positive or negative errors, the preceding integral will not disappear, 

the constants α and k will differ from each other, and the ratio s/µ will 

in general appreciably deviate from the veritable value of α. We can 

only notice that circumstance when measuring the same angle either 

with another instrument or by other observers. I restrict my account by 

indicating this application of the theory of probability. Concerning the 

errors of observation and the methods of calculation proper for 

decreasing and evaluating their influence, I refer to Laplace (1812) and 

to my memoirs (1824; 1829). 

    61. As a second example of the equation cited at the beginning of  

§ 60, let us suppose that all the causes C1, C2, … determine the 

chances of the duration of human life in a given country and at a 

determined period. Those causes include the diverse physical 

constitutions of the newborn babies, the well-being of the population, 

the diseases that restrict that duration, and undoubtedly some of the 

causes resulting from life itself which hinder its extension beyond the 

limits that are never crossed. Actually, there is room for believing that, 

had the diseases been the only causes of death, and had they been, so 

to say, accidental, some people from the immense number of all the 

living, would have escaped these dangers for more than two centuries. 

This, however, was never observed. 

    The thing A will be the lifetime of a newborn baby, z will express a 

possible value of A, and Zdz, the chance of z resulting from all the 

possible causes which can determine it, although not for a particular 

infant, but for mankind in the place and at the period under 

consideration. 

    Imagine that a certain physical constitution at birth provides the 

chance Z′dz to live exactly z, that another constitution provides the 

chance Z″dz to live to the same age, … Let also ς′, ς″, … be the 

probabilities of those various constitutions. Owing to those causes, the 

function Z will be Z′ς′ + Z″ς″ + … extending over all possible 

constitutions. And if their number is infinite, Z will become a definite 

integral with an unknown but definite value. In a country where babies 

are born more robust or better constituted, that integral will 

undoubtedly have a greater value. In each country it can differ for the 
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two sexes, and undoubtedly the values of Z′, Z″, … also depend on 

possible diseases and the well-being of the population. The function Z 

and therefore the integral of Zzdz will differ at two epochs remote from 

each other if, for example, during the interval between them some 

disease disappears or the well-being of the population betters with the 

progress of society.  

    If desired, it is possible to take the limits l1 and l2 of that integral as 

0 and ∞ and consider Z as a function disappearing beyond some value 

of z, which is unknown just as the form of Z. The observed values of A 

will be the ages at death of a very large number µ of individuals born 

in the same country and at the same epoch. Denoting by s the sum of 

these ages, we will likely have almost exactly 

    
0

 = .
µ
s

Zzdz
∞

∫   

 

The ratio s/µ is therefore called the mean life, constant for each 

country if only some of the causes С1, С2, … whether known or not, 

do not experience any notable change. 

    In France, it is supposed that the mean life is about 29 years, but that 

evaluation was based on observations made before the usage of the 

[Jennerian] vaccine and is already very dated. Today, that magnitude 

should be much longer, and its new determination is desirable, 

separately for men and women, for the differing strata of society and 

various parts of the kingdom. 

    We also consider the mean life at different ages, and then s is the 

remaining number of years of life for a very large number µ of 

individuals. The ratio s/µ is the mean life for that age together with 

which it varies, but remains constant for a given age. It is supposed to 

attain its maximal value at an age between 4 and 5 years when it 

amounts to 43 years. Mortality tables have another aim. For a very 

large number µ of individuals born in the same country and at the 

same epoch they make known the number of those who will continue 

living a year, two, three years, … until no one is left alive. Denote by 

m the number of those living at a given age; owing to the first equation 

of § 54, the ratio m/µ is appreciably invariable at least until a very 

advanced age, and m is not [yet] becoming a very small number. For 

the age of 100 years, that invariability consists in that m/µ is always a 

very small fraction. 

    Instead of assuming that in the integral 

    
0

Zzdz
∞

∫   

 

z varies by infinitely small steps, let that variable increase by very 

small intervals, and for the sake of definiteness suppose that each of 

them is of unit time. Denote by h1, h2, … the series of the values of z, 

and by H1, H2, … the corresponding values of Z. Then the sum  

 

    ν = H1h1 + H2h2 + … 
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is known to be an approximate value of that integral. The same sum 

will be the mean life at birth; Hn is the chance of dying at age hn, so 

that with regard to the duration of human life the mean life ν can be 

considered the mathematical expectation (§ 23) of a newborn baby 

with an unknown physical constitution. Nevertheless, according to 

mortality tables, more than half of a very large number of infants will 

die before attaining that age. 

    62. Suppose, for the last example that for a given place and day of 

year the excess of the height of the sea level caused by the 

simultaneous action of the Sun and the Moon was calculated. We 

assume as the thing A the yearly differences of that excess as 

calculated and observed in the same place and at the same epoch.  

    The values of A vary from year to year because of the winds which 

can blow in that place and at that epoch and which determine the 

chances of those diverse values. When considering all the possible 

directions and intensities of those winds, their respective probabilities 

and the chances that these causes attach to some value z of А, the 

integral  

 

    
2

1

l

l

Zzdz∫  

 

will take an unknown but definite value which remains constant if the 

law of probabilities of each possible wind does not change. 

    The ratio s/µ will also be almost invariable; here, s is the sum of the 

values of A observed during a long sequence of years. We do not 

know in advance whether s/µ is zero or a negligible fraction; that is, 

whether the influence of the winds on the general laws of the tides is 

insensible. Only experience can let us know the value of that ratio and 

tell us whether it varies in different periods of the year and in different 

places of observation, on the shorelines, in ports or at sea. 

    For finding out the influence of a certain wind the only applicable 

values of A are those observed while it was blowing. To avoid the 

need to have a very considerable number of years of observation, it is 

possible to study the values corresponding to many consecutive days 

during which the wind’s direction changed inconsiderably. Many 

scholars are now occupied by that examination which demands work 

over a long period of time and will not fail to lead to interesting 

results.  

    63. The exposition of the rules of the calculus of probability and 

their general consequences in this and the previous chapter is actually 

completed and I return to the notion of cause and effect which was 

only indicated in § 27. 

    The cause proper to a thing E is, as stated in that section, another 

thing C possessing the power to produce necessarily E, whatever is its 

nature and the manner in which it is exercised. Thus, what is called the 

attraction of the Earth is a certain thing which has the power to cause 

unsupported bodies to fall on the surface of our planet. Just the same, 

in our volition resides the possibility of producing by means of our 

muscles and nerves a part of those movements which are for this 
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reason called voluntary. In nature, the thing E sometimes has only one 

single cause C which is able to produce it, so that the observation of E 

always supposes the intervention of C. In other cases, that thing can be 

attributed to many distinct causes which act together or mutually 

exclude each other so that the production of E can only be due to one 

of them. 

    Such are the simplest ideas concerning the principle of causality, 

which I believe to be generally admitted. Nevertheless, the illustrious 

historian of England expressed a different opinion about that 

metaphysical point which deserves to be studied in more detail and on 

which the calculus of probability can throw much light. According to 

Hume (1748), we can only imagine causality as a concurrence rather 

than a necessary connection between what we call cause and effect. 
And for us that concurrence is only a strong presumption resulting 

from what we had observed a large number of times. If we had 

observed something an inconsiderable number of times, we are 

judging nature by a far too small sample and presume that the same 

will be reproduced in the future. Others share that opinion and try to 

justify it by the rules of the probability of future events determined by 

observing past events.  

    Hume, however, goes further. Even without turning to those laws [!] 

of probability, he thinks that the habit of seeing the effect following 

the cause produces in our mind some association of ideas which leads 

us to believe that the effect will occur when the cause takes place
22

. 

This is perhaps actually true for most of those who do not examine the 

principle of their belief or its degree of probability. For them, that 

association of ideas must be compared with what goes in our mind 

about the name of a thing and the thing itself. The name reminds us of 

the thing independently from our thoughts or volition. 

   One of the examples chosen by the author for describing his opinion 

is the shock of a moving body against a free body in repose and the 

movement of the latter after the collision. The concurrence of the 

shock and the movement of the hit body is actually an event which we 

have seen a very large number of times without ever seeing a contrary 

event. For us, this is sufficient, leaving aside all other considerations, 

to believe that there exists a very high probability that that concurrence 

will take place in the future as well.  

    The same happens about all concurrences of causes and effects 

which we note without exception day after day. Their probability is 

nourished, so to say, by that continuing experience, and reason or 

calculation along with habit strongly assure us in that in the future 

those causes will always be followed by their effects. However, by the 

rules stated above, in case of a phenomenon only observed an 

inconsiderable number of times after the cause which we assign to it, 

there will only be not a very high probability for the future 

concurrence of that cause and that effect.  

    Nevertheless, it often happens that we do not doubt the reproduction 

of that phenomenon if its cause takes place anew. That assurance 

assumes that our mind attributes to the cause some power for 

producing its effect and admits a necessary connection between these 

two things independently from the more or less large number of the 
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observed concurrences. Thus, Oersted discovered that, when 

connecting the two poles of a voltaic pile by a metallic wire, a 

magnetic needle freely suspended nearby deviates from its natural 

direction. After repeating that fundamental experiment a small number 

of times, the illustrious physicist undoubtedly became convinced that 

that phenomenon will not fail to be continuously reproduced in the 

future. Nevertheless, if our reason to believe that that reproduction is 

only based on the concurrence of the voltaic pile and the deviation of 

the magnetic needle observed, for example, about 10 times, the 

probability of its occurrence at a new trial will only be 11/12 (§ 46). 

For a new series of 10 trials 11 can be bet against 10, which is almost 

even money, on that event to occur without interruption. And for a 

longer series of future experiments it will be reasonable to believe that 

that event will not be reproduced without interruption.  

    As another example, I will cite Biot’s successful application of sorts 

of [the indicated] to the chemical composition of bodies by observing 

the successive polarization of light23
. A long time ago he had 

established that [possibility] for homogeneous and non-crystallized 

media. After an inconsiderable number of thorough observations we 

recognize that a given substance deflected a polarized ray, let us say, 

to the right of the observer and that these deviations were sufficiently 

large for leaving no doubts about their direction. For us, this suffices to 

become convinced that the same substance will always deflect light in 

the same direction; assured as though it is a thing in which no one 

doubts. 

    But still, the concurrence of that substance and a deviation to the 

right observed not very many times only provides a feeble probability, 

even lower than 1/2, that in the same or in a somewhat larger number 

of new trials deviation to the right will occur. These and other easily 

imagined examples prove, as it seems to me, that the confidence of our 

mind in effects following after their causes can not be solely based on 

former more or less repeated observations. We actually see that, 

independently from any habit of our mind, the possibility alone of a 

certain ability of the cause to produce necessarily its effect greatly 

increases the reason to believe in that recurrence and, in spite of the 

former observations being few in number, can render its probability 

very close to certainty. 

    64. Before a phenomenon P was observed, if knowing that it will 

arrive or not in the entire series of experiments, we therefore admit 

that the existence of a cause C capable of necessarily producing it is 

not impossible. We also admit that prior to these experiments the 

existence of such a cause had a certain probability p which results 

from particular considerations rendering it more or less likely. Suppose 

also that P was observed in each of n experiments; after that 

observation the probability of the existence of C changes and becomes 

w; it is required to determine it. 

    However thoroughly we attempted to decrease the influence of other 

causes, able to produce phenomenon P at each trial in the absence of 

C, we may nevertheless believe that that influence did not completely 

disappear. Consequently, suppose that there exist certain causes В1, 

В2, …, Вn, known or unknown, which can also engender that 
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phenomenon in the absence of C by combining themselves with hazard 

(§ 27), namely, В1, at the first trial, …, Вn, at the last one. Let in 

general ri be the probability of the existence of Вi, multiplied by the 

chance that that cause, if certain, provides to the arrival of P, and 

denote for the sake of brevity  

 

    r1r2 … rn = ρ. 

 

    That product is the probability that phenomenon P arrives at all the 

n experiments as a result of the set of the causes В1, В2, … if cause C 

does not exist. Now, (1 – р) is the probability of the non-existence of C 

and in that case (1 – р)ρ is the probability of the observed event, of the 

invariable arrival of P. According to the contrary assumption, its 

probability is p; i. e., that it is just the probability of the existence of C 

before the observation since that cause necessarily leads to the arrival 

of P at all the trials. Therefore, by the rule of § 28, the probability of 

this second hypothesis on the existence of C after observation is  
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and of its non-existence, 
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    We can arrive at that result when considering each of the n 

experiments one by one rather than all of them at once. Actually, 

according to the hypothesis, the probability of the existence of C 

before the first experiment was р; after that it became р′; after the 

second experiment, р″, … so that 
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    Eliminating at first р′ and (1 − р′) from the values of р″ and (1 − р″), 
then eliminating р″ and (1 − р″) from р″′ and (1 − р″′), … we obtain 

the preceding expressions of w and (1 − w) of the existence and non-

existence of C after the n-th experiment. Now let w′ be the probability 

of the arrival of P without interruption in a new series of n′ 
experiments. Whatever is this number n′, the probability of that event 

occurring owing to cause C, if certain, is the probability w of the 

existence of cause C derived from the first n experiments. In its 

absence, the arrival of P can also be due to the other causes В′1, В′2, 
…, В′n′, similar to В1, В2, …, Вn, whose influence it was impossible to 

avoid completely. 

    Denote the new values of r1, r2, …, rn by r′1, r′2, …, r′n′, so that r′i 
with respect to В′i is the same as was ri with respect to Вi, and let 
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    r′1r′2 … r′n′ = ρ′. 
 

    If cause C does not exist, the probability of the arrival of P in these 

future experiments will be (1 − w)ρ′, so  

 

    w′ = w + (1 − w)ρ′ 
 

is the composite expression of w′. When inserting the preceding values 

of w and (1 − w), 
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    The expressions of w and w′ show how the probability of the 

existence of C, which could have been feeble before the observation of 

P, can become very high after P was observed an inconsiderable 

number of times, and after that cause C can provide a probability very 

close to certainty for the constant occurrence of that phenomenon in 

future experiments. Suppose, for example, that, owing to some reason, 

and, for that matter, to a prejudice of our mind, the prior probability of 

C was only 1/100,000. Let us also admit that the influence of 

accidental causes, in spite of the precautions taken for their avoidance, 

can still be such, that each of the magnitudes r1, r2, … equals 1/10 or 

less. Then, if P was only observed 10 times without interruption, 

 

    
1

  0.00001,  ρ 0.00001 ,  .
1 0.00001(1 )

p p w
p

= < >
+ −

  

 

    Therefore, the probability of the existence of C after observation 

will differ from unity less than by 1/100,000 and its non-existence 

becomes less probable than its existence before observation. Whatever 

is the value of n′, the probability w′ that P will invariably arrive at a 

new series of n′ experiments exceeds that of the existence of C or can 

not be lower. 

    65. In that application of the calculus of probability, cause C was 

considered in an abstract manner, independently from any theory 

which brings phenomenon P to conformity with more general laws, 

provides an exact explication according to the cause to which it is 

attributed and thus still more heightens the probability of the existence 

of that cause. We assumed that phenomenon P had taken place without 

interruption, and the preceding calculations aimed at proving that any 

belief in its future reproduction after being only observed a small 

number of times can not only be based on the idea that there exists just 

one cause capable of necessarily producing a phenomenon of that 

nature. And in addition the calculus of probability is unable either to 

inform us about the essence of that effective cause or to determine 

which cause is more probable among those that were able to produce 

necessarily the phenomenon and could have been attributed to it.  
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    If P fails at one or many trials, but we are nevertheless certain that 

the cause C, if existing, is capable of producing it necessarily, and 

should have produced it at each trial, it becomes evident that there 

exists neither that cause, nor any other of the same kind. However, 

besides such causes there exist others which act at each trial but are 

only able to provide a certain chance to the arrival of a phenomenon P 

(§ 27), when combining themselves with hazard, or variable and 

irregular causes which act only sometimes (not to be, however, 

confused with hazard). They can influence the mean chance of the 

arrival of P in a long sequence of experiments, and therefore (§ 52) the 

number of its occurrences, past or future, divided by the total number 

of the trials.  

    And still, when thoroughly decreasing as much as possible the 

influence of accidental causes, so that they can be supposed insensible, 

and observing the phenomenon P m times in a very large number µ of 

trials, we will have a very high probability that there exists a 

permanent cause favourable or contrary to the production of P 

depending on whether m is notably larger or smaller than µ/2.  

    Consider for example the case of a two-sided body tossed very 

many times in the air. The existence of a favourable or contrary cause 

of the arrival of a determined side can be regarded extremely probable 

when the numbers of the two possible outcomes notably differ as in 

the Buffon experiment (§ 50)
24

. 

    What is that permanent cause? The calculus of probability only 

proves its necessity but is unable to indicate its nature. It is the laws of 

mechanics which tell us how much greater should be the weight of one 

of the parts of that body. But, owing to the difficulty involved in that 

problem, they do not determine either the effects of such a cause or the 

chance it provides to the arrival of one or another side. This can only 

be found by experience. 

    By suchlike means it is possible, as Laplace (1814, p. 133) 

suggested, to determine the existence or non-existence of certain 

mysterious causes which are not absolutely impossible beforehand and 

are unable to produce necessarily the phenomena attributed to them. 

To achieve this aim, long series of trials are needed with the influence 

of accidental causes being excluded as much as possible and the 

numbers of arrivals and failures of a phenomenon exactly registered. If 

the ratio of the former number to the latter is notably larger than unity, 

the probability of the existence of some cause and of the chance it 

provides to the production of that phenomenon becomes very high. 

    If gamblers A and B play a very large number µ of games with A 

winning m times and the ratio m/µ exceeding 1/2 by not a very small 

fraction, the existence of a cause favouring A can be regarded as 

almost certain. If no gambler gives a start to the other one, that cause is 

the superiority of A over B with the ratio m/µ providing, so to say, its 

measure. When playing cards, piquet for example, the results of each 

game can only depend on the difference of the gambler’s abilities and 

the distribution of the cards among them. If none cheats, that 

distribution is random; it can influence the ratio of the numbers of 

games won by the gamblers when these numbers are inconsiderable.  
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    And that can be called luck and misfortune, if these notions are not 

attached to one or another gambler. Indeed, it is absurd to suppose that 

there exists some connection between them and the cards only 

distributed by chance. Each time those obtained by one of them could 

have just as well been dealt to the other. But in a sufficiently long 

series of games it is only the gambler’s ability that can influence the 

chances. In a long run, only able gamblers are lucky, and vice versa. If 

A and B play a new long series of µ ′ games, then there will be a high 

probability that the number of games won by A will be very close to 

µ ′m/µ. Otherwise, we will be justified in thinking that during the 

interval between those series of games the superiority of A over B 

either increased or decreased.  

 

Notes 
    1. See Note 5 to Chapter 1. 

    2. Event E and all the others introduced by Poisson were thus random.  

    3. Was a set of causes necessary? In general, this definition can be understood as 

randomness in a wide sense, not obeying any stochastic laws and therefore not 

studied by the theory of probability (Kolmogorov 1983). An example is provided by 

deviations from the tree of animal life (Lamarck 1815, p. 133). Tables of random 

numbers are however needed, at least in various applications. It occurs that, 

according to Poisson, randomness only acts upon random events! 

    4. Fienberg (1971) noted that it is difficult to ensure equal chances of extracting 

balls from an urn even independently from the circumstance mentioned by Poisson. 

    5. See Note 21. 

    6. Failing to account for that circumstance, the solution of this problem (Poisson 

1830, § 17) is not exact, and I have derived from it a false corollary. Poisson 

    7. See Note 4 to the Preamble. 

    8. Poisson is considering four cases: the witness is (is not) mistaken and wishes 

(does not wish) to deceive. Their repetition makes his considerations dull and 

difficult to read. It would have been better to enumerate those cases and to refer to, 

say, case II. 

    9. Laplace, see Note 10 to Chapter 1, considered a similar example. 

    10. By the end of the 19
th

 century physicists are known to have thought that soon 

nothing new will be left in their science. History of science had refuted such 

opinions. 

    11. Cf. Gauss (1823, §§ 18 and 19): independent linear functions of observations 

should not contain common observations. 

    12. See Note 3 to the Contents. 

    13. Poisson several times (also in Chapter 4) made use of that loose phrase. 

    14. I am only able to provide the end of this phrase in its original French and in its 

German translation of 1841: 

 

    la probabilité de similitude dans deux épreuves consécutives, est la même que s’il 
y avait, entre les chances de G et de l’événement contraire, une différence 1/√3, sans 
que l’on connût la chance la plus favorable.  

    so ist die Wahrscheinlichkeit der Übereinstimmung zwei auf einander folgenden 
Versuche dieselbe, als wenn zwischen der Wahrscheinlichkeit der Ereignisse G und 
der des entgegengesetzten Ereignisses eine Differenz 1/√3 stattfinde, ohne daß man 
der günstigste Wert kennt.  
 

    15. I (Note 9 to Chapter 1) have indicated that Poisson had been calculating with 

superfluous numbers of significant digits. 

    16. But of course any change of p (or q) results in an appropriate change of q  

(or p). 

    17. It is easy to understand how λ became a probability, but an explanation should 

not have been lacking. 
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    18. Which equation did Poisson (above) mean? And the last phrase is 

incomprehensible. A few lines below, Poisson wrongly stated that the Jakob 

Bernoulli theorem is based on the integral calculus. 

    19. In several instances, e. g., in § 54, Poisson applied mathematical expectation, 

but did not mention that notion. 

    20. It is unclear how in both cases the chances are determined in the same way and 
with the same probability. 

    21. When describing the measurement of angles, Poisson made many mistakes 

which proves that he had been ignorant of such work. In particular, he (like other 

French mathematicians dealing with the treatment of observations and even like 

Laplace) never cited Gauss. Yes, Gauss was guilty of failing to acknowledge 

Legendre’s formal priority, but the ensuing consequences were still hardly 

excusable. I also indicate that Fourier had explained the notion of real value of a 

measured constant in the best possible way (Sheynin 2007), but Poisson never 

mentioned that.  

    22. Here is Hume’s opinion of 1739 (Hald 1998, p. 127): One wou’d appear 
ridiculous who wou’d say that ‘tis only probable the sun will rise to-morrow …’ The 

problem about the probability of that event became classical (with no references to 

Hume). 

    23. Here, Poisson inserted the text of Biot’s letter to him (without stating its date). 

Biot clearly described the principle of the indicated application. 

    25. In that section, Poisson did not indicate this circumstance which remains 

doubtful. 
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Chapter 3. Calculus of Probabilities  

Depending on Very Large Numbers 

 

Misprints/Mistakes Unnoticed by the Author 
 

    1. In § 70, p. 179 of the original text, the formula displayed on the 

last line. The exponent of the first factor should be − µ/2 rather than 

µ/2, see next page of the original text. 

    2. In § 70, p. 181 of the original text second integral should be over 

[0, ∞] rather than over [∞, x]. 

    3. In § 72, p. 188 of the original text, Poisson denoted by a′ and b′ 
the number of balls left in the urn, but then, the number of those 

extracted. The ratio p′/q′ was at first equated to a/b, but then, to a′/b′.  
    4. In § 74, p. 191 of the original text, the ratio of two integrals above 

formula (10). The denominator of the second term of the series on the 

right side should be (1 + α) instead of (1 + 2). Someone corrected this 

mistake by hand.  

    5. In § 76, p. 195 of the original text, the last displayed line includes 

a superfluous and strange equality K′ = 1/2. 

    6. In § 79, p. 202 of the original text, Poisson’s remark concerning 

the displayed expression of n ended by an apparently wrong reference 

to formula (6). 

    7. In § 86, p. 221 of the original text, on line 2 above § 87, the sign 

of the inequality should be ≥ rather than ≤. 

    8. In § 88, p. 225 of the original text, formula for v1. In the second 

term on the right side vµ1/µ should precede the square root. 

    9. In § 90, p. 233 of the original text, the displayed formula after the 

words Il en résultera. The numerator on the right side contains factor 

φ(a – g, b – g) instead of φ(a – g, b – h). 

    10. In § 90, p. 234 of the original text, at the end of that section 

Poisson replaces the arbitrary magnitudes a and b by (a + n) and  

(b + m) rather than by (a + n) and (b + m). 

    11. In § 91, p. 234 of the original text, on the first line of that section 

numbers a, b, a – m, b – n should be printed rather than numbers a, b, 
a – m, a – n. 
    All those misprints/mistakes are corrected in the translation, but the 

confusion mentioned in No. 3 is left intact. 

 

    66. When wishing to calculate the ratio of very large powers of two 

given numbers, it can always be easily done by applying logarithmic 

tables; if necessary, tables with more significant digits than usually 

needed. […] But the situation differs when the ratio of two products, 

each consisting of a very large number of unequal factors, should be 

calculated. […] We have to turn to approximate methods the first 

example of which is due to Stirling. […] 

    Such ratios of products of a very large number of factors and of 

sums of very large numbers of rations occur in most of the most 

important applications of the calculus of probability. This renders the 

rules described in the two preceding chapters, although provided in a 

completed form, barely useful or simply illusory when unaided by 
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formulas proper to calculate numerical values with sufficient 

precision. We are going to discuss such formulas. 

    67. First of all, let us consider the product n!
1
. Here and throughout 

this chapter e will represent the base of the Naperian logarithms. 

Integrating by parts, we will have 

 

    
0

!.x ne x dx n
∞

− =∫                                                                  (67.1)  

 

    The integrand disappears at х = 0 and ∞. Within these limits, it is 

never infinite and only has one maximal value […] H at x = h. We 

have h = n, H = e−hhn
 and it is possible to take e−xxn

 = Hexp(− t2
), 

where t is a new variable increasing from − ∞ to ∞. The values  

t = − ∞, 0, ∞ correspond to х = 0, h, ∞. […] If x = h + x′, then […] 

 

    x′ = h′t + h″t2
 + … 

 

and […]  

 

    
2 2 3

2 2

2 2 3

1 ln ln 1 ln
1 0,  0,...

2 6

d H d H d H
h h h

dh dh dh
′ ′′ ′+ = + = (67.2) 

[…] 

    
2

1 1
! 2π  (1 ...)

12 288

n nn n e n
n n

−= + + + .                      (67.3) 

 

    68. The first terms of the series in (67.3) converge the rapidly the 

larger is number n. Nevertheless, [Poisson corrected the next phrase] 

the law of that series is unknown and can belong to those, which 

become divergent when sufficiently continued
2
. But still, if reducing it 

to its convergent part, we may always apply formula (67.3) […] and it 

is not even necessary to have a very considerable n for achieving a 

very good approximation. [An example with n = 10 and a derivation of 

the Wallis formula follow.] 

    It is to Laplace that analysis is indebted for the method which we 

had applied for reducing integrals to series convergent in their first 

terms and proper for calculating approximate values when the 

integrands are functions raised to very large powers. And we will 

[also] apply that method otherwise. 

    69. Let E and F be contrary events of some nature only one of which 

arrives at each trial. Denote their probabilities supposed constant by p 

and q, and, by U, the probability that in µ trials E and F occur m and n 

times (§14) 

 

    µ ,  µ,  1.m m nU C p q m n p q= + = + =                           (69.1) 

 

    If µ, m and n are very large numbers, it will be necessary to apply 

the Stirling formula for calculating the numerical value of U. And if 

each of these three numbers is sufficiently large for allowing to reduce 

that formula to its first term, then […] and approximately 
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µ µ µ

.
2π

m n
p q

U
m n mn

   
=    
   

                                     (69.2) 

 

    It is easy to establish that the most probable compound event, or 

such for which this value of U is maximal, corresponds to the case in 

which m/n as closely as possible approaches p/q. If, on the contrary, m 

and n are given, and p and q are variables whose sum is unity, and can 

increase by infinitely small steps from zero to unity, we will find by 

ordinary rules that the maximal value of U corresponds to р = m/µ and 

q = n/µ. However, owing to the large number of other compound 

events, although less probable than the above, its probability will be 

inconsiderable and lowers as the number µ of trials supposed very 

large increases further. For example, if p = q = 1/2, and µ is an even 

number, the most probable compound event will correspond to  

m = n = µ/2. By formula (69.2) its probability will be 

 

    2 / πµU =                                                                   (69.3) 

 

and lowers, as it is seen, inversely proportional to √µ. If µ = 100, U = 

0.07979, 1 − U = 0.92021.  

    It is possible to bet a bit more than 92 against 8 on the equally 

probable contrary events Е and F not arriving the same number of 

times in 100 trials. When retaining the last multiplier of the Stirling 

formula the expression (69.3) should be multiplied by (1 − 1/4µ). […]  

    70. Not only is the compound event for which the ratio m/n most 

closely approaches p/q, always the most probable, but [in addition] 

when the number µ of trials is very large, the probabilities of other 

compound events just begin to lower rapidly when m/n deviates from 

p/q in either direction beyond certain limits whose extent is inversely 

proportional to √µ. Let once more p = q = 1/2 and g be a given 

positive or negative magnitude less than √µ without taking account of 

the signs. Then, if in formula (69.2) 

 

    
µ µ

1 ,  1 ,
2 2µ µ

g g
m n

   
= + = −      

   
                              (70.1) 

 

    

µ /2 µ /2µ /2
2

2

2
1 1 1 .

µ π(µ )µ µ

g g

g g g
U

g

−−
    

= − − +         −     
  

 

    If g is a fraction or a very small [natural] number compared with √µ, 

we will have by the binomial formula (§ 8) almost exactly 

 

    exp (g/
2
2), exp (− g/

2
2), exp (− g/

2
2) 

 

for the three first factors of U. Substituting µ instead of (µ − g2
), we 

will obtain 

 



 119 

    2
2/πµ exp( /2)U g= −  

 

for the law of the lowering of probability U in a small vicinity in either 

direction of its maximal value. For example, if µ = 200 and g = 1/√2,  

the ratio of the probability, that in 200 trials events E and F having 

equal chances will take place 105 and 95 times, to the probability of 

their arriving 100 times each is e−1/4
:1 ≈ 3:4. 

    Formula (69.2) supposes that each of the three numbers, µ, m and n,  
is very large. If that condition is fulfilled and m/n much deviates from 

p/q, that formula will provide a very small U with respect to its 

maximal value. However, it is proper to note that, when applying 

another method of approximation, a very small value of U will be 

derived if the difference (m/n − p/q) is a very small fraction and 

possibly it will not coincide with the value calculated by formula 

(69.2). The ratio of those two approximate values can much deviate 

from unity. 

    To show it, I note that by virtue of a formula in one of my memoirs 

(1823, J. Ecole Polyt., No. 19, p. 490) on definite integrals, 

 

    

π/2

µ
µµ

0

2 1
cos cos[( ) ]   .

π 2

mx m n x dx C− =∫   

 

Whatever are the numbers m and n and their sum µ, we will have, 

according to formula (69.1), if p = q = 1/2, which is sufficient to 

consider, 

 

    

π/2

µ

0

2
  cos cos[( ) ] .

π
U x m n x dx= −∫  

 

    And if µ is a very large number and if, when calculating 

approximately, it is treated like an infinite number, the factor 

cos
µx in the integrand will disappear when x is finite, and  

cos[(m − n)x] will always be finite. It follows that, without changing 

the value of that integral, it can be considered over [0, α] where α is 

positive and infinitely small. Then 

 

    2 µ 2cos 1 /2, cos exp( µ /2),x x x x= − = −  

    

α
2

0

2
exp( µ /2)cos[( ) ] .

π
U x m n x dx= − −∫  

 

    Actually, however, the exponential factor disappears at all finite 

values of x, and it will also be possible to extend the limits of this new 

integral without changing its value beyond α, and, if wished, to x = ∞. 

Then, since by a known formula 

 

    
2

2

0

π ( )
exp( µ /2)cos[( ) ] exp( ),

2µ 2µ
m n

x m n x dx
∞

−
− − = −∫  
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2

2 ( )
  exp( ).

πµ 2µ
m n

U
−

= −  

 

    Now, introduce as above [as follows from formula (70.1)] 

 

    m – n = g√µ. 

 

This value of U will only coincide with the result of (69.2) when g is a 

very small number compared with √µ. At other values of g the ratio of 

these two values of U will much differ from unity and can even 

become a very large number. For example, if g = √µ/2, and m – n = 
µ/2, the preceding formula will provide 

 

    µ /8
2/πµ .U e−=   

 

Formula (69.2) will lead to 

 

    µ/2 µ/4 µ/4
(1 1/4) (1 1/2) (1 1/2) 8/3πµ ,U − −= − − +   

 

and, since the second factor here almost equals the third,  

 

    µ/2
(9/8) 8/3πµ .U −=  

 

    The two calculated values of U correspond to each other in the sense 

that both are very small and thus prove that in a very large number µ 

of trials the probability U of the two events, E and F, having equal 

chances and arriving 3µ/4 and µ/4 times is extremely feeble. However, 

when dividing the last value of U by the first one, we will have 

 

    

µ/4
2 64

813
e

 
 
 

, 

 

a magnitude indefinitely increasing with µ and already exceeding 800 

at µ = 100.  

    71. Suppose, like above, that the chances of E and F are constant but 

unknown. It is only known that in µ = m + n trials they arrived m and 

n times. It is required to determine the probability U′ that in  

µ1 = m1 + n1 trials they will occur m1 and n1 times. We will have (§ 46) 

[…] 

 

    1

1

1 1

1

( )!( )!(µ 1)!
.

! !(µ µ 1)!

m m m n n
U C

m n
µ

+ + +
′ =

+ +
  

 

    [After transformations]  

 

    1

1

µ1 1 1
µ

µ
(1 ) (1 ) (1 )

µ
m m nm n

U C K
m n

−′ = + + + ×   
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    1 11 1

1 1

( ) ( ) ,
µ µ µ µ

m nm m n n+ +

+ +
                                               (71.1) 

 

    1 1

1 1

µ 1 ( )( )(µ 1)
.

µ µ 1 (µ µ 1)

m m n n
K

mn

+ + + +
=

+ + + +
                 (71.2) 

 

    If m1 and n1 are very small numbers compared with m and n, [...] 

and if substituting K by unity, from which it very little differs, then, 

almost exactly, 

 

    1 1 1

1µ
( /µ) ( /µ) .

m m nU C m n′ =  

 

It follows from formula (69.1) that that expression coincides with the 

probability that events E and F arrive m1 and n1 times in (m1 + n1)  

trials when the chances р and q, are given beforehand and are certainly 

p = m/µ and q = n/µ. In particular, if m1 = 1 and n1 = 0, we have 
1

1µ
1

mC =  and U′= m/µ which is the probability that E, after taking place 

m times in a very large number µ of trials, will arrive once more at a 

new trial, and this is confirmed by the rule of § 49. 

    However, when the numbers m1 and n1 are comparable to m and n, 

the probability U′ will not be the same as when the chances of E and F 

are given in advance and are certainly equal to m/µ and n/µ. To 

illustrate this by an example, I denote by h a natural number or a not 

too little fraction and assume that m1 = mh, n1 = nh, and µ1 = µh so that 

K will be almost equal to 1/ 1 h+ . Since µ = (m + n), formula (71.1) 

will be reduced to 

 

    1 1 1

1µ

1
( /µ) ( /µ) .

1

m m nU C m n
h

′ =
+

 

 

    Denoting by U1 the new form of that formula, comparing it with 

formula (69.1), assuming that p = m/µ and q = n/µ, and substituting m 

and n by m1 and n1, we conclude that 

 

    1

1
.

1
U U

h
′ =

+
 

 

    Therefore, U′ is less than U1 in the ratio of 1/ 1 h+ , and is very 

low when h is a very large number. 

    And so, there exists an essential difference between the probabilities 

р and q of the events Е and F as given by a hypothesis and their 

probabilities m/µ and n/µ derived from the number of the arrivals of E 

and F in a very large number of trials: the probability that E and F will 

occur given numbers of times in a new series of trials is lower in the 

second case than in the first. That difference is occasioned by the 

probabilities of E and F derived from observations, however large are 

the numbers m and n on which they are based, being only possible 

whereas the probabilities given beforehand are certain
3
.  
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    If, for example, it is known that an urn A contains an equal number 

of white and black balls, there will be a probability almost equal to 

0.07979, see § 69, that in a 100 successive drawings with replacement 

50 balls of each colour were extracted. However, if the ratio of the 

white and black balls is not given, and it is only known that 50 balls of 

each colour were extracted, the probability that the same happens in 

100 new trials will only be 0.07979/√2 = 0.05658 if h = 1 in the 

preceding equation. 

    72. As an example of the chances of events E and F varying during 

trials, I suppose that an urn A contains c balls, а of them white, and b,  
black, and that µ balls were successively extracted without 

replacement. I denote by V the probability that m white and n black 

balls will be drawn in some order, m + n = µ. By the formula of § 18, 

denoting by a′ and b′, a′ + b′ = c′, the number of balls remaining in A 

in the notation of § 71 will be 

 

    
! !µ!

.
! ! !

a
c

a b
V C

m n c
′

′=   

 

    If a, b, m, and n are very large numbers, the Stirling formula will 

provide an approximate value of V: 

 

    
µ

.
µ µ

m na b

a
c

a b m n ab
V C

c c mnc

− −

′

′

      
=         ′       

 

 

If m = a, n = b, µ = с so that 1
a
cC ′

′ = , this probability will exactly 

equal unity since all a + b balls will be drawn from A. And if m/n = 
a/b, then a/c = m/µ and b/с = n/µ, and if a/c = p′ and b/c = q′, then 

 

    /µ .
a a b
cV C p q c′ ′ ′

′ ′ ′=   

 

    Comparing it with formula (69.1) and denoting by V′ the probability 

that two events, having constant chances equal to the chances a/c and 

b/c of extracting a white and a black ball at the beginning of the trials, 

arrive a′ and b′ times in c′ trials, we will have 

 

    /µ .V V c′=                                                                    (72.1) 

 

    This proves that, if only µ is very large, V/V′ = √с/√µ for any 

number c′ of balls remaining in A after the drawings.  

    We may remark that a′ = p′(c − µ), b′ = q′(c − µ) so that the ratio of 

the balls of both colours remaining in A a′/b′ = p′/q′ = a/b. If for 

example p′ = q′ = 1/2, so that a′ = b′ = c′/2, then (§ 69) 

2/π ,V c′ ′= and, since c′ = c − µ,   2 /[πµ( µ)].V c c= −  If µ = с/2, 

then 4/πµV = =  2.V ′   

    This means that if an urn A contains very large and equal numbers 

of white and black balls, and a half of them is extracted without 

replacement, the probability of an equal number of balls of both 
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colours having been drawn exceeds its value in case of drawings with 

replacement in the ratio of √2:1.  

    73. I return to the case of constant chances р и q of the events Е and 

F and consider the probability P that in µ = m + n trials E arrives not 

less than m times, and F, not more than n times. This probability is the 

sum of the first m terms of the expansion (p + q)
µ
 in increasing powers 

of q. However, it is difficult to transform this expansion into an 

integral to which, if m and n are very large numbers, the method of  

§ 67 can be applied. We will therefore first of all look for another 

expression of P better suited for that purpose.  

    It is also possible to say that the appropriate compound event, call it 

G, means that F will not occur more than n times in µ trials. This can 

happen in (n + 1) cases. 

    [1] If E arrived in each of the first m trials, since only µ − m = n  

are left and F will not occur more than n times. The probability of this 

case is pm
.  

    [2] If E appeared m times, and F, once, but not at the last of those  

(m + 1) first trials. The stated restriction is necessary for the second 

case not to repeat the first one. In the following (n – 1) trials F 

obviously can not arrive more than (n – 1) times and therefore can not 

occur more than n times at all the trials. The probability of E appearing 

m times, and F, once, in a determined trial is pmq. Since F can arrive in 

m different trials, the probability of this case favourable for G is  

mpmq.  

    [3] If E occurred m times in (m + 2) first trials, and F, twice, in 

determined trials, but not at the second one, which is necessary and 

sufficient for this third case not to repeat either of the first two cases. 

The probability of the stated conditions is pmq2
, and the composite 

probability of this case is m(m + 1)pmq2
/2. 

    When continuing in such a manner, we will come to the (n + 1)-st 

case in which E occurs m times and F, n times, but not at the last trial 

so that this case will not repeat any of the preceding cases. The 

probability of this last case is 

 

    
( 1)...( 1)

.
!

m nm m m n
p q

n

+ + −
 

 

    These (n + 1) cases are distinct one from another and present all the 

different manners in which the event G can take place. Its composite 

probability is the sum of their respective probabilities (§ 10): 

 

    
2( 1)

[1 ...
2!

m m m
P p mq q

+
= + + +  

( 1)...( 1)
].

!

nm m m n
q

n

+ + −
+  (73.1) 

 

This expression
4
 should coincide with the expansion of (p + q)

µ
. Its 

advantage is that it is easily transformed into definite integrals whose 

numerical values can be calculated by the method of § 67 the more 

exactly the larger are m and n.  
    74. [Poisson calculates 
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µ 1

,   
(1 )

nx
Xdx X

x +
=

+∫   

 

integrating it (n + 1) times by parts and derives the formula] 

 

    
2

α
2

0

1 α ( 1) α
  [1 ...

(1 α) 1 α 2! (1 α)m

Xdx
m m

P m
Xdx

∞

∞

∫ +
= = + + +

+ + +
∫

 

    
( 1)...( 1) α

].
! (1 α)

n

n

m m m n

n

+ + −
+

+
                          (74.1) 

 

    Here, α is non-negative. And if α = q/p with p + q = 1, the right side 

of this last expression coincides with [the right side of] formula (73.1). 

At that value of α the left side of that equation will be P, and if n = 0 

and m = µ, P will be the probability that E arrives at least µ times, that 

is, at each trial. Therefore, Р should equal рµ
. And actually, if n = 0,  

 

    µ
µ

α

1 1
,

µ(1+α) µ
Xdx p

∞

= =∫  µ

0

1
 ,  .

µ
Xdx P p

∞

= =∫       (74.2) 

 

    If n = µ − 1 and m = 1, Р will be the probability that E arrives at 

least once, or that F will not occur at each trial. Therefore, Р = 1 − qm
, 

which can also be verified. Indeed, let  

 

    x = 1/y, dx = −dy/y2
, α = 1/β.  

 

For n = µ − 1 

 

    

β

µ 1 µ
α 0

1 1
[1 ],  

(1 ) µ (1 β)

dy
Xdx

y

∞

+
= = −

+ +∫ ∫ µ 1

0 0

1

(1 ) µ
dy

Xdx
y

∞ ∞

+
= =

+∫ ∫  

 

and since β = 1/α = p/q and 1/(1 + β) = q formula (74.1) coincides with 

the preceding value of Р.  

    75. We begin by applying the method of § 67 to the integral (74.2). 

Just like in that section, we denote the value of х, corresponding to the 

maximal value H of Х, by h. The equation dX/dx = 0, which serves to 

determine h, will be 

 

    n(1 + h) − (µ + 1)h = 0 

 

so that 

 

    
1

µ 1

( 1)
,  .

1 (µ 1)

n mn n m
h H

m

+

+

+
= =

+ +
                                     (75.1) 

 

    After assuming in equations (67.2) 
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µ 1(1 )

nh
H

h +
=

+
, 

 

differentiating H with respect to h and substituting the previous value 

of that variable, we obtain 

 

    
3 2

2(µ 1) 2(µ 1 )
,  ,...

( 1) 3( 1)

n n
h h

m m

+ + +
′ ′′= =

+ +
  

 

    If m, n and µ are very large numbers of the same order, it will be 

easy to see that those magnitudes h′, h″, … form a very rapidly 

decreasing converging series whose first term, h′, is of the same order 

of smallness as the fraction 1/√µ , the second term, h″, is of the order 

of 1/µ , the third term, of the order of 1/(µ √µ ) etc. And so, the given 

integral expanded into a series is 

 

    v

0

1 3 1 3 5
π ( ...).

2 4
Xdx H h h h

∞
⋅ ⋅ ⋅

′ ′′′= + + +∫                   (75.2) 

 

    76. The expression of the integral in the numerator of the left side of 

formula (74.1) depends on whether α > h or < h, where, as before, h is 

the value of х, corresponding to the maximal value of Х. Actually, the 

variable t in the transformation of § 67 should be positive at all values 

of х > h and negative for х < h. Denoting by θ and А the values of t и 

Х at х = α [here follows the derivation of А at α = q/p; taking into 

account the previous value of H, it occurs that] θ = ± k,  

 

    2 1
ln ( 1) ln .

(µ 1) (µ 1)

n m
k n m

q p

+
= + +

+ +
                      (76.1) 

 

    Supposing that k > 0, we should choose θ = k if q/p > h and θ = − k 

if q/p < h. Therefore, in accord with the transformation of § 67, we 

will have in the first case  

 

    2

α

exp( ) .
k

dx
Xdx H t dt

dt

∞ ∞
′

= −∫ ∫  

 

    In the second case that integral is 

 

    2 2exp( )   exp( )
k

dx dx
H t dt H t dt

dt dt

∞ ∞

− −∞

′ ′
− = − −∫ ∫  

    2exp( )

k
dx

H t dt
dt

−

−∞

′
−∫                                                    (76.2) 

 

and, as in § 67, 
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    dx′/dt = h′ +2h″t + 3h′″t2 + …  
 

    […] Denote
5
 

 

    2 2 2 2 1exp( ) ,  exp( )i i
i i

k k

t t dt K t t dt K
∞ ∞

+ ′− = − =∫ ∫ . 

 

The first term on the right side of formula (76.2) is equal to the 

integral (75.2), so that, if q/p > h, see (75.1),  

 

    v

0 1 2

α

 ( 3 5 ...)Xdx H h K h K h K
∞

′ ′′′= + + + +∫   

    
IV VI

0 1 2 (2 4 6 +...) I II,H h K h K h K′′ ′ ′ ′+ + = +   

    
α 0

 I II if / .Xdx Xdx q p h
∞ ∞

= − + <∫ ∫                        (76.3а, b) 

 

    Each series in those formulas in general has the same degree of 

convergence [converges as rapidly] as the series (75.2). If k ≠ 0, the 

values of the integrals Ki can only be obtained by approximation, 

whereas the integrals K′i  are always expressed in a finite form 

 

    K′i = (1/2) exp(− k2
) [k2i

 +ik2i−2 
+ i(i – 1)k2i−4 

+ … + i!k2
 + i!]. 

 

    If α = h, formulas (76.3а, b) should coincide. At the same time, 

 

    
1

,  ,  
1 µ 1 µ 1

q n n m
q p

p m

+
= = =

+ + +
 

 

and k, determined by the equation (76.1), disappears: 

 

    0 1

π π !
,  1 3 5 ... (2 1) ,  

2 2 2
i ii

i
K K i K

+
′= = ⋅ ⋅ ⋅ ⋅ − =  

 

According to equation (75.1) the formulas (76.3а, b) are reduced to the 

same expression 

 

    v

α

π 1 3 1 3 5
 ( ...)

2 2 4

H
Xdx h h h

∞
⋅ ⋅ ⋅

′ ′′′= + + + +∫  

                 IV VI ( 1 2 1 2 3 ...).H h h h′′ + ⋅ + ⋅ ⋅ +  

 

    77. We suppose that the numbers m, n and µ are sufficiently large 

for neglecting, in various formulas, h′″, hIV etc. Taking the above 

values of h′ and h″, we will have 

 

    
(µ 1 ) 2

3 ( 1)(µ+1)

h n

h n m

′′ + +
=

′ +
. 
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By means of equation (74.1) and formulas (75.2) and (76.3) we obtain, 

respectively, for q/p > h and q/p < h 

 

    2 21 (µ ) 2
exp( ) exp( ),  

π 3 πµk

n
P t dt k

mn

∞
+

= − + −∫       (77.1а) 

    2 21 (µ ) 2
1 exp( ) exp( ). 

π 3 πµk

n
P t dt k

mn

∞
+

= − − + −∫  (77.1b) 

 

    Here, as given by equation (76.1), k > 0 и k2
 is determined by 

formula (76.1). For simplifying the account, µ and m are substituted in 

the last terms of these formulas instead of µ + 1 and m + 1. They will 

provide the required probability Р with a sufficient approximation.  

    If µ is even, m = n = µ/2 and q > p, then h = µ/(µ + 2), q/p > h and 

we should apply formula (77.1а). It and the equation (76.1) lead to 

 

    2 21 2
exp( ) exp( ),  

πµπ k

P t dt k
∞

= − + −∫                 (77.2) 

    2 µ µ µ 2 µ 2
ln ln .

2 2 (µ 1) 2 2 (µ 1)
k

q p

+ +
= +

+ +
 

 

    Р expresses the probability that in a very large even number of trials 

the more probable event F will not nevertheless arrive more often than 

the contrary event Е. Denote by U the probability that both these 

events occur the same number of times, then Р − U will be the 

probability that F arrives less often than E. If p = q = 1/2, P − U will 

evidently be also the probability that E arrives less often than F;  

2(P − U) added to the probability U will therefore provide certainty: 

2P − U = 1, so that 

 

    2 22 2
exp( ) 1 2 exp( ). 

πµπ k

U t dt k
∞

= − − + −∫  

 

This is easy to verify.  

    Owing to [the transformations performed] 

 

    2 1 1
...

4µ 4(µ 2)
k = + +

+
  

 

When only preserving the terms of the same order of smallness as 

1/√µ, we will have 1/ 2µ ,k =  exp(−k2
) = 1, 

 

    2 2 2

0 0

1
exp( )   exp( ) exp( )   

2 2

k

k

t dt t dt t dt
π

µ

∞ ∞

− = − − − = −∫ ∫ ∫  
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so that 2/πµ ,U =  which actually coincides with the value deduced 

from formula (69.3), in turn derived from (69.2) at m = n and p = q.  
    If µ is odd, let m = (µ − 1)/2, and, as previously, q > p, then q/p > h. 
The formula (77.2) persists and from formula (76.1) it follows that 

 

    2 µ 1 µ 1 µ 3 µ 3
ln ln .

2 2 (µ 1) 2 2 (µ 1)
k

q p

− − + +
= +

+ +
 

 

Р is the probability that in a very large number µ of trials the more 

probable event will nevertheless occur less frequently; when µ is odd, 

an equal number of arrivals of Е and F is impossible. If p = q = 1/2 

this probability is 1/2, which we will verify. [Transforming the 

expression of k2
, Poisson gets] 

 

    2  1 / (µ 1)  1 / (µ + 3) ...k = − + +  

 

    If neglecting, as above, terms of the order of smallness 1/µ, then 

 

    2 22 π 2
,  exp( ) 1,  exp( )

µ 2 µ
k

k k t dt
∞

= − = − = −∫  

 

and the previous value of Р becomes equal to 1/2. 

    78. Let now n differ from (µ + 1)q by a positive or negative 

magnitude ρ, very small comparing to this product. Since p + q = 1 

and m + n = µ, 

 

    n = (µ + 1)q − ρ, m + 1 = (µ + 1)p + ρ. 

 

The corresponding value of h is 

 

    
(µ 1) ρ

   if ρ 0.
(µ 1) ρ

q q
h

p p

+ −
= < >

+ +
  

 

    Expanding the right side of equation (76.1) in powers of ρ, we can 

obtain  

 

    
2

2 ρ ( )ρ
[1 ...].

2(µ 1) 3(µ 1)

p q
k

pq pq

−
= + +

+ +
  

 

Introduce r > 0, then  

 

    ρ 2(µ 1) ,r pq= +  then 
( )

[1 ...],
3 2(µ 1)

p q r
k r

pq

−
= + +

+
 

 

and exclude very small р and q, then the obtained series in parentheses 

will converge rapidly since it is ordered in powers of / µ 1r +  or  

ρ/(µ + 1). Preserving only the first two terms, we can for the sake of 

brevity write down k in the form 
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    k = r + δ, 
2( )

δ .
3 2(µ 1)

p q r

pq

−
=

+
                                        (78.1) 

 

    At the same time, 

 

    (µ 1)  2(µ 1) .n q r pq= + − +  

 

However, in the second term on the right side of formula (77.1а) it is 

sufficient to assume k = r and substitute m and n by рµ and qµ, for 

deriving 

  

    2 2

δ

1 (1 ) 2
exp( ) exp( ). 

π 3 πµr

q
P t dt r

pq

∞

+

+
= − + −∫            (78.2а) 

 

    Let [now] ρ < 0, then h > q/p. Denote a positive magnitude by r′ and 

assume 

 

    ρ  2(µ 1) ,r pq′= − +  

 

then 

 

    (µ 1)  2(µ 1) .n q r pq′= + + +  

 

     The value of k, derived from equation (76.1), should nevertheless 

invariably remain positive: 

 

    
2( )

δ ,  δ .
3 2(µ 1)

p q r
k r

pq

′−
′ ′ ′= − =

+
  

 

The formula (77.1b), which we should apply, will take the form 

 

    2 2

 δ

1 (1 ) 2
1 exp( ) exp( ). 

π 3 πµr

q
P t dt r

pq

∞

′ ′−

+
′= − − + −∫        (78.2b) 

 

    If subtracting from it the previous value of Р, the difference 

 

    2 2

δ δ

1 1
1 exp( ) exp( )

πr r

R t dt t dt
π

∞ ∞

′ ′+ −

= − − − − +∫ ∫  

    2 2(1 ) 2
[exp( ) exp( )] 

3 πµ

q
r r

pq

+
′− − −                                 (78.3) 

 

will be the probability that in a very large number µ of trials the 

number of arrivals of F will not exceed the second value of n but will 

exceed its first value at least by unity [Poisson later added:] if that 
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value is expressed by a natural number and not less than by unity 

otherwise. 

    79. Let for the sake of simplicity N be the largest natural number 

contained in µq and f = µq – N. Denote by u such a magnitude, that 

2(µ 1)u pq+ will be a natural number, very small compared with N 

and let also 

 

    2(µ 1) 2(µ 1) 1,q f r pq u pq+ − + = − + −   

    2(µ 1) 2(µ 1) .q f r pq u pq′+ + + = +   

 

    The limits of the values of n, corresponding to the probability R, 

will become 

 

    2(µ 1) 1,  2(µ 1)n N u pq n N u pq= − + − = + +  

 

and formula (78.3) will therefore express the probability that n not less 

than by unity exceeds the first one but will not be larger than the 

second. In other words, it will express the probability, that this number 

is contained within 2µN u pq± , equally remote from N (µ was, 

however, substituted instead of µ + 1), or that it coincides with either 

of them. 

    According to the equations above and expressions of δ and δ′ 
 

    
1

δ ε ,  δ ε,
2(µ 1)

r u r u
pq

′ ′+ = + + − = −
+

  

 

where ε is a magnitude of the order of smallness 1/√µ. And if v is a 

magnitude of the same order whose square we neglect, then 

 

    2 2 2exp( ) exp( ) exp( ).
u v u

t dt t dt v u
∞ ∞

+

− = − − −∫ ∫  

 

    Applying this equation to both integrals in formula (78.3) and 

equating r′ = r in the terms beyond integrals since they already 

included √µ in the denominator, we obtain 

 

    2 22 1
1 exp( ) exp( ),

π 2πµu

R t dt u
pq

∞

= − − + −∫                (79.1)  

 

where, in the last term, µ is substituted instead of µ + 1. 

    For the interval of the values of n whose probability is R not to 

include its inferior limit, the least of the two previous values of n 

should be increased by unity. In this case the last term of the sum 

(r + δ), as well as the last term of the formula (79.1), will also 

disappear. And, for that interval not to include its superior limit, the 

largest value of n should be decreased by unity. This will decrease the 

difference (r′ − δ′), and the last term of formula (79.1) will disappear 
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once more. Finally, the sign of this term should be changed so that the 

interval of the values of n will not include any of its limits. Therefore, 

this term ought to be the probability of the exact equality  

 

    2µ ,n N u pq= +  

 

where u is such a positive or negative magnitude, that the second term 

becomes very small as compared with the first one.  

    When neglecting the terms of the order of 1/µ,  

 

    
2 2

,  
µ µ µ µ
n pq m pq

q u p u= + = −  

 

and [after transformations] formula (69.2) becomes 

 

    
2exp( )

,
2πµ

u
U

pq

−
=   

 

which was required to verify. 

    The value of Р in formula (78.2а) is the probability that n does not 

exceed the limit µ 2µ ,q r pq−  where µ is substituted instead of  

(µ + 1). Therefore, if, in that value of U, u = r, the difference  

Q = P − U will be the probability that n does not reach that very limit. 

Just the same, if in that value of U, u = r′ the difference Q′ = P − U, 
where Р is taken from the formula (78.2b), will be the probability of n 

being less than the limit µ 2µ .q r pq′+  Therefore  

 

    2 2

 δ

1
exp( ) exp( ),  

π 3 2πµr

q p
Q t dt r

pq

∞

+

−
= − + −∫          (79.2а) 

    2 2

 δ

1
1 exp( ) exp( ). 

π 3 2πµr

q p
Q t dt r

pq

∞

′ ′−

−
′ ′= − − + −∫   (79.2b) 

 

    Recall that r и r′ are here positive magnitudes, very small as 

compared with √µ, and that the limits of n, corresponding to Q and Q′, 
little deviate, in either direction respectively, from µq. At the same 

time, the values of δ and δ′, included in those magnitudes, are very 

small as compared with r and r′. And, when replacing (µ + 1) by µ, 

then, [just like in § 78] 

 

    
2 2( ) ( )

δ , δ . 
3 2µ 3 2µ

p q r p q r

pq pq

′− −
′= =  

 

    80. When dividing the limits of n, corresponding to formula (79.1), 

by µ, and noting the meaning of U, we will obtain the limits of the 

ratio n/µ corresponding to the probability R 

 



 132 

    
2

µ µ
f pq

q − m . 

 

If neglecting the fraction f/µ, the magnitude R, determined by formula 

(79.1), will become the probability of the difference (n/µ − q) being 

contained in the limits 2 /µ .u pq±  With changed signs and the same 

probability these will be the limits of the difference (m/µ − p) since the 

sum of those differences, (m + n)/µ − p − q = 0. 

    It is always possible to choose such a large value of u that that 

probability R will arbitrarily little differ from certainty, and even if u is 

not large. For example, it is sufficient to have u = 4 or 5, for the 

integral of exp (− t2
) over [u, ∞] and for (1 − R) as well, to become 

barely appreciable. If u takes such a value and remains invariable, the 

limits of the difference (m/µ − p) will narrow as µ, already being very 

large, will increase further. The ratio m/µ of the number of the arrivals 

of E to the total number of trials will ever less deviate from the chance 

р of that event. It is always possible to increase the number µ so that 

the probability R of the difference (m/µ − p) will become arbitrarily 

low. Conversely, if continuously increasing µ and assuming a constant 

and given magnitude l for each of the indicated limits, thus ensuring 

that u will increase in the same proportion as √µ, the value of R will 

ever closer approach unity. It is always possible to increase µ, so that 

the probability R of (m/µ − p) being contained within limits ± l will 

arbitrarily little differ from certainty. This, indeed, is the Jakob 

Bernoulli theorem (§ 49).  

    81. We (§ 78) have ignored the case of very small chances р or q. 
Suppose now that q is a very small fraction, so that the probability of 

the event F is very low. If the number µ of the trials is very large, the 

ratio n/µ of the number of the arrivals of F to µ will also be a very 

small fraction. Substituting µ − n instead of m in formula (73.1), we 

will get qµ = w, q = w/µ. Neglecting the fraction n/µ, the right side of 

this formula will be 

 

    
2 3

(1 ... ).
2! 3! !

n
m w w w

p w
n

+ + + + +   

 

At the same time, 
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1 ,  1 1
µ µ µ

n

mw w w
p p

−
   

= − = − −   
   

. 

 

    We may replace the first factor by the exponential function e−w
, and 

assume that the second one is unity. In accord with equation (73.1) we 

will obtain almost exactly 

 

    
2 3

(1 ... )
2! 3! !

n
ww w w

P w e
n

−= + + + + +  
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for the probability that an event, whose chance at each trial is only a 

very small fraction w/µ, will not appear more than n times in a very 

large number µ of trials. 

    If n = 0, this value of Р becomes e−w
. This, therefore, is the 

probability that the event we consider will not arrive at all during µ 

trials. The probability that it will occur at least once is therefore  

(1 − e−w
), as noted in § 8. If, however, n is not very small, the value of 

Р will very little deviate from unity. This is seen when Р is written in 

the form 

 

    
1 2

1 [1 ...].
( 1)! 2 ( 2)( 3)

n ww e w w
P

n n n n

+ −

= − + + +
+ + + +

  

 

Let w = 1 and n = 10, then the difference (1 − Р) will be almost exactly 

equal to 1/10
8
. In other words, it is almost certain that an event, having 

a very slim chance 1/µ of arriving at each of the µ trials, will not 

appear more than 10 times. 

    82. The integral in formula (79.1) can, in general, be calculated in 

quadratures. At the end of his book Kramp (1798) inserted a table of 

the values of that integral for u = 0 to u = 3, according to which 

 

    2

3

exp( ) 0.00001957729...t dt
∞

− =∫   

 

Integrating by parts at u > 3 it is possible to derive [Poisson derived 

the formula 

 

    
3 5 7

2

0

exp( ) ...
1 3 1 2 5 1 2 3 7

u
u u u

t dt u− = − + − +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅∫  

 

and noted that the series on the right side rapidly converges at u < 1]. 

If the value of u answering to R = 1/2 is desirable, we can equate that 

value of R (79.1) to 1/2 and apply that last series:  

  

    
2π exp( )

.
4 2 2µ

u

pq

−
−   

 

    Let u = а be the root of the equation thus obtained. Neglecting the 

second term on the right side, we can put down that, to the order of 

smallness of 1/µ,  

 

    
1

.
2 2µ

u a
pq

= −  

 

After a few attempts I found that а ≈ 0.4765. This means that there 

exists the same probability that the difference (m/µ − p) will either be 

contained within the limits 
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2 1

 [0.4765 ],
µ 2µ
pq

± −   

 

or be beyond them. For some value of u there exists probability R, that 

the difference between (m/µ − p) and (n/µ − q) will not exceed 

2 2 /µ .u pq±  Therefore, if p = q = 1/2, the magnitude (m − n)/µ will 

with probability 1/2 be within limits  

 

    
0.6739 1

 [ ].
µµ

± −   

 

Thus, if the chances of Е and F are equal to each other, the difference 

of the numbers of their arrivals will with the same probability be either 

more or less than 0.6739√µ − 1.  

     Let А and В play very many fair games, for example 10
6
. Then we 

can bet even money that one of them will win 674 games more than 

the other. That difference, which can equally favour either of them, 

will indeed be the share of the hazard. But if, in each game, the chance 

р of gambler A exceeds the chance q of gambler В, there will be 

probability R, invariably heightening with µ, that A will win µ(p − q) 

± 2 2µu pq  more games than В. And since the first term, appearing 

because of the differing ability of the gamblers, increases as the 

number of games, whereas the second one only increases as the square 

root of that number, in a long run the more able gambler will always 

be the winner however small is the difference (p − q).  

    83. Supposing that the chances р and q were known, we determined 

the likely good approximations of the ratios m/µ and n/µ provided that 

µ was very large. Conversely, if the chances are not known in advance, 

but those ratios are determined, our formulas established the likely 

values of р and q with a good approximation. Namely, there exists 

probability R, calculable by formula (79.1), that the chance p of event 

E is contained within limits m/µ 2 /µ .u pq±  If R very little differs 

from unity, the fraction р will almost exactly be equal to m/µ , and q, 

to n/µ . Substituting therefore m/µ and n/µ  instead of р and q in the 

double-valued terms of their limits and in the last term of the formula 

(79.1), which was already divided by √µ, we will get the probability 

 

    2 22 µ
1 exp( ) exp( )

2ππ u

R t dt u
mn

∞

= − − + −∫              (83.1) 

 

of р being contained within the limits 

 

    
2

  
µ µ µ
m u mn

± . 

 

    If m, n and µ are very large numbers, we can, in general, apply the 

approximate values m/µ and n/µ of the chances р and q for calculating 
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the probability of a future event consisting of E and F; for example, of 

their arriving m′ and n′ times in µ ′ = m′ + n′ new trials, if µ ′ is very 

small as compared with µ. We can apply formula (79.1) even if µ ′ is a 

very large number. Substitute µ ′, m/µ and n/µ instead of µ, р, and q in 

the formula itself and in the corresponding limits; then 

 

    2 22 µ
1 exp( ) exp( )

π 2πµu

R t dt u
mn

∞

= − − + −
′∫       (83.2) 

 

will express the probability that n′ is contained within the limits 

 

    
µ

2µ
µ µ
n u

mn
′

′m .                                                   (83.3)  

 

    Here, µ ′n/µ is introduced instead of the maximal natural number 

contained in that ratio. No matter how close were m/µ and n/µ to р and 

q, they are only probable rather than certain, and they should not be 

applied, as noted in § 71, when µ ′ is comparable with µ. This is why 

we will consider in another manner the problem of establishing р and q 

by observed events for applying them when studying probabilities of 

future events. 

    84. Suppose, like previously, that the arrival of events E and F was 

observed m and n times in a very large number µ = m + n of trials 

during which the chances of those events, р and q, did not change. 

According to the above, there exists a very high probability that these 

unknown chances very little differ from the ratios m/µ  and n/µ, which 

can therefore be assumed as their approximate values. These chances 

can take an infinite number of values which increase by infinitely 

small increments and the probability of an exact value of p and the 

corresponding value of q is infinitely low. We should determine at 

least those values of p and q which little deviate from m/µ and n/µ. 

    The magnitude Q, determined by formula (79.2а), is the probability 

of µ 2µn q r pq< −  and at the same time of the unknown chance q of 

event F which arrived n times in µ events, to satisfy the condition 

/µ 2 /µ /µ ( /µ) 2 /µq n r pq n r mn> + = + . In the right side р and q 

were replaced by their approximate values m/µ and n/µ. If (r – dr) is 

substituted instead of r and only infinitely small magnitudes of the first 

order are left, then [Q − (dQ/dr)dr] will also become the probability 

that 

 

    
2 2

µ µ µ µ µ
n r mn mn dr

q > + − . 

 

Therefore, − dQ/dr will express the infinitely low probability that 

exactly 

 

    /µ ( /µ) 2 /µq n r mn= +  

 



 136 

at all positive values of r, very small with respect to √µ, as it was 

indeed supposed in the formula for Q. Similarly, formula (79.2b) will 

express the probability Q′ that q> n/µ − ( /µ) 2 /µ .r mn′  Substituting  

(r′ + dr′) instead of r′, we will obtain [Q′ + (dQ′/dr′)dr′] for the 

probability that 

 

    
2 2

µ µ µ µ µ
n r mn mn dr

q
′ ′

> − − . 

 

    Therefore, (dQ′/dr′)dr′ will be the probability that q exceeds the 

second, but not the first limit, or that exactly 

 

    /µ ( /µ) 2 /µq n r mn′= − . 

 

Here, r′ is also a positive magnitude very small as compared with √µ. 

    [Poisson transforms the expressions of dQ/dr and dQ′/dr′ to within 

small magnitudes of the order of 1/√µ and notes that they turn into 

each other if r and − r′ are interchanged. He denotes] by v a positive or 

negative variable, very small as compared with √µ, [and introduces] 

 

    
2

2 21 2( )
exp( ) exp( )

π 3 2πµ

m n v
V v v

mn

−
= − − − .                (84.1) 

 

Vdv is the probability that 

 

    /µ+( /µ) 2 /µq n v mn= . 

 

    At the same time that infinitely low probability concerns  

 

    /µ ( /µ) 2 /µp m v mn= − .                                           (84.2) 

 

The magnitude V is seen to decrease very rapidly with the increase of 

v. And even before the order of that variable v becomes √µ, the order 

of V will be extremely small owing to the factor exp (− v2
). Express 

the values of р and q essentially deviating from m/µ and n/µ by means 

of v, and represent their probabilities by V′dv, where V′ is a function of 

v, differing from, and much smaller than V. It is quite insensible so that 

we are not required to determine it. 

    And so, let Е′ be a future event comprised of E and F, and suppose 

that П is the probability that it will occur at certain values of the 

chances of E and F and is therefore a given function of р and q. Then, 

let П′ be the veritable probability of Е′ when taking account of the 

values of р and q substituted in П. Multiplying П by this infinitely low 

probability of р and q and integrating the product from р = 0 and q = 1 

to р = 1 and q = 0, we will obtain П′. However, bearing in mind the 

considerations above, we can neglect the part of that integral 

answering to essential deviations of р and q from m/µ and n/µ. 

Therefore, inserting the previous values of р and q in П, we get  
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    Vdv′Π = Π∫ ,                                                               (84.3) 

 

when integrating over positive and negative values of v, very small as 

compared with √µ. This result corresponds with that, obtained more 

directly (Poisson 1830, § 2). 

    85. For providing the first application of the formulas (84.1) and 

(84.3), I will suppose that П′ is the probability that in a very large 

number µ ′ = m′ + n′ of new trials events E and F occurred m′ and n′ 
times with the ratio m′/n′ being very close to the ratio m/n of the 

number of the arrivals of those events in previous trials. In other 

words, I suppose that 

 

    m′ = mh − α√µ ′, n′ = nh + α√µ ′, µ ′ = µh, 
 

where h and α are given and α is positive or negative but very small 

with respect to √µ ′. 
    According to formula (69.2), for µ /2πU m n′ ′ ′ ′= , 

 

    
µ µ

m n
p q

U
m n

′ ′
′ ′   

′Π =    ′ ′   
. 

 

And now we can note that U′ is the probability of event Е′, when 

assuming that m/µ and n/µ are the exact and given chances p and q of 

E and F and α = 0. In addition, since 

 

    
α α

,  
µ µ µ µµ µ

m m n n′ ′
= − = +

′ ′′ ′
, 

 

and denoting 

 

    1

2 α
,

µ µ µ

v mn
v− =

′
  

 

we can write down the values of р and q from § 84 as 

 

    p = (m′/µ ′) − v1, q = (n′/µ ′) +v1.  
 

    Inserting these values in П, we get 

 

    1 1µ µ
1 1

m n
v v

U
m n

′ ′
′ ′   

′Π = − +   ′ ′   
. 

 

The fractions here are of the order of 1/√µ or 1/√µ ′, so that […] 

 

    
3 2

1µ
exp( )

2

v
U

m n

′
′Π = −

′ ′
.                                               (85.1) 
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    For the same reason we can neglect the second term in formula 

(84.1), and therefore [after transformations] formula (84.3) will 

become 

 

    
3 2

2 11 µ
exp( )

2π

v
U v dv

m n

′
′ ′Π = − −

′ ′∫ . 

 

The integral should only extend over values of v, very small as 

compared with √µ. Owing to the exponential factor, the coefficient of 

dv becomes quite insensible at values of v comparable with √µ and we 

can, and will extend the integral over such values of v and assume − ∞ 

and ∞ as its limits. Then, substituting mh and nh instead of 

m′ and n′ in v1, we get 

 

    
3 2 2 2

2 21µ 2 αµ α µ
(1 )

2 22

v v h
v v h

m n m nm n

′ ′ ′
+ = + − +

′ ′ ′ ′′ ′
 

 

and introduce 

 

     
αµ

1 ,  
2 (1 ) 1

h dx
v h x dv

m n h h

′
+ − = =

′ ′ + +
. 

 

    With that new variable x, the limits of the integral will still be 

infinite, and the required probability becomes 

 

    
2 21 α µ

exp[ ]
2 (1 )1

U
m n hh

′
′ ′Π = −

′ ′ ++
                             (85.2) 

 

and is obviously simplified if α = 0. When recalling the value of U′, 
we say that this coincides with the result obtained otherwise in § 71.  

    86. For the second example of applying formulas (84.1) and (84.3), 

we assume that П′ is the probability that the difference (n′/µ ′ − n/µ) 

does not exceed α/√µ ′, which it should have reached in the preceding 

example of § 85.  

    The magnitude П is a function of the chances р and q of events Е 

and F, and the probability that in µ ′ future trials F will not arrive more 

than n′ times, ( µ /µ) α µn n′ ′ ′= + , with E occurring m′, or not less than 

[ ( µ /µ) α µm ′ ′− ] times, cf. formulas (85.1). The value of that 

probability will be represented by one of the formulas (77.1) after 

substituting µ ′, m′, n′ instead of µ, m, n.  
    If invariably calculating to within magnitudes of the order of 1/√µ 

or 1/√µ ′, the mentioned extreme values of m′ and n′ will satisfy the 

condition 

 

    
2αµ

[1 ]
1 µ

n n

m m mn

′
= +

′ + ′
.  
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According to the values of р and q from § 85, the following relation 

will also take place: 

 

    
2µ

[1 ]
q n

v
p m mn

= + .  

 

    If, however, the variable v is restricted, so that without taking into 

account its sign  

 

    
2αµ

2µµ
v

mn
<

′
, then  or 

1 1

q n q n

p m p m

′ ′
< >

′ ′+ +
 

 

for positive and negative values of the constant α respectively. It 

occurs that in those cases, because of formulas (77.1b) and (77.1а) 
respectively, 

 

    2 21 2(µ )
1 exp( ) exp( )

π 3 2πµk

n
t dt k

m n

∞
′ ′+

Π = − − + −
′ ′ ′∫ , 

    2 21 2(µ )
exp( ) exp( )

π 3 2πµk

n
t dt k

m n

∞
′ ′+

Π = − + −
′ ′ ′∫ .  

 

Magnitude k > 0, and its square is determined by formula (76.1). Here, 

the extreme values of m′ and n′, as well as of р and q should be 

applied. The result is 

 

    
1

,  
µ 1 µ 1

n m
q v p v

′ ′ +
′ ′= − = +

′ ′+ +
,  

 

where, for the sake of brevity, 

  

    
α 2

  
µ (µ 1)µ µ µ

v mn n
v

′
′− − =

′ ′ +′
.  

 

    Magnitude v′ is of the order of 1/√µ ′. [After transformations Poisson 

gets] 

 

    
3 2 4 3

2

2 2

µ ( )µ
 ,
2 3

v m n v
k

m n m n

′ ′ ′ ′ ′ ′−
= −

′ ′ ′ ′
 

2( )
[1 ]

3 2µ

m n k
k k

m n
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′= ± −
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,  

    
µ µαµ

2 µ µ

v mn
k

m n m n

′ ′′
′ = −

′ ′ ′ ′
.                                        (86.1) 

 

    Because of the limit assigned for v, magnitude k′ has the same sign 

as α. For k to be positive at α > 0 and α < 0 we should choose its upper 

and lower signs respectively. 
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[After transformations and, in particular, after deduction of new 

formulas for П, Poisson continues:] Taking into account the formulas 

(84.1) and (84.3), the appropriate expressions of П′ become:  

 

    2 2 21 1
exp( ) exp( )

ππ k

v dv t v dtdv
∞

′

′Π = − − − − +∫ ∫ ∫   

    2 22
exp( )

2πµ
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 2 32( )
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3 2πµ
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mn

−
− −∫  

    2 2 31
exp( ) ],

π k

t v v dtdv
∞

′

− −∫ ∫                                   (86.2а) 
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π
k

t v dtdv
∞

′−

′Π = − − +∫ ∫
2 22

exp( )
2πµ

n
k v dv

m n

′
′− − −

′ ′ ′ ∫
 

    
2( )

3π 2µ

m n

mn

− 2 2 3exp( ) ].
k

t v v dtdv
∞

′−

− −∫ ∫                        (86.2b) 

 

    [Poisson simplifies these formulas; thus, just like above, he extends 

the limits of v from − ∞ to ∞ and introduces] 

 

    
µ µαµ

 β,  γ, θ γ ,  θ.
2 µ µ

mn
t v dt d

m n m n

′ ′′
= ± = = ± =

′ ′ ′ ′
  

 

Here β > 0 and the signs correspond to those of α. In formulas (86.2а, 
b), respectively, α > 0 and < 0, 

 

    k′ = ± β − γv, t = θ m  γv  
 

and in both cases the integrals are still over θ = β and ∞. Therefore 
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    […] The first value of П′ is the probability that 

 

    
µ 2

  β
µ µ

n m n
n

′ ′ ′
′ ≤ +

′
, 

 

with the sum on the right side very little exceeding its first term. The 

second value of П′ is the probability that 

 

    
µ 2

  β
µ µ

n m n
n

′ ′ ′
′ ≥ −

′
, 

 

with the difference on the right side slightly less than its first term
6
. 

    87. It is possible to note that, because of the infinite limits of the 

variable v, the first two integrals for both values of П′ coincide, and 

the third integrals are equal in magnitude and contrary in signs. The 

first value exceeds the second by [after transformations]  

    22
φ 1 exp( ) ,

π u

t dt
∞

= − −∫   

 

where 
2β/ 1 γ .u = +  When taking into account the value of γ, it is 

seen that φ expresses the probability that n′ is contained within the 

limits 

 

    
3 32(µ µ )µ

µ µ µµ

u m n mnn ′ ′ ′′ +

′
m                                         (87.1)  

 

or equal to the superior limit. If desired that the interval between the 

limits included the inferior limit as well, the probability that n′ is 

exactly equal to it, see formula (85.2)
7
 with α√µ ′ equal to the second 

term of (87.1) and taken with the sign plus, should be added to φ.  

    Denote by w the probability that n′ will be within the stated limits or 

equal to one of it: 

 

    22
1 exp( )

π u

w t dt
∞

= − − +∫  

    
2 3 3

2

µµ (µ µ )
exp[ ].

µ (µ+µ )2π (µ µ )

u m n mn

m nm n

′ ′ ′ ′+
−

′ ′ ′′ ′ ′+
                  (87.2)  

 

When comparing this value of w with R in formula (83.2), it is seen 

that they only differ in their last terms and are therefore almost equal 

to each other. However, if the number µ ′ of future trials is not very 

small as compared with µ, the second terms in the expressions (87.1) 

and (83.3) for the limits of n′, corresponding to w and R will not 

coincide. The limits whose probability is w, can be much less narrow 

than in the second case.  
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    If w little differs from certainty, the approximate values nµ ′/µ and 

mµ ′/µ of n′ and m′ can be substituted instead of them in the respective 

limits. They will become 

 

    
µ

2µ (1 ),
µ µ

n u
mn h

′
′ +m  

 

where h = µ ′/µ. When comparing these limits with (83.3), it is seen 

that, for the same values of u they widened being multiplied by 

1 h+ . For equating them with each other the value of u has to be 

decreased by the same factor and their probability will lower with 

respect to R. If h is a very small fraction, formulas (83.2) and (87.2) 

will almost coincide as also the corresponding limits of the values of 

n′. This result is in agreement with what I found out by another method 

(Poisson 1830).  

    Formula (87.2) also expresses the probability that the difference 

(n′/µ ′ − n/µ) is contained within the limits 

 

    
3 32(µ µ )

µµ µµ

u m n mn′ ′ ′+

′ ′
m                                                 (87.3) 

 

or equals one of them. With opposite signs, those are also the limits of 

(m′/µ ′ − m/µ). And, when u = 3 or 4, so that the probability w becomes 

very close to certainty (§ 80)
8
, but when the abovementioned observed 

differences notably overstep those limits, we can justifiably conclude 

that the unknown chances of events E and F had most likely changed 

either during the trials or between the two series. 

    Note that at the same value of u and, therefore, with the same 

probability, the limits indicated above will be widest at µ = µ ′ and 

narrower when one of these numbers is very large as compared with 

the other. If µ ′ = µ, m′ ≈ m and n′ ≈ n and the coefficient of u [in the 

expression (87.3)] will become equal to 2 /µ µ .mn If, on the 

contrary, µ ′ is very large as compared with µ, then m′ ≈ mµ ′/µ and  

n′ ≈ nµ ′/µ and the same coefficient becomes equal to 2 /µ µ ,mn  

which is √2 times less. 

    88. Suppose that the contrary events E and F with unknown chances 

р and q arrived m and n times in a very large number µ of trials, and 

that other contrary events Е1 and F1 with unknown chances р1 and q1 

occurred m1 and n1 times in a very large number µ1 of trials. If the 

ratios m/µ and m1/µ1, as well as n/µ and n1/µ1, essentially differ one 

from another, the inequalities p ≠ p1 и q ≠ q1 should be considered 

certain or almost so. 

    However, if the differences of those ratios are small fractions, the 

inequalities of the chances are possibly insensible and happened 

because the events did not at all arrive exactly proportional to their 

chances. It is therefore useful to determine the probability of the 

inequalities p ≠ p1 and q ≠ q1, corresponding to the small differences 

(m/µ − m1/µ1) and (n/µ − n1/µ1), equal in magnitude and opposite in 

signs. And this is what I will do. 
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    Just like in formula (84.2), I will denote by р a magnitude little 

differing from m/µ, so that v will be a positive or negative variable, 

very little with respect to √µ. Let also 

 

    1 1 1 1 1 1 1 1/µ ( /µ ) 2 /µp m v m n= −  

 

only little differ from р, so that v1 will be a positive or negative 

variable very small with respect to √µ1 and 

 

    (m1/µ1 − m/µ) = δ, 
 

where δ is a small fraction, also positive or negative. Then 

 

    1 1 1
1
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2 2
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µ µ µ µ
v mn v m n

p p z− = = + −   

 

    1 1 1
1 1

1 1 1 1

µ µ µ
(δ )µ

2 µ µ
v mn

v z
m n m n

= − + . 

 

    If ε is a small positive fraction, then, if the probability of р1 ≥ р + ε 
is required, the variable z should take positive values not less than ε. 
The infinitely small probabilities of the previous values of р and р1 

will be Vdv and V1dv1 with V determined by formula (84.1), and V1, by 

the same formula with µ, m, n and v replaced by µ1, m1, n1 and v1. The 

probability of the concurrence of these two values is VdvV1dv1, and the 

required probability will be 

 

    1 1λ .VV dvdv= ∫ ∫   

 

    For the sake of simplification I neglect the second term of the 

formula (84.1) and then 

 

    
2 2

1 1

1
λ exp( ) .

π
v v dvdv= − −∫ ∫   

 

If desirable, v1 can be replaced by the variable z, then dv1/dz should be 

calculated by issuing from the previous value of v1. The variable v1, as 

assumed here, increases, z should therefore also increase, and it is 

necessary to change the sign of dv1, so that 

 

    1 1 1 1 1(µ µ / 2 )dv m n dz= .  

 

    [After troublesome work Poisson got] 

 

    2 21 1
λ exp( ) ,  λ 1 exp( )

π πu u

t dt t dt
∞ ∞

= − = − −∫ ∫      (88.1а, b)  
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for ε − δ > 0 and < 0 respectively. Here, 

 

    1 1

3 3

1 1 1

(ε δ)µµ µµ
 ,

2(µ µ )
u

m n mn

−
= ±

+
                                    (88.2) 

 

where u is a positive magnitude whose signs correspond to ε − δ > 0 

and < 0. 

    I ought to remark that, when neglecting the second term in the 

formula (84.1), the probability of the exact equality p1 − p = ε is also 

neglected and λ becomes the probability of p1 − p > ε rather than ≥ ε. 
At ε = δ the magnitude u = 0, and both values of λ become equal to 

1/2.  

    The formulas (88.1) also serve for calculating the probability that 

the unknown chance p1 exceeds a given fraction. Indeed, I assume that 

in [the appropriately transformed equation] (88.2) 

 

    µ = ∞, m/µ = w, δ = (m1/µ1) − w. 
 

Then […] for the sake of simplification, w replaces ε + w, and µ, m, n 

are substituted instead of µ1, m1, n1:  

 

    
µ µ

 ( ) .
µ 2

m
u w

mn
= ± −                                              (88.3) 

 

    According to the difference (w − m/µ) being positive or negative, 

the formulas (88.1а, b) express the probability that the unknown 

chance of an event occurring m times in a very large number  

µ = m + n of trials exceeds a given fraction w.  
    89. Turning now to numerical applications of those various 

formulas, I choose the Buffon experiment (§ 50) as an example. The 

arrival of heads and tails in numerous tosses of a coin will be events E 

and F. According to Buffon, m = 2048, n = 1992, µ = 4040 (m и n are 

the numbers of the arrivals of these events in µ tosses). Substituting 

these values in formula (83.1) and assuming that u = 2, we get 

 

    22
exp( ) 0.00468,  0.99555.

π u

t dt R
∞

− = =∫   

 

    At the same time, (0.50693 ± 0.02225) will be the corresponding 

limits of р. The unknown chance р of the occurrence of heads will 

with probability 0.99555 be contained within 0.48468 and 0.52918. If 

desired to determine the probability of that chance exceeding 1/2, the 

preceding values of µ, m and n should be inserted in (88.3). If 

choosing w = 1/2 and the inferior sign, and therefore formula (88.1b), 

we obtain 

 

    u = 0.62298, λ = 0.81043, 1 − λ = 0.18957. 
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This proves that we can bet somewhat less than 5 against 1 on the 

chance of heads to exceed 1/2.  

    We can subdivide the Buffon experiment in two parts consisting of 

2048 and 1992 trials. In the first one, heads appeared 1061 times, and 

tails, 987 times; in the second part, 987 и 1005 times respectively. 

When, however, considering all the trials and applying the formula 

(87.2), we can also calculate the probability that the number of the 

arrivals of heads and tails should be contained within given limits in 

each partial experiment. For accomplishing this aim, we assume in that 

formula and in the corresponding limits 

 

    m′/µ ′ = m/µ = 0.50693, n′/µ ′ = n/µ = 0.49307. 

 

    In other words, we replace m′/µ ′ and n′/µ ′, which were not supposed 

to be known, by their approximate values corresponding to the entire 

experiment. This is possible since m′ and n′ only enter in the terms of 

the order of smallness of 1/√µ. Instead of µ we should also assume its 

total value, 4040. 

    For the first part of the experiment, µ ′ = 2048; at u = 2 (see above)  

w = 0.99558 will be the probability that n′, that is, the number of the 

arrivals of tails, will be contained within the limits 1001 ± 79. This 

condition was indeed fulfilled. For the second part, µ ′ = 1992 and w, 

again with u = 2, was 0.99560, which is the probability that the 

number n′ of the arrivals of tails is contained within the limits  

982 ± 77, which was also fulfilled. […] 

    Suppose that we do not know whether the same coin was tossed in 

both parts of the experiment and that, knowing their results, it is 

required to determine whether the probability λ of the chance of heads 

in the first part by a given fraction exceeded the same chance in the 

second. We should first of all insert µ = 1992, m = 987, n = 1005 and 

µ1 = 2048, m1 = 1061, n1 = 987 in equation (88.2). Then, δ =  

m1/µ1 − m/µ = 0.02257, and that equation becomes 

 

    u = ± 44.956 (ε − 0.02257). 

 

    If, for example, ε = 0.02, we should choose the inferior sign and 

apply formula (88.1b), so that 

 

    u = 0.11553, λ = 0.56589, 1 − λ = 0.43411 

 

and we can bet barely 4 against 3 on the chance of heads to be larger 

by 1/50 in the first part than in the second.  

    If ε = 0.025 we should choose the superior sign and apply formula 

(88.1a), so that 

 

    u = 0.10925, λ = 0.43861, 1 − λ = 0.56139 

 

and we can bet less than 1 against 1 on that excess to be larger than 

1/40. 

    90. I am now solving a problem admitting an interesting application; 

it will be based on the preceding formulas and on a following lemma
9
.  
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    An urn contains c = a + b balls, a of them white and b, black; l balls 

are randomly extracted without replacement, then, in the same way,  

µ = m + n other balls are drawn. I say that the probability of drawing 

m white and n black balls in that second series of extractions does not 

depend either on the number, or on the colour of those extracted 

previously
10

 and is equal to their arrival in the case in which l = 0. 

    Suppose that the l + µ drawings are carried out consecutively; 

denote by i the total number of combinations of the l + µ extracted 

balls; by i′ the number of combinations of the µ last balls, 

m of them white, and n, black; and by i1 the number of combinations 

of the µ first balls, m of them white, and n, black. The chance of 

extracting m white and n black balls after the first series of drawings is 

i′/i, and the chance of the same result before all the drawings was i1/i. 
The numbers i′ and i1 are equal because in general combinations of l, 
then of µ definite balls coincide with the combinations of µ and then 

of l. In particular, for each combination of the µ last extracted balls, m 

of them white and n, black, there always exists a combination of the µ 

first extracted balls with the same number of balls of both colours, and 

vice versa. The fractions i′/i and i1/i, are therefore also equal as are the 

probabilities which they express, which it was required to prove. 

   It is possible to verify this result in the following way. The urn 

contained a white and b black balls; the chance of extracting m and n 

such balls in (m + n) first drawings is a function f(a, b, m, n). 

Similarly, the chance of g and h white and black balls appearing in  

(g + h) first drawings will be f(a, b, g, h). The number of balls left in 

the urn will become (a – g) and (b – h)
11

, and the chance of m white 

and n black balls arriving in µ = m + n new drawings will be  

f(a − g, b − h, m, n). The product of the two last values of that 

function will be equal to the chance of drawing m white and n black 

balls after the appearance of those g white and h black balls.  

    Therefore, adding up the (l + 1) values
12

 of that product 

corresponding to all the l natural and zero values of g and h, we will 

obtain the complete expression of the chance of extracting m white and 

n black balls after the appearance of l balls of some colour. It is 

required to establish that that chance does not depend on l and is equal 

to f(a, b, m, n), i. e., to establish that 

 

    f(a, b, m, n) = ∑f(a, b, g, h) f(a − g, b − h, m, n), 

 

where the sum extends from g = 0 and h = l to g = l and h = 0.  

    I note that, according to § 18, 

 

    
φ( , ) φ( , )

( , , , ) ,  φ( , )
φ( , )

a
a b

m n a m b n
f a b m n a b C

a b
+

− −
= =   

 

so that 

 

    ( , , , ) ( , , , )f a b g h f a g b h m n− − =  
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φ( , )φ( , ) φ( , )φ( , )

φ( , ) φ( , )

g h a g b h m n a g m b h n

a b a g b h

− − − − − −

− −
 

 

or, which is the same, 

 

    ( , , , ) ( , , , )f a b g h f a g b h m n− − =  

    
φ( , )

φ( , )φ( , ).
φ( , )

m n
g h a g m b h n

a b
− − − −  

 

And, taking into account the value of f(a, b, m, n), the equation to be 

verified becomes 

 

    φ( ,  ) φ( , ) φ( ,  ),a m b n g h a g m b h n− − = ⋅ − − − −∑   

 

where φ(m, n)/φ(a, b) was cancelled from both sides. And, since a and 

b are arbitrary, they can be replaced by (a + m) and (b + n). We will 

obtain 

 

    φ( ,  ) φ( , ) φ( ,  ).a b g h a g b h= ⋅ − −∑  

 

    The left side is the coefficient of xayb
 in the expansion of (x + y)

c
,  

and the right side, is again the coefficient of xayb
 in the product of the 

expansions of (x + y)
l
 and (x + y)

c−l
, that is, of (x + y)

c
. These sides are 

identical, which it was required to verify. 

    91. Suppose that the numbers a, b, a – m, b – n are very large. The 

approximate values of φ (m, n), φ (a − m, b − n), φ (a, b), as well as of 

f(a, b, m, n) are calculated by means of the Stirling formula. If only 

taking into account its first term and calculating f(a, b, m, n), this 

probability can be represented [after very difficult transformations] in 

the form 

 

    
3

2 4 ( )( 2µ)
( , , , ) exp( )[1 ],

3 2( µ)µ

t a b c
f a b m n H t

c abc

− −
= − −

−
   (91.1)  

    
µ( µ)

2π ( )( )

ab c
H

cmn a m b n

−
=

− −
, 

 

as the chance of extracting m white and n black balls 

 

    
2

2( µ)µµ
  ,  

t c abca
m

c c

−
= −                                    (91.2a) 

    
2

2( µ)µµ
 = .

t c abcb
n

c c

−
+                                         (91.2b) 

 

    The difference (n − m) will be even if µ is even, and odd otherwise. 

Let i be a positive natural number and n – m = 2i or 2i − 1, then t will 

be  
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2

2 δ γ,  δ ,
2 2( µ)µ

c
t i

c abc
= + =

−
  

    
( )µ ( )µ

γ ,  γ   δ
2 2( µ)µ 2 2( µ)µ

a b c a b c

c abc c abc

− −
= = −

− −
  

 

for even and odd values of µ. When inserting that t in formula (91.1), 

it will represent the probability that after µ consecutive drawings the 

number of the extracted black balls exceeds the number of the arrived 

white balls by 2i or 2i − 1. Taking i = 1, 2, 3, … until exp(− t2
) 

becomes insensible, or, if desired, until i = ∞, the sum of the results 

will be the probability s that after those µ  drawings the number of the 

black balls will exceed the number of the white balls by some even or 

odd numbers of unities: 

 

    
3

2 4 ( )( 2µ)
exp( )[1 ],

3 2( µ)µ

t a b c
s H t

c abc

− −
= − −

−
∑  

 

where the sum extends over all the values of t from γ + 2δ to ∞, 

increasing by increments of 2δ. According to the hypotheses, 2δ is a 

very small fraction, and the sum can express a rapidly converging 

series arranged by the powers of such an increment. 

    [After long transformations]  

 

    2 21
1 exp( ) exp( γ ),  

π v

s t dt
∞

= − − − Γ −∫                    (91.3а)  

    2 21
exp( ) exp( γ )

π v

s t dt
∞

= − − Γ −∫                            (91.3b) 

 

for γ < 0 and > 0 and positive v equal in magnitude to γ, where 

 

    
2 2( )( 2µ)(7 4 ) 3

6 2π( µ)µ

a b c c

c abc

γ− − + +
Γ =

−
. 

 

    The probability that after µ drawings m = n = µ/2, which is only 

possible for even values of µ, is 

 

    
2 2exp( γ )

σ
2π( µ)µ

c

c abc

−
=

−
.                                              (91.4) 

 

    92. Suppose that after µ drawings µ ′, and then µ″, … other balls 

were extracted, until all the c balls in the urn are drawn. Then 

 

    c = µ +µ ′+ µ″ + … 

 

Suppose also that µ ′, µ″, … as well as µ are very large numbers. 

Denote by s′, s″, … the new values of s obtained after inserting µ ′, µ″, 



 149 

… instead of µ when applying formulas (91.3а, b) depending on 

whether before the drawings the number b of black balls in the urn was 

more or less than the number a of the white balls and, consequently, 

whether γ became negative or positive. By the lemma of § 90 the 

chances of extracting more black than white balls in µ, µ ′, µ″, … 

consecutive drawings are s, s′, s″, … These chances only vary owing 

to the inequalities of µ, µ ′, µ″, …; they would have been identical had 

those numbers been equal. 

    Denote the mean value of s, s′, s″, … by r. Suppose that the total 

number α of the drawings is very large
13

, and that in j of them the 

number of black balls exceeded the number of white balls. Then, by 

the first proposition of § 52, the probability that j is within given limits 

will be the same as when all the chances s, s′, s″, … are equal one to 

another and equal to their mean, r. Therefore, substituting α, r, (1 − r) 

instead of µ, q, p in formula (79.1), we will get the probability 

 

    2 22 1
1 exp( ) exp( )

π 2πα (1 )u

R t dt u
r r

∞

= − − + −
−

∫  

 

that j is within the limits α 2α (1 )r u r r−m  or equal to one of them. 

Here, u is small as compared with √α. 

    So this is the solution of the problem I proposed. It can be applied to 

the election of deputies in a large country, in France for example. 

Denote the number of the electors in France by c; among them, a hold 

one opinion, and b = с − a are of the opposite view. They are 

randomly distributed over α electoral colleges, and a deputy is elected 

in each by a majority vote. It is required to determine the probability R 

that the number j of deputies holding the second opinion will be 

contained within given limits if there are µ, µ ′, µ″, … voters in those 

colleges. 

    Let the limits of j be those just indicated, then the required 

probability R will be represented by the previous formula. Each 

electoral college consists of voters living in the same locality rather 

then selected randomly from their general list, as we supposed above. 

And still it will be useful to find out what happens by our hypothesis 

and to show it by examples. 

    93. In France, the number of electoral colleges, as also the number 

of deputies, is 459, and the total number of voters can be estimated as 

approximately 200,000
14

. I suppose that the numbers µ, µ ′, µ″, … 

coincide, and that µ is odd: 

 

    α = 459, µ = 435, c = αµ = 199,665. 

 

Let also a = 94,835 and b = 104,830, so that their difference amounts 

to almost 1/20 of the number of voters. Then γ < 0 and v = − γ. 
Assuming the second value of γ from § 91, we get 

 

    21
0.77396,  exp( ) 0.13684,

π v

v t dt
∞

= − =∫   
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and, owing to formula (91.3а), s = 0.85426, 1 − s = 0.14574. 

    The chance of electing a deputy by the voters of the more numerous 

party will therefore exceed 21/25, whereas the minority of the electors, 

although not much differing from their majority, can never hope to 

elect more than 4/25 of the deputies. Substituting the values of s and  

(1 − s) instead of r and (1 − r) in the expression of R from § 92, we 

will find that, at α = 459 and u = 2, R = 0.99682 for the probability that 

the number of the deputies elected by the more numerous party will be 

contained within 392 m  21 and within 67 ± 21 by the other party. As 

compared with α, these limits are wide since that α is not extremely 

large. 

    I invariably suppose that the difference (b − a) is almost с/20. But 

let now µ be even: 

 

    α = 459, µ = 436, c = αµ = 200,124. 

 

Suppose also that a = 95,064 and b = 105,060. As previously, v = − γ, 
but the first value of γ should now be selected from § 91, so that 

 

    21
0.74006,  exp( ) 0.14764,

π v

v t dt
∞

= − =∫  

 

and s = 0.84279, 1 – s = 0.15721.  

    Since µ is even, the case of m = n is possible. By formula (91.4) its 

chance is σ = 0.02218. Adding σ/2 to s, we have s = 0.85388, very 

little less than in the case of an odd µ. 

    To show the influence of the inequality of the number of voters in 

the colleges, I will suppose that a half of them are equally distributed 

over 1/3 of the colleges, and the other half, over the other colleges. For 

the first third 

 

    α/3 = 153, µ = 654, αµ/3 = 100,062, 

 

and for the rest, 

 

    2α/3 = 306, µ = 327, 2αµ/3 = 100,062. 

 

I will also suppose that a = 95,062, b = 105,062, c = 200,124, so that 

both parties are as unequally strong as previously, with the inequality 

being almost 1/20 of the voters. In the first case µ is even, and odd in 

the second case. Respectively, 

 

    s = 0.89429, σ = 0.01376, s + σ/2 = 0.90117; s = 0.81981, 

 

and the stronger party has a mean chance of electing a deputy equal to 

 

    r = (0.90117 + 0.81981)/2 = 0.86049. 

 

    It little exceeds the corresponding chance in the case in which the 

number of the voters in each college was the same. However, if the 
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difference (b – a) begins to increase, the chance of electing a deputy 

by the minority will decrease very rapidly and soon almost disappears. 

For proving this statement, I will suppose that the voters are equally 

distributed over the colleges and assume the values of α, µ и с from 

the first example. In addition, let a = 89,835 and b = 109,830, so that 

the difference b – a  ≈ с/10, twice larger than in that example. Then 

 

    s = 0.98176, 1 − s = 0.01824 

 

and the chance of electing a deputy by the minority party becomes not 

greater than about 1/60
15

. Since s is small, the probability Р that in 

such elections the number of deputies from the minority party will not 

exceed a given number n, should be calculated by the formula of § 81. 

It occurs that 

 

    w = α(1 − s) = 8.3713, n = 15, P = 0.98713, 1 − P = 0.01287. 

 

    And if the difference between the strengths of the parties is 

increased to 30,000, or to 3/20 of the total number of voters, the 

chance (1 − s) becomes less than 1/1000. An election of one single 

deputy by the minority party will then be very unlikely. 

    But then, a representative government becomes nothing but a 

deception, since a minority of 90,000 voters out of their total number 

200,000 will only be represented by a very small number of deputies, 

while a minority of 85,000 will only have a very slim chance of 

electing one single representative of their interests to the chamber of 

deputies. And if, between two sessions, only 3/20 of the voters change 

their opinion, the entire chamber will follow suit. 

    Voters in each electoral college are not selected randomly from their 

general list for the entire France, as I have supposed. In each district 

the prevailing opinion is formed and maintained by particular causes, 

such as local interests, the influence of the Government and some 

citizens. But still it is useful to indicate the extreme variability that 

randomness can effect in the composition of the chamber of deputies 

by very small changes in the ratio of voters keeping to opposite 

opinions. 

 

Notes 
    1. Notation n! was not yet known but Poisson introduced two other appropriate 

symbols. In this section, only the Stirling formula (67.3) is mainly needed, but 

Poisson referred below to some intermediate results. 

    2. The Stirling series is divergent (Fichtenholz 1947/1950, vol. 2, chapter 8,  

§ 5/501, p. 820). 

    3. I would say: p and q are given in the direct, but not in the inverse problem. This 

circumstance explains why the variances of the respective random variables are 

different. In the inverse problem, the variance is larger, and more trials are needed 

for achieving the same precision as in the direct problem. Bayes, who did not yet 

possess the notion of variance (introduced by Gauss in 1823), understood this fact 

(Sheynin 2010). Laplace (1814/1994, p. 120) approvingly mentioned Bayes, but did 

not even refer to his appropriate memoir. Poisson (1837, p. 73) apparently only once 

actually applied the variance when estimating the quality of guns. 

    4. That formula is due to Montmort (1708/1713, p. 245), see also Todhunter 

(1865/1965, p. 97). 
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    5. Note that ( ) φ( )
t

r
x a x dx

−∞

−∫ , where φ(x) is the appropriate density, is called the 

r-th incomplete moment. Below, Poisson calculated the integral of t2i
exp(− t2

) over 

[0, ∞] at various values of i, whereas Gauss (1816) had established the usual 

(complete) moments of the normal distribution. The relation between Poisson’s § 82 

and that memoir of 1816 deserves to be studied, but in any case Poisson’s persistent 

refusal to apply the results of that great scholar turned out against him. 

    6. As printed, both values of the probability were thus lower than approximately 

one and the same expression. Corrected in the translation.. 

    7. Formula (85.2) does not contain α µ .′   

    8. At the stated place Poisson mentioned u equal to 4 or 5. 

    9. After the publication of my note [see note 18 to Chapter 1], I was informed that 

the proposition included there was already contained in this lemma which I (1825,  

p. 70) had applied for the solution of the problem of thirty-and-forty. Poisson. The 

page number is wrong. O. S. 

    10. Poisson had thus considered subjective probabilities. 

    11. The explanation, both here and below, is not clear enough. 

    12. It is seen below that l = g + h.  

    13. It can be concluded that α = c. The exposition is unclear. 

    14. Voters constituted only a small part of the population. 

    15. More precisely, 1/55.  
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Chapter 4. Calculus of Probabilities  

Depending on Very Large Numbers, Continued 

 

Misprints/Mistakes Unnoticed by the Author 

 
    1. In § 94, p. 247 of the original text, the first of the three integrals 

in this section lacks dx. 
    2. In § 95, p. 251 of the original text. Both integrals in the first 

displayed formula lack limits (and left without limits in the 

translation). The first of them also lacks the differential dz. 

    3. In § 96, p. 253 of the original text. The integrand in the third 

displayed formula should be exp (−t2
); the t2

 is missing. 

    4. In § 103, p. 274 of the original, the first integral representation of 

γi. The result of integration should include γi  rather than γ.  
    5. In § 104, p. 277 of the original text. On line 10 the chance of A is 

mentioned instead of chance E. 

    6. In § 106, p. 285 of the original text, after the first displayed 

formula; µ in the denominator should have been mentioned rather than 

1/µ. 

    7. In § 106, p. 286 of the original. Poisson introduced a magnitude λ 

and included it in three equalities. On the left side of the third equality 

appeared the nonsensical difference s/µ − s2
/µ

2
. There also, on p. 287, 

line 3 after first displayed formula. The integral should be over [− u, u] 

rather than over [u, − u]. 

    8. In § 107, p. 288 of the original text. The second equation in the 

second displayed formula. Replace the denominator µ on the left side 

by µ ′. 
    9. In § 109, p. 295 of the original text, line 4 from bottom. 

Magnitude δ should be very small as compared with 1/√µ rather than 

with µ. The correct statement is on p. 296, again on line 4 from 

bottom. 

    10. In § 110, p. 301 of the original text, line 5 from bottom. Replace 

maximal natural number included in s by … included in α. 

    11. In § 112/2, p. 308 of the original text, line 2 after formula (b). 

Replace chances F and F by chances E and F.  

    12. In § 112/8, p. 312 of the original text. The last term in the 

formula of Г lacks the exponent. There also, the first bracket lacks the 

term − 4g. 

    13. In § 112/12, p. 315 of the original text, line 2 after first 

displayed formula. Replace probability that magnitude γ by … 

magnitude A. 

    14. At the beginning of § 113, p. 316 of the original text. Laplace’s 

initial equations are only partly, and, for that matter, mistakenly 

mentioned. See Note 18.  

    If not stated otherwise, all these misprints/mistakes are corrected in 

the translation. 

 

    94. We will now consider formulas which are related to variable 

chances. This will lead us to prove the three main propositions, 

indicated in §§ 52 and 53 and therefore to the law of large numbers. 
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    Suppose that a series of µ = m + n successive trials is made with the 

somehow variable chances of contrary events E and F being р1 and q1 

at the first trial, р2 and q2 in the second, …, and рµ and qµ, in the last 

one. Then 

 

    р1 + q1 = р2 + q2 = … = рµ + qµ = 1. 

 

    Denote by U the probability that those events will arrive m and n 

times in some order. By the rule of § 20 U will be the coefficient of 

umvn
 in the expansion of the product

1
 

 

    X = (up1 + vq1) (up2 + vq2) … (upµ + vqµ).                  (94.1) 

 

If exp( 1 ), exp( 1),u x v= − = − −  the term Uumvn
 of that product will 

be exp[( ) 1]U m n x− − . All other terms will have exponents differing 

from the indicated so that, when multiplying the product by 

exp[( ) 1]m n x− −  and integrating over [− π, π], all the other factors 

will disappear: 

 

    

π

π

exp[ ( ) 1] 2π .X m n x dx U
−

− − − =∫   

 

    […] The factors in (94.1) are 

 

    cos ( ) sin 1.i i i iup vq x p q x+ = + − −   

 

Let 

 

    cos
2x + (pi − qi)

2
sin

2x = ρi
2
 

 

and introduce a real angle ri 

 

    (1/ρi)cosx = cosri, (1/ρi)(pi − qi)sinx = sinri 

 

so that 

 

    ρ exp( 1).i i i iup vq r+ = −   

 

    The magnitude ρi is two-valued; we will suppose it positive. For the 

sake of brevity introduce 
 

    ρ1ρ2…ρµ = Y, r1 + r2 + … + rµ = y.                    (94.2a, b) 

 

Then […]  

 

    

π

π

1
cos[ ( ) ]

2π
U Y y m n x dx

−

= − − +∫  

π

π

1
sin[ ( ) ] .

2π
Y y m n x dx

−

−
− −∫   
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[The right side is reduced to the first integral which is denoted as 

formula (94.3).]  

    Usual integration in a finite form is possible. However, if µ is not a 

large number, that formula will be useless, but if µ is very large, an 

arbitrarily approximate value of U, as shown below, can be derived 

from it. 

    95. At х = 0 each factor in formula (94.2а) equals unity, and is still 

less at any other values of х within the limits of integration. Therefore, 

when µ is very large, the product in formula (94.2а), is, in general, 

very small except for very small values of х, and if µ becomes infinite, 

Y will disappear at any finite values of х.  
    There exists an exceptional case in which all the factors of Y 

indefinitely tend to unity; the product of an infinite number of such 

factors is known to be possibly finite. Since 

 

    ρi
2
 = 1 − 4piqisin

2x, 
 

one of the chances of events E and F or their product piqi indefinitely 

decreases during the trials, but excluding that particular case, and 

having a very large µ we can consider the variable х as a very small 

magnitude and neglect the part of the preceding integral corresponding 

to other values of х.  
    Therefore, the following series arranged in powers of х2

 rapidly 

converge: 

 

    ρi = 1 − 2piqix
2 + [(2/3)piqi − 2pi

2qi
2
]x4

 − …, 

    lnρi = − 2piqix
2 + [(2/3)piqi − 4pi

2qi
2
]x4

 − …,  

    lnY = −µk2x2
 + µ[(1/3)k2

 − k′2]x4
 − … 

 

Here 

 

    µk2
 = 2∑piqi, µk′2 = 4∑pi

2qi
2
  

 

with the sums extending from i = 1 to i = µ. 

    Supposing also that х = z/√µ, considering the new variable z as a 

very small magnitude as compared with√µ, and neglecting magnitudes 

of the order of smallness of 1/µ, we get 

 

    Y = exp(− k2z2
). 

 

In addition, by the values of ρi and sinri it occurs that 

 

    ri = (pi − qi)x + (4/3)(pi − qi)piqix
3
 + … 

 

    Denote  

 

    h = (4/3µ)∑(pi − qi)piqi 

 

and let the mean chances of E and F be р and q, p + q = 1. When only 

preserving magnitudes of the order of smallness of 1/√µ,  
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    y = z(p − q)√µ + z3h/√µ,  

    cos[y − (m – n)x] = cos(zg√µ) − [z3h/√µ]sin(zg√µ), 

 

where 

 

    g = (p − m/µ) − (q − n/µ). 

 

    I substitute these values of Y and cos[y − (m – n)x] in formula 

(94.3), and note that dx = dz/√µ [see above]: 

 

    2 22
[ exp( )cos( µ )  

π µ
U k z zg dz= − −∫   

    2 2 3exp( ) sin( µ ) ].
µ

h
k z z zg dz−∫   

 

    [After transformations ] that probability becomes 

 

    
2

2 2

4

1 θexp( θ )
exp( θ ) (3 2θ )

πµ 2 µ π

h
U

k k

−
= − − + ,            (95.1)  

 

where 

 

    p − m/µ = θk√µ, q − n/µ = − θk√µ, so that g = 2θk√µ,  

 

and that probability thus corresponds to 

 

    m = pµ − θk√µ, n = qµ + θk√µ, 

 

that is, to numbers, almost proportional to the mean values p and q and 

the number µ of trials
2
. 

    96. Those m and n are natural numbers, so θ should be a multiple of 

δ = 1/k√µ or 0. At θ = 0 the formula (95.1) will indicate the probability 

1 / πµk  that exactly m/n = p/q. Denote by t a positive multiple of δ; 
substitute θ = − t and then t in that formula. Their sum 

 

    22
exp( )

πµ
t

k
−                                                     (96.1) 

 

is the probability that m and n will be respectively equal to one of the 

values  

 

    µ µ ,  µ µ .p kt q kt±m   

 

    Denote by u a given multiple of δ and assume in (96.1) t = δ, 2δ, …, 

u. The sum of the thus obtained results increased by the value of U at θ 

= 0, will be  
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    21 2
exp( ).

πµ πµ
R t

k k
= + −∑   

 

This R is the probability that m and n are contained within the limits 

 

    µ µ ,  µ µp uk q uk±m   

 

or equal to one of them. The sum extends from t = δ to u and increases 

by increments equal to δ. However, it can be replaced by the 

difference of the sums of the exponential function extending from t = δ 
to ∞ and from t = u + δ to ∞. By the Euler formula, which we had 

applied in § 91, this latter sum multiplied by δ, when approximating as 

we should, i. e., when neglecting the square of δ, will be 

 

    2 2δ
exp( ) exp( ).

2
u

t dt u
∞

− − −∫   

 

    At u = 0 the first sum extending from t = δ to ∞ and multiplied by δ, 
will be (√π − δ)/2. Therefore, subtracting this magnitude from the 

previous and dividing the difference by δ, we get the sum in the 

expression for R  

 

    2 2 21 1 1 1
exp( ) π exp( ) exp( ).

2δ δ 2 2
u

t t dt u
∞

− = − − − + −∑ ∫   

 

When taking into account the value of δ, this expression becomes 

 

    
2

22 exp( )
1 exp( ) .

π πµu

u
R t dt

k

∞
−

= − − +∫                          (96.2) 

 

    If the values of pi and qi are constant and therefore equal to their 

mean values p and q, then 2 .k pq=  Formula (96.2) and the previous 

limits of m and n will coincide respectively with the formula (79.1) 

and the limits corresponding to it. If necessary, this coincidence of 

results obtained by such differing methods can confirm our 

calculations. 

    At an insignificant value of u, such as 3 or 4, the value of R will be 

very close to unity. It is therefore almost certain that, if the number µ 

of trials is very large, the ratios m/µ and n/µ will very little differ from 

the mean chances р and q, and will approach them all the more as µ 

increases further, finally coinciding with them if µ can become 

infinite. This is the first of the two general propositions of § 52. 

    97. Suppose now that A is a thing able to take many positive and 

negative values, multiples of a given magnitude w. These values are 

contained within limits αw and βw inclusive, so that β − α + 1 is their 

number. Here, α and β are natural numbers or zeros, and, without 

considering their signs, the second of them exceeds the first. If, 

however, A can only take one value, then β = α. At each trial, made for 
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establishing A, its possible values are not equally probable. In 

addition, for the sake of greater generality, I suppose that the chances 

of one and the same value vary from one trial to another.  

    Let n be some number contained between α and β or equal to one of 

these magnitudes. Then, denote by N1 the chance of the value nw of A 

at the first trial, by N2, that chance at the second trial, etc., and let s be 

the sum of those values at µ successive trials. It is required to 

determine the probability that that sum is contained within given 

limits. Denote first of all the probability of the exact equality s = mw 

by П. Here, m is a given number situated between α и β or equal to one 

of these magnitudes.[Poisson deleted the words which I italicized but 

after that the phrase became incomprehensible.] 

 

    Compile the product 

 

    1 2 µ... ,nw nw nwN t N t N t∑ ∑ ∑   

 

where t is an indefinite magnitude and the sums extend over all the 

values of n from α tо β. Expand this product in powers of tw
, and it will 

be seen that П becomes the coefficient of tmw
. This is evident for µ = 1. 

Let now µ = 2 and denote by n′w and n″w the exponents of t, which 

that magnitude will take in the corresponding sums. The thing A can 

evidently take the value mw in as many different ways as there are 

different solutions of the equation n′+ n″ = m with n′ and n″ being 

contained between α and β. The probability of each way is equal to the 

product of the values of N1 and N2 corresponding to each pair of 

numbers n′ and n″. Therefore, the composite probability of the equality 

s = mw is expressed by the coefficient of tmw
 in the product of those 

first two sums. This consideration can easily be extended to µ = 3, 4, 

… If all the magnitudes N1, N2, … coincide, their product will be the 

power of µ of one of the polynomials corresponding to the sums ∑, 

and this case was studied in § 17.  

    By a similar reasoning, when assuming that exp(θ 1)wt = −  and 

denoting by Х the product of µ sums ∑, we get
3
  

 

    

π

π

1
exp( θ 1) θ.

2π
X m d

−

Π = − −∫   

 

Let i and i1 be two given numbers and Р, the probability that the sum s 

is contained within iw and i1w or equal to one of those limits. Then the 

value of Р can be established by П when assuming that m = i, i + 1, 

…, i1. And the sum of the values, corresponding to exp( θ 1),m− − will 

be expressed in the following way […].  

    For simplifying, I suppose that w is infinitely small, i and i1 are 

infinite numbers, and  
 

    iw = c − ε, i1w = c + ε, θ = wx, dθ = wdx,  
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where с и ε are given constants and ε is positive so that the inequality 

i1 > i, implied in the expression of Р, persists. The limits of the integral 

with the new variable х are infinite. Then, sin(θ/2) = wx/2, and, when 

neglecting the numbers ± 1/2 as compared with i and i1, Р becomes 

 

    
1

exp( 1)sin ε .
π

dx
P X cx x

x

∞

−∞

= − −∫                                       (97.1)  

 

    The possible values of A increase by infinitely small increments and 

their number ought to be supposed infinite with the probability of each 

being infinitely low. Denote given constants by а and b, and the 

continuous variable by z, and let  

 

    α ,  β ,  ,  exp( 1).nww a w b nw z t xz= = = = −   

 

At the same time let 

 

    N1 = wf1z, N2 = wf2z, … 

 

    Each sum included in Х, becomes a definite integral over [а, b]. 

Assuming w = dz, we conclude that 

 

    1 1 1

1 2 µ...

b b b
xz xz xz

a a a

X e f zdz e f zdz e f zdz− − −= ∫ ∫ ∫                (97.2) 

 

becomes the product of µ factors and should be substituted in formula 

(97.1) instead of Х.  

    98. That formula expresses the probability that after µ trials the sum 

of the values of A will be contained within the given magnitudes c − ε 
and c + ε. At the n-th trial the infinitely small chance of value z will be 

fnzdz, with all possible values of A being contained, by the hypothesis, 

within the limits a and b, and one of these values certainly taking place 

at each trial. Therefore 

 

    1.

b

n

a

f zdz =∫   

The function fnz can be continuous or discontinuous, but positive 

within the limits a and b. 

    If the chance of each value z remains constant during the trials, this 

function is independent from n. Denoting it by fz, we have 

 

    

µ

1 ,  1.

b b
xz

a a

X e fzdz fzdz−
 

= = 
 
∫ ∫   

 

And if all the values of A are equally probable, fz will be a constant, 

and, since it should satisfy the last equation, equal to 1/(a – b). 

    Let a = h – g, b = h + g, then 
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    1 11 sin
,  ,

2

b
xz hx

a

gx
fz e fzdz e

g gx
− −= =∫   

 

and formula (97.1) becomes […]  

 

    

µ

0

2 sin sinε
cos[(µ ) ] .

π
gx x

P h c x dx
gx x

∞
 

= − 
 
∫   

 

    [After long transformations Poisson obtained in § 99]  

 

    µ 12(2 ) ,
µ!

g P
Γ − Γ

=                                                  (99.1)  

    µ µ(γ µ ε) µ(γ µ 2 ε)g g gΓ = ± + + + − + ±m  

    2 µ 3 µ
µ µ(γ µ 4 ε) (γ µ 6 ε) ...C g g C g g+ − + + − + +m ,  

 

with Г1 equal to Г with a changed sign of ε. The equation (99.1), as 

was required, represents the value of Р in a finite form. 

    100. If, when there is only one observation, µ = 1, Р is the 

probability that the value of A, which should by the hypothesis be 

contained within the given limits а and b or h − g and h + g, will after 

the observation be within limits с − ε and с + ε. If these latter include 

the former, the equality Р = 1 should be satisfied. If, however, the 

former include the latter, Р ought to be the ratio of the intervals of the 

latter, 2ε, to the former, 2g. Then, if both the latter limits are beyond 

the interval of the former, then necessarily Р = 0; if с − ε is within the 

interval h − g and h + g, and с + ε is beyond it, then Р should be equal 

to the ratio of the difference [(h + g) − (c − ε)] to the interval 2g. 

Finally, if с + ε is within the interval h − g, h + g, and  

с − ε is beyond it, Р should be equal to the ratio of the difference  

[(с + ε) − (h − g)] to the same interval. Here are these values of Р: 

 

    
ε ε ε

1,  ,  0,  ,  .
2 2

h g c c h g
P P P P P

g g g

+ − + + − +
= = = = =   

 

    They are derived from equation (99.1), which at µ = 1 becomes 

 

    1

1
( ).

4
P

g
= Γ − Γ   

 

In addition, γ = h − c, so that 

 

    ( ε) ( ε),h g c h g cΓ = ± + − + − − +m                     (100.1а) 

    1 ( ε) ( ε).h g c h g cΓ = ± + − − − − −m                    (100.1b) 

 

    In the first of the five cases c + ε > h + g and c − ε < h − g. In 

formulas (100.1а, b) the magnitudes in brackets are positive and 
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negative respectively. Therefore, in the first formula we ought to 

choose the superior signs, and inferior signs in the second. 

    In the second case h + g > c + ε, h − g < c − ε. Superior signs ought 

to precede the first terms of both formulas, and inferior signs, to 

precede the second terms.  

    In the third case h − g > c + ε and we ought to choose superior 

signs in both formulas. Here, however, the condition h + g < c − ε is 

also possible, and then we ought to choose the inferior signs, and  

Р = 0. 

    In the fourth case c − ε > h – g, c − ε < h + g, c + ε > h + g. We 

ought to choose the inferior signs in the second formula and, in the 

first formula, the superior sign before the first term and the inferior 

sign before the second. 

    In the fifth case c − ε < h − g, c + ε > h − g, c + ε < h + g. We ought 

to choose the superior signs in the first formula and the superior sign 

before the first term of the second formula and the inferior sign before 

its second term. 

    Here are the results of all those cases. 

 

    1. 12 ,  2 ,  1. g g PΓ = Γ = − =  

    2. 12 2 2ε,  2 2 2ε,  ε/ .h c h c P gΓ = − + Γ = − − =   

    3. 12 ,  2 ,  0.g g PΓ = Γ = =   

    4. 1

ε
2 2 2ε,  2 ,  .

2

h g c
h c g P

g

+ − +
Γ = − + Γ = − =  

    5. 1

ε
2 ,  2 2 2ε,  .

2

c h g
g h c P

g

+ − +
Γ = Γ = − − =  

 

    The values of Р when only one observation is available can also be 

verified by formula (97.1) for the general case. When considering f1z 

as a discontinuous function disappearing at all values of z beyond the 

given limits a and b, the probability Р that the value of A should be 

contained within the limits с − ε and с + ε will evidently be 

 

    

ε

1

ε

c

c

P f zdz
+

−

= ∫ .  

 

    At  µ = 1, by formulas (97.2) and (97.1),  

 

    1

1

b
xz

a

X e f zdz−= ∫ ,  

 

and […]  

 

    1

0 0

1 sin[( ε ) ] sin[( ε ) ]

π

b

a

c z x c z x
P dx dx f zdz

x x

∞ ∞ + − − −
= − 

 
∫ ∫ ∫ . 
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However, 
0

sin γ π
2

x
dx

x

∞

= ±∫  

 

for a positive and negative constant γ. Therefore, when the signs of  

с + ε − z and с − ε − z coincide or are contrary, the indicated difference 

will be equal to 0 or π, and the integral with variable z will disappear at 

all values of z either larger than с + ε, or smaller than с − ε. It ought 

only to extend between а and b, and between с − ε and с + ε. And 

since we suppose that f1z is zero beyond the first limits, the value of Р 

is reduced to the integral of f1z in the limits from z = с − ε to с + ε, 
which was indeed required to verify. 

    101. If µ is a very large number, we can apply transformations 

similar to those made in § 95 for replacing formula (97.1) by another 

one which will establish an approximate value of Р. We note first of 

all that it is possible to write formula (97.2) in the form 

 

    1 2
11 1

1 1 1 2 2 2 µ µ µ... .

b b b
xzxz xz

a a a

X e f z dz e f z dz e f z dzµ −− −= ∫ ∫ ∫  

 

[After transformations]  

 

    
1 ,yX Ye −=  

    ρ1ρ2…ρµ = Y, r1 + r2 + … + rµ = y. 

 

    Substituting Х in formula (97.1), we get […] 

 

    
2

cos( )sin ε .
π

dx
P Y y cx x

x

∞

−∞

= −∫                                  (101.1) 

 

    […] When µ is a very large number and very small values of х are 

excluded, the product Y, equal to unity at х = 0, in general becomes a 

very small fraction and disappears if µ can be infinite. Just like in § 95, 

without considering the special case
4
, in which Y approaches a non-

zero magnitude, we assign only very small values to x, see the integral 

in formula (101.1). Just beyond these values Y becomes insignificant, 

so that if Y = exp( − θ2
), the variable θ can be supposed infinite there.  

    Therefore, when replacing the variable х by θ, the limits of the 

integral ought to be θ = 0 and ∞. For representing х and dx through θ 

and dθ, I expand the previous expressions
5
 of ρncosrn and ρnsinrn in 

powers of х and replace zn by z in the integral. Assuming  

 

    2 3,  ,  ,...,

b b b

n n n n n n

a a a

zf zdz k z f zdz k z f zdz k′ ′′= = =∫ ∫ ∫   

 

we get converging series  

 

    
2 4

ρ cos 1 ...,
2! 4!

n n n n

x x
r k k′ ′′′= − + −  

3

ρ sin ...
3!

n n n n

x
r xk k′′= − +  
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    Then, I introduce 

 

    (k′n − k2
n)/2 = hn, (k″n − 3knk′n + 2kn

3
)/6 = gn, … […] 

    ∑kn = µk, ∑hn = µh, ∑gn = µg, ∑(ln − hn
2
/2) = µl, … 

 

Here and below the sums extend from n = 1 to µ. 

    The following formula takes place 

 

    lnY = − θ2
 = − x2

µh + x4
µl − …, 

 

so that 

 

    
3

2

θ θ
...

µ 2µ µ

l
x

h h h
= + + , 

2

θ θ θ
...

θ µ
dx d l d

x h
= + +    

 

    [After transformations it occurs that] 

 

    2

0

2 θ
exp( θ ) cos[(µ ) ]sin ε

π θ
d

P k c x x
∞

= − − +∫   

    2 2

0

2
exp( θ ) sin[(µ ) ]sin ε  θ θ,

π µ

g
k c x x d

h h

∞

− −∫        (101.2) 

 

and 

 

    22
1 exp( )

π u

P t dt
∞

= − −∫                                         (101.3) 

 

expresses the probability that, having a very large number µ of trials, 

the sum s of the values of А is contained within the limits 

 

    µ 2 µ ,  /µ.k u h k c=m                                             (101.4) 

 

Dividing that sum by µ, we can determine the corresponding 

probability for the mean s/µ.  

    102. Even if u is insignificant, the probability (101.3) will very little 

differ from unity. We conclude therefore that the ratio s/µ probably 

very little differs from k. That magnitude is the sum of the possible 

values of A multiplied by their chances at each corresponding trial and 

divided by the number µ of these trials, i. e., the sum of the indicated 

values, multiplied by their corresponding mean chances; our 

conclusion coincides with the proposition of § 53, which is thus 

proved in all generality. 

    And so, given a very large number µ of trials, there invariably exists 

a probability, very close to certainty, that the mean value of A very 

little differs from k. The difference (s/µ − k) indefinitely decreases 

with the increase of µ and will become exactly zero if that number is 

infinite. 
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    A plane curve with z and fnz as its current coordinates represents the 

law of probabilities of the values of A at the n-th trial, so that the 

element fnzdz of the area of that curve will be the infinitely low 

probability of the value of A expressed by the abscissa z. A curve with 

current coordinates z and (1/µ)∑fnz will express the law of 

probabilities of the mean value of A in a series of µ trials. Like the 

complete area of that curve from a до b equal to unity, the integral 

 

    1.

b

n

a

f zdz =∫                                                               (102.1) 

 

    Denote by ς the abscissa of its centre of gravity, then 

 

    
1

 ς.
µ

b

n

a

k zf zdz= =∑∫   

 

It is indeed equal to k, to which the mean value of A invariably 

converges. It disappears if at each trial the values of A equal in 

magnitude and contrary in sign are equally probable, that is, if 

fn(− z) = fnz for all values of n and z.  
    The constant h should be positive. 

[Poisson next proves the equality] 

 

    24 ( ) .

b b

n n n

a a

h z z f zf z dzdz′ ′ ′= −∫ ∫  

The magnitude 4hn is obviously positive and can not disappear since 

all the elements of the double integral are positive. The same holds for 

∑hn and h.  

    In the simplest case all the possible values of A during the trials 

remain equally probable. Then the equality fnz = 1/(b − a) will take 

place at any n and therefore
6
 

 

    kn = k = (a + b)/2, hn = h = (a2
 + ab + b2

)/6 − (a + b)
2
/8  

 

and the limits of s/µ corresponding to probability Р will be 

 

    
1 ( ) 2

( ) ,  or  if .
2 6µ 6µ

u b a ub
a b a b

−
+ = −m m           (102.2а, b) 

 

Let for example (§ 82) u = 0.4765, then the mean s/µ will with the 

same probability be within or beyond the limits 0.389b/√µ. For  

µ = 600 we can bet even money on s/µ not to deviate from zero more 

than by 0.4765b/3·10 ≈ 0.016b.  

    Such is the case in which at each trial point M with equal 

probability arrives anywhere on the segment of length 2b. For a very 

large number µ of trials the mean distance of M from the segment’s 

midpoint has probability P of not exceeding the fraction 2u/ 6µ  of b. 
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And if at each trial the point M arrives on a circle of radius b with its 

equal distances from the circle’s centre being equally probable, then, 

evidently, the probability fnzdz of distance z will be proportional to that 

z. Suppose that that function is constant at all trials and note that all the 

possible distances are contained within 0 and b. Then, for satisfying 

condition (102.1), it will be necessary to assume that fnz = 2z/b2
. 

Consequently
7
, 

 

    kn = k = 2b/3, 2hn = 2h = b2
/2 − 4b2

/9 

 

and Р will be the probability that for µ trials the mean distance of M 

from the centre of the circle will be contained within the limits 

 

    
2

.
3 3 µ

b ub
m   

 

    103. We (§ 97) supposed that the thing A can take all, even if not 

equally probable values between а and b, but the formulas derived 

above are just as applicable to the case in which the number of those 

possible values is restricted. For proving this, it is sufficient to assume 

that the functions f1z, f2z, …, which express the laws of the 

probabilities of the values of А in µ successive trials, are 

discontinuous
8
. 

    Suppose that c1, c2, …, cν are ν values of z contained within a and b, 

and that the function fnz disappears at any value of z, not infinitely 

little deviating from one of the magnitudes c1, c2, …, cν. Denote an 

infinitely small magnitude by δ and suppose also that 

 

    
1 2

1 2

+δ+δ +δ

1 2

δ δ δ

γ , γ ,...,  γ .

cc c

n n n

c c c

f zdz f zdz f zdz
ν

ν

ν

− − −

= = =∫ ∫ ∫   

 

The thing A will therefore only take ν given values c1, c2, …, cν, 
whose probabilities at the n-th trial are γ1, γ2, …, γν and can vary from 

one trial to another, that is, vary with n. However, one of those values 

certainly takes place at the n-th trial, and the equality  

 

    γ1 + γ2 + … + γν = 1 

 

should hold for all values of n from 1 to µ. 

    In addition, that sum is equal to the integral of fnz over [a, b] and the 

derived equation replaces the condition (102.1). [After transformations 

it occurs that]  

 

    1 1 2 2 ν νγ  + γ  +...+ γ , 

b

n

a

zf zdz c c c=∫  

    2 2 2 2

1 1 2 2 ν νγ  + γ  +...+ γ , 

b

n

a

z f zdz c c c=∫  
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so that the magnitudes k and h from § 101 become 

 

    1 1 2 2 ν ν

1
(γ  + γ  +...+ γ ), 

µ
k c c c= ∑  

    2 2 2

1 1 2 2 ν ν

1
[(γ  + γ  +...+ γ )  

2µ
h c c c= −∑ 2

1 1 2 2 ν ν(γ  + γ  +...+ γ ) ]c c c . 

 

    The sums are extended over the µ trials and the formula (101.3) will 

express the probability that the sum s of the values of A in that series 

of trials will be contained within the limits (101.4), where k и h should 

be their determined values which are easy to calculate if the ν possible 

values of A and their probabilities are given for each trial. 

    And if these probabilities are constant, and moreover, equal one to 

another, their common value will be 1/ν and then simply 

 

    k = (c1 + c2 + … + cν)/ν,  
    h = [ν(c1

2
+ c2

2
+ … + cν

2
) − (c1 + c2 + … + cν)

2
]/2ν2

. 

 

    Suppose that the possible values of A are the 6 numbers indicated 

on the faces of a usual die thrown a very large number µ of times 

successively. Neglecting the possible small differences between the 

chances of those faces, we have  

 

    ν = 6, c1 = 1, c2 = 2, c3 = 3, c4 = 4, c5 = 5, c6 = 6,  

    k = 7/2, h = 35/24, 

 

and the formula (101.3) expresses the probability that the sum s of the 

numbers arrived after those µ trials will be contained within the limits 

 

    
1 70µ

7µ
2 3

u
 
 
 

m .  

 

    For u = 0.4765 and µ = 100, the sum s will with equal probabilities 

be contained within or beyond the limits 350 ± 11.5.  

    104. Consider now, like in § 52, an event E of some nature which 

can only arrive due to ν different and incompatible causes C1, C2, …, 

Cν. Suppose that cause Ci provides chance ci to the occurrence of E if it 

acted, and that γi is the probability of that action. The chance of E can 

therefore vary from one trial to another and take ν different values c1, 

c2, …, cν if only their probabilities γ1, γ2, …, γν and the causes C1, C2, 

…, Cν do not change. Assuming such a chance of E, there will exist 

probability Р (101.3) that for a very large number µ of trials its mean 

value will be contained within the limits determined by (101.4). There, 

k and h take their first values of § 103 provided that C1, C2, … and γ1, 
γ2, …remain constant during the trials. Therefore, 

 

    k = γ1c1 + γ2c2 + … + γνcν,                                                (104.1)  

    h = [(γ1c1
2
+ γ2c2

2
+ … + γνcν

2
) − (γ1c1 + γ2c2 + … + γνcν)

2
]/2  
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and it is seen that they are independent from µ, whichever is the 

number of the magnitudes included in these formulas or how unequal 

they are. 

    With a small value of u the probability P, that the mean chance of 

the event E probably very little differs from the sum of the products in 

formula (104.1), indefinitely approaches that sum as µ increases 

further, and will be very close to certainty. In this conclusion consisted 

the second of the two general propositions of § 52, which we still had 

to prove. 

    In two series of very large numbers of µ and µ ′ trials in which the 

event E arrived m and m′ times, the ratios m/µ and m′/µ ′ probably very 

little differ from the corresponding mean chances of E (§ 96). It is 

therefore likely that they very little differ from the previous value of k 

(104.1) and therefore from each other since the values of k in those 

two series coincide if only the causes C1, C2, … did not change in the 

interval between those series. But how probable is a small given 

difference between m/µ and m′/µ ′? We will consider this important 

problem below. 

    105. In most problems to which the formula (101.3) is applicable,  

the law of probabilities of the values of A is unknown, and the 

magnitudes k и h, included in the limits of the mean value of A can not 

be determined in advance. However, a long series of trials can serve 

for eliminating those unknowns, which are included in the limits of the 

mean value of A, from another such series, also consisting of a large 

number of trials and subjected to the action of the same causes 

attaching the same chance to each value of A and having the same 

probability themselves. A complete solution of this problem is the 

subject of the calculations below. 

    I suppose that in formula (101.2) c = ε […] and determine under that 

condition the probability that the sum s of the values of A in µ trials is 

contained within the limits of 0 and 2ε. Then, the derivative of Р with 

respect to ε […] expresses the infinitely low probability that exactly  

s = 2ε. Let also 

 

    2ε µ 2 µ ,  ε µ .k h d hdν ν= + =  

 

Denote by wdν the corresponding value of (dP/dε)dε, where 

magnitudes of the order of smallness of 1/µ are neglected. Then x can 

be reduced to the first term θ/ hµ  of its expression in § 101. And 

[after transformations] 

 

    
2

,
µ µ

s v h
k= +   

 

where
9
 ν is positive or negative, but very small as compared with √µ.  

    Denote by C1, C2, …, Cν all the mutually incompatible causes, 

whether known or not, which are able to provide the thing A one of its 

possible values, and by γ1, γ2, …, γν their respective probabilities 

whose sum is unity. If the number of the causes is infinite, each of 

those probabilities is infinitely low. All the values of A are contained 
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between а and b; and if their number is infinite, the chance of each 

provided by each of the indicated causes will be infinitely low. Denote 

by Zidz the chance attached by cause Сi, if certain, to the value z of the 

thing А. The integral 

 

    ,

b

n

a

zf zdz∫                                                                     (105.1) 

 

concerning the n-th trial can take ν values corresponding to the 

integrals of zZ1, zZ2, …, zZν over [a, b] with the probabilities of these 

values being the probabilities of their causes. For some trial the 

probability γi expresses the chance of the integral of zZi. The infinitely 

low probability of the mean value 

 

    
1

µ

b

n

a

zf zdz∑∫  

 

is therefore determined by the preceding rule about the mean value s/µ 

of a thing in a very large number µ of trials: s is the sum of µ unknown 

values of integral (105.1) in that series of trials, and k and h should be 

determined by its ν possible values. 

    Adopt the ν values of the integrals of zZ1, zZ2, … as c1, c2, …, cν of 

§ 103 and introduce for the sake of brevity 
 

    γ γ ,  

b

i i

a

zZ dz=∑ ∫   

    

2 2

1 1
β γ γ ,

2 2

b b

i i i i

a a

zZ dz zZ dz
   

= −   
   

∑ ∑∫ ∫       (105.2)  

 

where
10

 the sums extend from i = 1 to ν. By the formulas of that 

section, these γ and β independent from µ should indeed be assumed as 

k and h. Denote now by ν1 a positive or negative magnitude, very 

small as compared with √µ, and by V1, a polynomial only containing 

odd powers of ν1, and introduce an infinitely small magnitude w1dv1  

 

    21
1 1 1 1

1
[1 ]exp( )

π µ

V
w dv v dv= − − ,  

 

which is the probability of the equation 

 

    12 β1
γ

µ µ

b

n

a

v
zf zdz = +∑∫ .                               (105.3)  

 

    Consider also the magnitude 
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2

21 1

2 2

b b

n n

a a

z f zdz z f zdz
 

−  
 

∫ ∫   

 

as a thing that can take v values in accordance with causes C1, C2, …, 

Cν with probabilities at each trial coinciding with the probabilities of 

these causes. In addition, denote by v%  such a positive or negative 

magnitude that / µv%  will be a very small fraction, and by V% , a 

polynomial only containing odd powers of v% , introduce magnitude 

  

    
21

[1 ]exp( )
π µ

V
wdv v dv= − −

%

% % % %   

 

and, for the sake of brevity, let 

 

    

2

21 1
α γ γ .

2 2

b b

i i i i

a a

z Z dz zZ dz
 

= −  
 

∑ ∑∫ ∫  

 

    The expression wdv% %  will be the probability that the mean of µ 

values of the magnitude under consideration, 

 

    

2

21 1
,

2µ 2µ

b b

n n

a a

z f zdz zf zdz
 

−  
 

∑ ∑∫ ∫  

 

will only differ from α by a definite magnitude of the order of 

smallness of 1/√µ, whose determination is meaningless. This mean, 

however, simply coincides with h from § 101. And, when neglecting 

magnitudes of the order of 1/µ, it will be sufficient to assume α instead 

of h in the second term of the previous value of s/µ, already of order 

1/√µ . Thus,  

 

    
2 α

,
µ µ

s v
k= +  

 

and, if only the assumed value of h is certain, the probability of this 

equality is again wdv. However, this value only has probability wdv% % , 

depending on the variable v% , which does not enter s/µ. Therefore, the 

composite probability of that last value is the product of wdv and the 

sum of the values of wdv% % , corresponding to all possible values of v% . 

These values should be very small as compared with √µ, but, because 

of the exponential factor of wdv% % , it is possible to extend its integral 

from v%  = − ∞ до ∞ without appreciably changing it. Its part 

depending on V%  will disappear since it consists of pairs of elements 

equal in magnitude and contrary in sign, so that simply 

    1.wdv
∞

−∞

=∫ % %   
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    Therefore, the probability of the preceding equation will invariably 

be wdv, as though the assumed approximate value of h is certain. Note 

also that the mean making up the left side of equation (105.3) 

coincides with magnitude k from § 101, and w1dv1 is the probability 

that  

 

    12 β
γ

µ

v
k = + . 

 

Substituting this value in s/µ, we get 

 

    12 β 2 α
γ

µ µ µ

vs v
= + + , 

 

that is, the probability that for each pair of the values of v и v1 this last 

equation is the product wdvw1dv1. Neglecting the term with µ in the 

denominator, I denote it by σ: 

 

    2 2

1 1 1

1 1
σ [1 ( )]exp( ) .

π µ
V V v v dvdv= − + − −   

 

    In addition, denote by θ a positive or negative magnitude, very 

small, like v and v1, as compared with √µ. Then we will be able to 

suppose that 

 

    1 β α θ α βv v+ = + . 

 

If desired, v1 и dv1 can be replaced in the previous differential formula 

by this new variable: 

 

    1 1

θ α β α βα
,  θ.

β β β

v
v dv d

+ +
= − =   

 

    [After transformations it occurred that the equation] 

 

    
2θ α β

γ
µ µ

s +
= +                                             (105.4) 

 

only contains the variable θ so that its composite probability is the sum 

of the values of σ at all positive and negative values which it is 

possible to provide for the other variable, v. Furthermore, owing to the 

exponential included in σ, it will be possible to extend this integral [?] 

from v = − ∞ to ∞ without appreciably changing its value. 

    And so […] 
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    2 21 1
η θ exp( θ ) θ  χ exp( θ ) θ

π πµ
d d d= − − −   

 

is the probability of equation (105.4); χ is a polynomial only 

containing odd powers of θ. It is required to eliminate the unknown  

(α + β) from that equation. This is possible since the expression of  

(α + β) is reduced to  

 

    

2

21 1
α β γ γ

2 2

b b

i i i i

a a

z Z dz zZ dz
 

+ = −  
 

∑ ∑∫ ∫              (105.5) 

 

and is independent from the sum 2γ [ ]

b

i i

a

zZ dz∑ ∫ which is contained in 

both α and β. We can therefore calculate (α + β) independently from 

its second term. 

    106. [Poisson introduces] 

 

    21
φ

µ

b

n

a

z f zdz= ∑∫   

 

[and proves that] there exists probability wdv% %  that 

 

    21
γ

2

b

i

a

z Zdz∑ ∫   

 

only differs from φ/2 by a determined magnitude of the order of 

smallness of 1/√µ. 

    Moreover, if invariably neglecting terms containing µ in the 

denominator, then, like in § 105, it is possible to replace the first term 

of the expression α + β by φ/2, without changing at all the probability 

ηdθ of this expression. The other term of the value of α + β is exactly 

γ2
/2, so that  

 

    α + β = φ/2 − γ2
/2, 

 

and the equation (105.4) becomes 

 

    
2θ 2φ 2γ

γ
µ µ

s −
= + . 

 

    Let now Z be a given function of z. The analysis in §§ 97 and 101, 

as also the expression wdv from § 105, are easily extended on the sum 

of the values of Z in µ trials under our consideration. Suffice it to 

replace A by another thing A1 taking the same values as the function Z. 

An infinitely low probability of some value of A1 is equal to that of the 

corresponding value of z, and at the n-th trial it will be fnzdz. Denote 

by k1, h1, g1, … the magnitudes now pertaining to A1, which in 
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§ 101 concerned A and were denoted by k, h, g, …, then  

 

    11
1

2ν

µ µ

hs
k= +  

 

and if Z = z2
 

 

    2

1

1
 φ.

µ

b

n

a

k z f zdz= =∑∫   

 

    In the preceding expression of s/µ we may assume to within our 

degree of approximation that φ = s1/µ. And we are assured, just like in 

§ 105, that the probability of that expression does not change, and that 

ηdθ remains the infinitely low probability of the equation  

 

    

2 2 2

1 1θ 2 /µ 2γ θ 2 /µ 2 /µ
γ  or γ

µ µµ µ

s s ss s− −
= + = + . 

 

This can be derived from the previous when once more neglecting 

magnitudes of the order of smallness of 1/µ.  

    I denote by λn the value of A at the n-th trial and introduce for the 

sake of brevity 

 

    ∑λn/µ = λ, ∑(λn− λ)
2
/µ = l2

/2.  

 

The following equalities are identities: 

 

    

2 2

1 1
λ λ (λ λ)

,  ,  
µ µ µ µ µ µ µ

n n ns s s s −
= = − =
∑ ∑ ∑

 

 

and the preceding equation becomes 

 

    
θ

γ
µ µ

s l
= + . 

 

    Therefore, when denoting by u a given positive magnitude, the 

integral of the probability ηdθ of this equation over [− u, u] will 

express the probability that s/µ is contained within the limits  

γ m  ul/√µ. Denoting this probability by Г and taking account of the 

expression ηdθ, we get 

 

    2 21 1
exp( θ ) θ χ exp( θ ) θ

πµ

u u

u u

d d
π − −

Γ = − − −∫ ∫ .  

 

However, χ is a polynomial only containing odd powers of θ, so the 

second integral disappears, and Г coincides with the probability Р as 

derived in formula (101.3).  



 173 

    This formula thus expresses the probability that the limits m  ul/√µ, 

which after the trials do not anymore depend on any unknowns, 

contain the difference between the mean value s/µ of A and the special 

magnitude γ. This mean indefinitely approaches γ and reaches it if µ 

becomes infinite with the causes C1, C2, …, Cν of the possible values 

of A remaining invariable. 

    107. Suppose that two series of large numbers of trials µ and µ ′ are 

made. Denote the sums of the values of A in these series by s and s′, 
with λn and λ′n being the values of A at the n-th trials. Let 

 

    ∑λn/µ = λ, ∑(λn− λ)
2
/µ = l2

/2, ∑λ′n/µ ′ = λ′, ∑(λ′n− λ′)2
/µ ′ = l′2/2. 

 

The sums extend over all the trials of each series, i. e., from n = 1 to µ 

in the first series, and from n = 1 to µ ′ in the second. If the causes C1, 

C2, …, Cν did not change between the series, γ (105.2) will also remain 

invariable. Denote by θ and θ′ positive or negative variables, very 

small as compared with √µ and √µ ′. Equations concerning the mean 

values of A in these series will be
11

  

 

    
θ θ

γ ,  γ
µ µµ µ

s l s l′ ′ ′
= + = +

′ ′
,                                      (107.1) 

 

and their probabilities ηdθ and η′dθ′  
 

    21 χ
η θ [1 ]exp( θ ) θ, 

π µ
d d= − −  

    

21 χ
η θ [1 ]exp( θ ) θ .

π µ
d d

′
′ ′ ′ ′= − −

′
 

 

Here, χ and χ′ are polynomials only containing odd powers of θ and θ′. 
And if the series are composed of different trials, s/µ and s′/µ ′ can be  

considered as independent events. By the rule of § 5 the probability of 

their simultaneous occurrence is the product of ηdθ and η′dθ′. The 

same takes place for any combination of equations (107.1) and in 

particular for their difference. […] And so, neglecting terms with 

µµ′  in the denominator, we obtain the probability of that difference 

for each pair of the values of θ and θ′ 
 

    2 21 χ χ
ψ ηη θ θ [1 ]exp( θ θ ) θ θ

π µ µ
d d d d

′
′ ′ ′ ′≡ = − − − −

′
.   (107.2) 

 

    Just like in § 105, I assume that 

 

    
2 2µ µθ θ

µ µ µµ

t l ll l ′ ′′ ′ +
− =

′ ′
, 

 

so that 
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2 2µ µ

µ µ µµ

t l ls s ′ ′′ +
− =

′ ′
. 

 

    […] Then, I replace θ in equation (107.2) by a new variable t, so let  

 

    
2 2 2 2µ µ θ µ µ µ

θ ,  θ
µ µ µ

t l l l l l
d dt

l l l

′ ′ ′ ′ ′+ +
′ ′= + =

′ ′ ′
. 

 

Therefore 

 

    
2 2

2 3θ µ µ
ψ (1 )exp( θ )

π µ

dtd l l
t

l

′ ′+
′= − Π − −

′
, 

 

where П is a polynomial whose each term contains an odd power of t 
or θ. The difference s′/µ ′ − s/µ only contains the variable t, and its 

probability is equal to the integral of ψ over all the values of the other 

variable, θ. Because of the exponential included in ψ, that integral can 

be extended from θ = − ∞ to ∞ without appreciably changing its value. 

Assuming therefore that θ′ = t′, dθ′ = dt′ and denoting by П′ the 

appropriately changed П, we get  

 

    
2 21

ψ (1 )exp( )
π

t t dt dt′ ′ ′= − Π − − . 

 

    [After transfomations it occurs that]  

 

    
2 2µ µ

µµ

u l l′ ′+

′
m  

 

are the limits within which the difference s′/µ ′ − s/µ is contained with 

probability 

 

    2

0

2
exp( )

π

u

t dt∆ = −∫ .  

 

This probability coincides with the value of Р as derived in formula 

(101.3), so Р is the probability that the difference of the mean values 

of A in two long series of trials will be contained within limits 

including nothing unknown. 

    Assigning a value for u sufficient for Р to differ very little from 

unity, and discovering that the difference mentioned is beyond the 

established limits, we can justifiably conclude that between the series 

of trials the causes С1, С2, …, Сν of the possible values of A did not 

remain invariable, so that the probabilities γ1, γ2, …, γν of these causes 

or chances which they provide for the different values of A underwent 

some changes. 
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    In accord with what was said in § 106, each of the magnitudes l and 

l′ should likely very little differ from the unknown magnitude 

2 α β+ , constant in both series of trials. It is therefore very probable 

that they very little differ from each other. Without appreciably 

changing either the limits indicated above or their probability, we can 

therefore assume that l′ = l. In a future series of trials there will be 

probability P, determined by the formula (101.3), that the limits of the 

mean value s′/µ ′ of A are 

 

    
µ µ

.
µ µµ

uls ′+

′
m  

 

At each given value of u these limits only depend on the results of the 

accomplished first series of trials. 

    At one and the same value of u, that is, with the same level of 

probability, the interval between these limits is larger, in the ratio of 

µ µ  to µ′ ′+  than for the difference γ − s/µ. If µ ′ is a very large 

number as compared with the very large number µ, the intervals for 

both series almost coincide. 

    108. If two series of µ and µ ′ trials are made for measuring the same 

thing by different instruments having equally probable errors of equal 

magnitudes and contrary signs, the mean values s/µ and s′/µ ′ derived 

from those series will indefinitely tend to one and the same magnitude 

which will be the veritable value of A (§ 60)
12

. In this case, the 

unknown γ will therefore be the same in both series and the means s/µ 

and s′/µ ′ will likely differ only very little.  

    However, the values of the unknown α + β in these series can very 

much differ one from another and then l and l′ will be quite unequal. 

The values of these magnitudes are known and it is possible to require 

how best to combine the means s/µ and s′/µ ′ for establishing the limits 

γ or the veritable value of A. 

    So I denote by g and g′ indefinite magnitudes whose sum is unity 

and add up the equations (107.1), at first multiplying them by g and g′ 
respectively:  

 

    
θ θ

γ
µ µ µ µ

gs g s gl g l′ ′ ′ ′ ′
= + − −

′ ′
.  

 

In accord with the above, the probability of the derived equation at any 

pair of values of θ and θ′ is ψ, and from calculations similar to those 

just made it follows that Р, as given by (101.3), expresses the 

probability that the unknown γ is contained within the limits  

 

    

2 2 2 2µ µ
.

µ µ µµ

u g l g lgs g s ′ ′ ′′ ′ +
+

′ ′
m
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    If desired that for the same probability P, i. e., for each given value 

of u, the interval between these limits becomes as short as possible, g 

and g′ should be determined by equating to zero the derivative of the 

coefficient of u with respect to these magnitudes. Since 

g + g′ = 1 and dg′ = − dg, it turns out that 

 

    
2 2

2 2 2 2

µ µ
,  ,

µ µ µ µ
l l

g g
l l l l

′ ′
′= =

′ ′ ′ ′+ +
  

 

and the tightest limits of γ will be 

 

    
2 2

2 2 2 2
  ,

µ µ µ µ

sl s l ull

l l l l

′ ′ ′+

′ ′+ ′ ′+
m  

 

with formula (101.3) as previously indicating their probability.  

    It is easy to generalize this result on any number of series of 

numerous observations made by different instruments for measuring 

one and the same thing A. Suppose that the magnitudes µ, s, l 
concerning the first series are denoted by µ ′, s′, l′, µ″, s″, l″, … in the 

second, the third, … series. Suppose also that  

 

    
2

2 2 2 2 2 2 2 2 2

µ µ µ µ µ µ
... ,  ,  ,  ,  ...D q q q

l l l D l D l D l

′ ′′ ′ ′′
′ ′′+ + + = = = =

′ ′′ ′ ′′
  

 

Formula (101.3) will then express the probability that the unknown 

value of A is contained within the limits 

 

    ...
µ µ µ
sq s q s q u

D

′ ′ ′′ ′′
+ + +

′ ′′
m , 

 

derived from the most favourable combination of the observations. 

With a small value of u, the magnitude P, see formula (101.3), can be 

rendered very close to unity, so that the value of A will likely very 

little differ from the sum of the means s/µ, s′/µ ′, s″/µ″, …, multiplied 

by q, q′, q″, … respectively.  

    The result of each series of observations influences that approximate 

value of A and the interval between its limits /u Dm  the more, the 

larger is the corresponding ratio µ/l2
, or µ ′/l′2, or µ″/l″2

, … If all the 

series are made with the same instrument, they can be considered as a 

single series of µ + µ ′ + µ″ + … observations. And, as stated above, l, 
l′, l″, … will likely be almost equal one to another. Suppose that the 

sums extend over the entire single series from n = 1 to µ + µ ′ + µ″ + 

… and introduce 
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λ (λ λ)

λ,  .
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∑ ∑
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Then we can consider l1 as the common value of l, l′, l″, … The 

previous limits of the unknown γ, whose probability indicates formula 

(101.3), become 

 

    1...
,

µ µ µ ... µ µ µ ...

s s s ul′ ′′+ + +

′ ′′+ + + ′ ′′+ + +
m   

 

and coincide with the result of § 106 concerning one single series of 

trials. 

    109. The problem formulated at the end of § 104 is solved by the 

method similar to the just applied. Suppose that in a very large number 

µ of trials an event E of some nature arrived m times. Its chance is 

variable and equals pn at the n-th trial. Let ∑pn/µ = p and ∑pn
2
 = q and 

denote by v a positive or negative magnitude, very small as compared 

with √µ, and suppose that U is the probability of the equation 

 

    
2 2

.
µ µ

v p qm
p

−
= −   

 

    For simplifying, neglect the second term of formula (95.1), take into 

account the included there magnitude k and replace θ by v, then  

 

    
2exp( )

.
2πµ( )

v
U

p q

−
=

−
  

 

    Just like in § 104, denote all the possible causes of the event E, 

whose number can be either finite or infinite, by С1, С2, …, Сv with γ1, 

γ2, …, γv being their probabilities and с1, с2, …, сv, the chances they 

provide to the occurrence of E. Supposing that pn can take these v 

values whose probabilities are γ1, γ2, …, γv, we introduce 

 

    r = γ1c1 + γ2c2 + … + γνcν, ρ = γ1c1
2
+ γ2c2

2
+ … + γνcν

2
. 

 

    Denote by v1 a positive or negative variable, very small as compared 

with √µ. Then the infinitely low probability of the exact equality 

 

    
2

1 2ρ 2

µ

v r
p r

−
= +                                            (109.1) 

 

will be w1dv1 (§ 105) or simply (1/√π)exp( − v1
2
)dv1 when neglecting 

the second term of its expression. Denote also by v%  a variable, very 

small as compared with √µ. Then the probability that (p – q) only 

differs from (r − ρ) by a definite magnitude proportional to v%  and of 

the order of smallness of 1/√µ, is ,wdv% %  or simply 2(1/ π )exp( )v dv− % % , 

see § 105.  

    Then, it is seen that, when neglecting magnitudes of the order of 

1/µ, it is possible to replace (p – q) by (r − ρ) without changing the 
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probability U of the previous value of the ratio m/µ. That ratio then 

becomes 

 

    
2 2ρ

.
µ µ

v rm
p

−
= −                                        (109.2) 

 

Introduce now 

 

    
1

δ
2µ( ρ)r

=
−

.  

 

Since m is a natural number, v can only be a positive or negative 

multiple of δ, very small as compared with 1/√µ.  

    It follows from formulas (109.1) and (109.2) that 
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.

µ µ µ

v r v rm
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For any pair of values of v and v1 the probability of that equation is the 

product of U and (1/√π)exp( − v1
2
)dv1, and I denote it by ε. When  

(p –q) in the expression of U is replaced by (r − ρ), this product 

becomes 

 

    2 2

1 1

1
ε exp( )

π 2µ( ρ)
v v dv

r
= − −

−
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    Let  

 

    
2 2

1 12 2 2

ρ
θ ,  θ
ρ ρ ρ
r r r r r

v v dv d
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− − −
= + =

− − −
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then, neglecting terms of the order of smallness of 1/µ, 

 

    
2 θ 2 (µ )θ 2 2

,  
µ µµ µ µ

m mm r r m
r r

−−
= + = − .  

 

    [Poisson next writes down the formula for ε, after including there δ 
and θ.]  

    However, the expression for r, does not include v and its probability 

is also independent from v and is equal to the sum of the values of ε, 
corresponding to all those which v can take and which ought to 

increase by increments δ, whose multiple is v. Since δ is small, an 

approximate value of this sum can be derived by substituting dv 

instead of δ in ε and replacing the sum by an integral. The calculated 

value will be exact to within magnitudes of the order of δ or 1/√µ. The 

variable v should be very small as compared with √µ, but owing to the 

exponential included in ε, it is possible to extend that integral from  
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v = − ∞ to ∞ without appreciably changing its value. And when 

assuming that 

 

    
2 2

1 12 2 2

ρ
θ θ ,  θ ,

ρ ρ ρ
r r r r r

v d dv
r r r

− − −
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− − −
 

 

the integral with variable θ1 will also have infinite limits. Denote now 

by χdθ the infinitely low probability of the expression for r, then  

 

    2 2 2

1 1

θ 1
χ θ exp( θ ) exp( θ ) θ exp( θ ) θ

π π

d
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    And so, u is a positive and given magnitude, and the probability that 

the unknown value of r will be within the limits 

 

    
2 (µ )
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u m mm −
m                                                        (109.3) 

 

is 
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2
χ θ exp( θ ) θ

u u

u

d d
π−
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and coincides with Р from formula (101.3). Thus, P is the probability 

that the special magnitude r, to which the ratio m/µ indefinitely tends 

as the large number µ increases still further, and does not differ from 

that ratio more than by the magnitude contained in the limits which are 

indicated by formula (109.3) and do not include any unknowns.  

    Suppose that in the second series of a very large number µ ′ of trials 

the event E arrived m′ times. Denote by θ′ a positive or negative 

variable, very small as compared with √µ ′. The infinitely low 

probability of the equation  

 

    
θ 2 (µ )

µ µ µ

m mm
r

′ ′ ′ ′′ −
= −

′ ′ ′
 

 

is (1/√π)exp(− θ′2)dθ′, and the probability of the equation 

 

    
θ 2 (µ ) θ 2 (µ )

µ µ µ µ µ µ

m m m mm m ′ ′ ′ ′′ − −
− = −

′ ′ ′
, 

 

derived for each pair of the values of θ and θ′ [of θ′ and θ] by 

subtracting that value of r from its previous value, equals the product 

of (1/√π)exp( − θ′2)dθ′ and (1/√π)exp( − θ2
)dθ. 

    [Poisson replaces] the variable θ′ by t without changing θ, then 

replaces θ by t′ without changing t. The probability of the previous 
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equation becomes (1/π)exp( − t2
 − t′2)dtdt′, and the equation itself is 

now 

 

    
3 32µ (µ ) 2µ (µ )

µ µ µµ µµ

t m m m mm m ′ ′ ′ ′′ − + −
− =

′ ′ ′
. 

 

It only contains the variable t, and its composite probability is equal to 

the integral with variable t′ of the differential expression above. 

Without appreciably changing its value this integral can be extended 

from t′ = − ∞ to ∞, and that expression will become (1/√π)exp(− t2
)dt, 

so that P, see formula (101.3), will express the probability that the 

difference (m′/µ ′ − m/µ) is contained within the limits  

` 

    
3 32µ (µ ) 2µ (µ )

µµ µµ

u m m m m′ ′ ′ ′− + −

′ ′
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    Here u is positive and given, and this formula only includes known 

numbers. The derived limits coincide with those obtained much 

simpler in § 87, although only for a constant chance of event E being 

the same in both series of trials. Formula (87.2) contains a term of the 

order of 1/√µ or 1/√µ ′, lacking in formula (101.3), since terms of that 

order of smallness were neglected in the probabilities under 

consideration. 

    110. In this work, I do not suppose to study the numerous problems 

to which the preceding formulas are applicable; I indicated such main 

problems in § 60 and subsequent sections
13

. As an example, I choose 

the known problem about the planetary and cometary orbits.  

[After long transformations it occurred that Poisson’s derived formula] 

 

    µ µ 2 µ 3 µ
µ µ

1
[β µ(β 1) (β 2) (β 3) ...

µ!
P C C= − − + − − − +   

         − µ µ 2 µ 3 µ
µ µα + µ(α 1) (α 2) (α 3) ...]C C− − − + − − ,   (110.1)  

 

coincides with Laplace’s formula (Laplace 1812/1886, p. 261) 

obtained with the same aim but by quite another way. 

[Poisson determined magnitudes α and β from equalities introduced 

above:]  

 

    h = g, γ = µg − c, c − ε = 2gα, c + ε = 2gβ. 

 

    If all the values of A within the limits from 0 to 2g are equally 

possible and impossible beyond them, formula (110.1) will express the 

probability that after some number µ of trials the sum of the values of 

a thing A is contained between 2gα and 2gβ. The series containing β 

and α in formula (110.1) are extended until the magnitudes raised to 

the power of µ are still positive. If n represents the maximal natural 

number included in β, the appropriate series stops at the (n + 1)-th 

term or earlier depending on the inequalities µ > n or < n. The same 
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takes place for the second series for the maximal natural number 

included in α.  

    Whatever was the cause which determined the formation of planets, 

it is supposed that initially all possible inclinations from 0 to 90° of the 

planes of their orbits to the ecliptic were equally probable. And it is 

required to determine the probability that, under that hypothesis, the 

sum of the inclinations of the 10 known planets excluding the Earth
14

 

should be contained in given limits, for example between 0 и 90°. 

When assuming the inclination of a planet as a thing A to which 

formula (110.1) is applicable, 90° ought to be chosen as the interval 2g 

of the possible values of A, and, in the formula itself, α = 0, β = 1 and 

µ = 10, so that Р = 1/10!. 

    This fraction is approximately a quarter of a millionth and therefore 

a sum of inclinations smaller than a right angle is absolutely unlikely. 

We should conclude that it certainly exceeds a right angle. However, it 

only amounts to approximately 82°, and, since it only experiences very 

small periodic variations, the hypothesis of equal probability of all 

inclinations at the formation of the planets is inadmissible. The 

unknown cause of their formation must have rendered the least 

inclinations much more probable.  

    The inclinations of the planets are supposed here to be independent 

from the direction of their movement; that is, from either the direction 

of the Earth’s movement round the Sun or the contrary movement. If 

both these directions at the formation of the planets were equally 

probable, the probability of the movement of the 10 other planets in 

the same direction as the Earth would be 1/2 to the power of 10, i. e. 

lower than 1/1000. And an equal chance of both contrary movements 

is very unlikely and proves that the unknown cause of the formation of 

the planets must have rendered a high probability to their movement in 

one and the same direction. 

    Let now the thing A be the eccentricity of a planetary orbit and 

suppose that initially all its values from 0 to 1 were equally probable. 

Then the probability that, at α = 0, β = 1.25 and µ = 11, the sum of the 

known eccentricities should be contained, for example, between 0 and 

5/4, will by formula (110.1) be P = (1/11!)(1.25
11

 − 0.25
11

). This 

probability is lower than three millionth; on the contrary, it is 

extremely probable that the sum of the 11 eccentricities ought to 

exceed 1.25. And still, that sum, which only experiences small 

periodic variations, is a little smaller than 1.15. The hypothesis of 

equal probability of all possible values of A is thus inadmissible; the 

unknown cause of the formation of the planets undoubtedly rendered 

the least eccentricities, just as the least inclinations, much more 

probable. 

    111. For 138 comets of those observed since AD 240 [since BC 

240], astronomers calculated parabolic elements as thoroughly as 

possible. 71 of them move directly and 67 have retrograde motions. 

The small difference between those numbers already proves that the 

unknown cause of the formation of the comets did not lead to their 

more probable motion in some common direction. The sum of the 

inclinations of those 138 comets to the ecliptic amounts to almost 

6752°, which
15

 exceeds 75 right angles almost by 2°. For establishing 
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whether it should so little differ from that magnitude, had all the 

possible inclinations from 0 to 90° been equally probable, we ought to 

assume α and β in formula (110.1) little differing in either direction 

from 75. This, however, will prevent numerical calculations. For 

determining the probability P that, under the same hypothesis, the sum 

of the inclinations of the orbits of all the observed comets should be 

contained within given limits, we ought to turn to formula (101.3). 

    I assume the inclination of a cometary orbit to the plane of the 

ecliptic as the thing A. The limits of its possible values, usually 

denoted by a and b, will be а = 0 and b = 90°, with all these values 

supposed to be equally probable. Formula (101.3) will express the 

probability Р that the mean of a large number µ of the observed 

inclinations is, in degrees (cf. § 102), between 45 90 / 6µum . 

Assuming u = 1.92 and having µ = 138, we will get Р = 0.99338 for 

the probability that, under the hypothesis of equal chances of all 

possible inclinations, the mean inclination of the 138 observed comets 

will not be beyond the limits of 45° ± 6°. We can bet almost 150 

against 1 on that mean to be between 39° и 51°. Actually, it is 48°55′. 
We can not therefore believe that the unknown cause of the formation 

of the comets rendered their differing inclinations unequally probable. 

    Without introducing any hypotheses about the law of probabilities 

of these inclinations, formula (101.3) also expresses the probability 

that the mean inclination of a large number µ of comets observed in 

the future will only differ from the indicated value 48°55′ by a number 

of degrees contained within the limits (cf. § 107) 

 

    
138 µ

.
138µ

ul ′+

′
m   

 

    By the calculated inclinations of 138 comets, the nephew of 

Bouvard
16

 established that the value of l included in these limits was 

34°49′. Suppose for example that µ ′ = µ and assume, as above, that  

u = 1.92, and it will be possible to bet 150 against 1 on the difference 

of the mean inclinations of the 138 observed comets and the same 

number of new comets to be included within ± 8°21′. The number µ ′ 
of the existing comets is undoubtedly extremely large as compared 

with the comets whose orbits astronomers were able to calculate. After 

assuming µ ′ as the number of the unknown comets, the preceding 

limits will become almost / 138,ulm  narrower in the ratio 1: √2, than 

if µ ′ = µ. Assuming as previously that u = 1.92, we will obtain 

probability almost equal to 150/151 that the difference mentioned 

above will be contained within the limits ± 5°42′. 
    Divide the observed comets in two groups, consisting of 69 earlier 

and another 69 more modern of them. The mean inclination in the first 

group will be 49°12′, and 48°38′ in the second, differing barely more 

than by half a degree. This example is really proper for proving that 

the mean values of one and the same thing correspond to each other 

even if the available numbers of observations are not extremely large 

and the observed values essentially differ one from another. Indeed, 

the maximal and least inclinations are here 1°41′ and 89°48′. The 
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mean inclinations of the 71 and 67 comets with direct and retrograde 

motion are more different; the former is 47°3′, and the latter, 50°54′. 
    Erect in the northern hemisphere a perpendicular from the centre of 

the Sun to the plane of the ecliptic and it will cut the celestial sphere at 

the northern pole of the ecliptic. And if a perpendicular is erected from 

that centre in the same hemisphere to the plane of a cometary orbit, it 

will cut the celestial sphere at the northern pole of that orbit. The 

angular distance between those poles will be the inclination of that 

orbit to the ecliptic. However we should not confuse, as did the 

respected translator of Herschel (1834), the assumption that all points 

of the celestial sphere can with the same probability be the poles of the 

cometary orbits with the hypothesis of equal probability of all possible 

inclinations of the comets. 

    Let a and b be circular zones situated in the northern hemisphere of 

one and the same infinitely small width with a common centre at the 

northern pole of the ecliptic and with their angular distances from that 

pole being α and β. Denote by p and q the probabilities that a random 

point of that hemisphere belongs to zones а and b. The fractions р and 

q are evidently in the ratio а:b, and therefore in the ratio of the sines of 

angles α and β. By the hypothesis of equal possibility for all the points 

of the celestial sphere to be the poles of cometary orbits, р and q 

express the chances of the distances α and β of these poles from the 

ecliptic; in other words, the chances of the inclinations of the two 

cometary orbits to equal these distances. 

    And so, according to the adopted hypothesis, the chances of the 

various inclinations are proportional to the sines of the inclinations 

themselves but they are not equal to each other. The chance of an 

inclination of 90° becomes twice larger than of an inclination of 30°, 

and they both are infinitely large as compared with the chance of an 

infinitely small inclination
17

. 

    112. For concluding this chapter, we adduce a summary of the 

formulas of probability proved here and in the previous chapter. The 

number µ of trials is supposed very large. It consists of two parts, m 

and n, also supposed very large. The formulas are the more exact the 

larger is the number µ, and they will become absolutely exact at 

infinite µ. 

    112/1. Let р and q, p + q = 1, be the chances of contrary events E 

and F, invariable during the entire series of trials. Denote by U the 

probability that in µ = m + n trials E arrives m times, а F, n times. 

According to § 69 
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In § 79 this formula was reduced to  
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    µ 2µ ,  µ 2µm p v pq n q v pq= − = + . 

 

    Here v is a positive or negative magnitude, very small as compared 

with √µ. In this form, the formula above is equally applicable if the 

chances of E and F vary from one trial to another, it will only be 

necessary, in accord with formula (95.1), to assume as p and q their the 

mean values over all the series of µ successive trials. 

    112/2. Suppose that events E and F with unknown chances р and q 

arrived m and n times in µ trials. Denote by U′ the probability that they 

will occur m′ and n′ times in µ ′ = m′ + n′ future trials. The numbers m′ 
and n′ are proportional to m and n, so that 

 

    m′ = µ ′m/µ, n′ = µ ′n/µ. 

 

Formula (§ 71) 

 

    1

µ
 

µ µ
U U′ =

′+
                                                         (b) 

 

will take place whatever is µ ′. Here, U′ is the probability of a future 

event provided that m/µ and n/µ certainly are the chances of E and F,  

i. e., provided that 

 

    µ ( /µ) ( /µ) .m m nU C m n′ ′ ′

′′ =  

 

    112/3. Invariable chances р and q of events Е and F are given, and Р 

is the probability that in µ = m + n trials E arrives not less than m 

times, and F, not more than n times. And (§ 77), for q/p > n/(m + 1) 

and q/p < n/(m + 1), 
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    Here, k is a positive magnitude whose square is 
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   112/4. Denote by R the probability that the number of occurrences of 

the events E and F in µ trials will not be beyond the limits 

 

    µ 2µ ,  µ 2µ .p u pq q u pq±m  
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Here, u is a positive magnitude, very small as compared with √µ. Then 

(§ 79)
18
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R t dt u
pq

∞
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    Conversely, if the chances р and q are unknown, and E and F 

arrived m and n times in µ = m + n trials, then (§ 83) 
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is the probability that the values of р and q will not be beyond the 

limits  
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µ µ µ µ µ µ
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    112/5. In two series of very large numbers µ and µ ′ of trials event E 

occurred or will occur m and m′ times, and event F arrived or will 

arrive n and n′ times. Denote by u a positive magnitude, very small as 

compared with √µ and √µ ′. Then the probability w that the difference 

(m/µ − m′/µ ′) will not be beyond the limits 

 

    
3 32(µ µ )

µµ µµ
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′ ′
m ,  

 

and (n/µ − n′/µ ′) will not be beyond those limits taken with contrary 

signs, − then that probability will by § 87 be 
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    Since m/µ ≈ m′/µ ′, and n/µ ≈ n′/µ ′, it is possible, without appreciably 

changing the value of w, to interchange the magnitudes µ ′, m′, n′ and 

µ, m, n in its last term which will always be a small fraction. This 

formula, if at least neglecting its last term (§ 109), is applicable to the 

general case in which the chances of E and F vary from one trial to 

another provided that the known or unknown causes of these events 

did not undergo any changes in these two series, − if the existence of 

these causes retains the same probabilities, and each cause invariably 

provides the same previous chances to the arrival of E and F. 

    112/6. Events E and F occur m and n times in µ trials. Suppose that 

two other contrary events E1 and F1 arrive m1 and n1 times in µ1 trials. 

Suppose that µ and µ1 are large numbers, and that 
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    m1/µ1 − m/µ = δ, 
 

where δ is a very small positive or negative fraction and denote by р 
and p1 the unknown and constant chances of the arrival of Е and E1, 

and by λ, the probability that p1 exceeds р at least by a small and given 

positive fraction ε. Then, let u be a positive magnitude and suppose 

that 
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The sign coincides with the sign of the factor (ε − δ). By § 88 
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    These formulas correspond to (ε − δ) > 0 and < 0. They also express 

the probability that the unknown chance p of the arrival of the event E 

exceeds the ratio m/µ given by observations by a given fraction w, for 

which it is sufficient that  

 

    
µ µ
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u w

mn
= ± −  for (w − m/µ) > 0 or < 0.  

 

    112/7. Suppose that the chances of the contrary events E and F vary 

from one trial to another and are pi and qi at trial i, so that pi + qi = 1.  

Denote for the sake of brevity that 

 

    ∑pi/µ = p, ∑qi/µ = q, 2∑piqi/µ = k2
, 

 

where the sums extend from i = 1 to µ.  

    Suppose also that the events E and F arrived m and n times in µ 

trials and denote by u a positive magnitude, very small as compared 

with √µ. Then (§ 96)  
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expresses the probability that the ratios m/µ and n/µ will be contained 

within the limits / µ ,  / µp uk q uk±m . This conclusion coincides 

with the formula (d) in the particular case of constant chances. 

    112/8. Suppose that a thing A can take all values within the limits  

(h ± g) and that they are equally possible and the only possible. Denote 

by Р the probability that for some number i of trials the sum of the 

values of A is contained within also given limits (c ± ε). Then (§ 99)  
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where 
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whereas Г1 is equal to Г with a changed sign of ε. In each term of this 

formula the superior sign should be chosen if the magnitude in 

brackets is positive and the inferior sign otherwise. Magnitudes g and ε 
are positive, and h and c can be both positive and negative. 

    112/9. Whatever is the law of probabilities of the possible values of 

a thing A at each trial, and however it varied from one trial to another, 

if s is the sum of those values, for a very large number µ of trials we 

have (§ 101)  
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∞

= − −∫                                              (k)  

 

for the probability of the mean value s/µ of A to be within the limits  

2 /µ .k u hm  Here, u is a positive magnitude, very small as compared 

with √µ, h is positive and k and h depend on the probabilities of the 

values of A in the entire series of trials. If these probabilities are 

constant, and the same for all possible values of A within given limits 

a and b and disappear beyond these limits, then 

 

    k = (a + b)/2, h = (b − a)/2√6. 

 

    If A only takes a finite number ν of constant and equally probable 

values c1, c2, …, cν, then 

 

    1 2 ν

1
(  +  +...+ ), k c c c

v
= ∑  

    
2 2 2

1 2 ν2

1
[(  +  +...+ )  

2
h v c c c

v
= −∑ 2

1 2 ν(  +  +...+ ) ]c c c . 

 

    112/10. Suppose that λn is the value of A at the n-th trial and 

 

    ∑λn/µ = λ, ∑(λn− λ)
2
/µ = l2

/2, 

 

with the sums extending from n = 1 to µ. Suppose also that not a single 

cause of all the possible values of A had experienced any changes 

either in its probability or chances that it provides to each of those 

values. Then, there exists a special magnitude γ, which the mean value 

s/µ of A indefinitely approaches as µ ever increases and which it 

reaches if µ becomes infinite. And formula (k) expresses the 

probability that γ is contained within the limits (§ 106)  
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µ µ

s ul
m , 

 

which do not include any unknowns. 

    112/11. Suppose that in the second series of a very large number µ ′ 
of trials s′ is the sum of the values of A, and l′, the new value of  

l from the first series. The formula (k) will also express the probability 

that the difference (s′/µ ′ − s/µ) of the two means is contained within 

limits (§ 107)  

 

    
2 2µ µ

µµ

u l l′ ′+

′
m . 

 

If l′ ≈ l the same formula will also express the probability that the 

mean s′/µ ′ of the second series is contained within the limits  

 

    
µ µ

,
µ µµ

uls ′+

′
m  

 

only depending on the results of the first series and the given 

magnitude u and becoming the narrower the more µ ′ is exceeding µ.  

    112/12. Suppose that many series of very large numbers µ, µ ′, µ″, 
… of trials are made for establishing the values of one and the same 

thing A. I denote the sums of its values obtained in those series by s, s′, 
s″, … As before, the preceding magnitude l applies to the first series, 

and the corresponding magnitudes for the other series are l′, l″, … 

Suppose that the causes of the errors of measurement vary from one 

series to another, but that, as the numbers µ, µ ′, µ″, …, increase 

further, all the means s/µ, s′/µ ′, s″/µ″, … nevertheless indefinitely tend 

to one and the same unknown magnitude γ, the veritable value of A. 

This indeed takes place if the indicated causes do not lead in any series 

to unequal probabilities of errors equal in magnitude and contrary in 

sign
19

. And the formula (k) will also express the probability that A is 

contained within the limits (§ 108)  

 

    ...
µ µ µ
sq s q s q u

D

′ ′ ′′ ′′
+ + +

′ ′′
m ,                                       (112.1) 

 

where 

 

    
2

2 2 2 2 2 2 2 2 2

µ µ µ µ µ µ
... ,  ,  ,  ,  ...D q q q

l l l D l D l D l

′ ′′ ′ ′′
′ ′′+ + + = = = =

′ ′′ ′ ′′
 

 

    Furthermore, the sum in (112.1), or of the products of the means 

s/µ, s′/µ ′, s″/µ″, …, respectively multiplied by the magnitudes q, q′, q″, 
…, is an approximate value of γ, the most favourable of all those, 

which can be derived from combining all the series of observations 

and is that value of γ whose limits of errors /u Dm  will be the 
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narrowest possible for a given value of u or for the same level of 

probability. 

    112/13. Finally, suppose that the causes of the arrival of the event E, 

as formula (f) indeed expressed it, do not change during the trials. 

Then the ratio m/µ of the number of occurrences of E to the number µ 

of trials indefinitely tends to a special magnitude r and exactly reaches 

it if µ becomes infinite. And this formula (f), if neglecting its last term, 

or formula (k) will be the probability that the unknown value of r is 

contained within the limits (§ 109) 

 

    
2 (µ )

µ µ µ

u m mm −
m . 

 

     113. For completing the survey of the formulas, it would have been 

necessary to add those which apply to the probabilities of the values of 

one or many magnitudes derived from a very large number of linear 

equations corresponding to the results of the same number of 

observations. However, concerning these additional formulas I refer 

the readers to Laplace (1812/1886, pp. 516 – 519). Issuing from the 

system of 126 equations compiled by Bouvard and concerning the 

motion of Saturn in longitude
20

, and applying to them the method of 
least squares, he concluded that we can bet a million against one that 

the mass of Jupiter, when assuming the mass of the Sun as unity, does 

not differ in any direction by more than a hundredth part from the 

fraction 1/1070.  

    Nevertheless, later observations of another nature led to the 

magnitude almost equal to 1/1050, which exceeds fraction 1/1070 by 

approximately 1/50 of its value, and, as it seemed, established a defect 

in the calculus of probability. The value 1/1050 of the mass can not be 

doubted, as Encke concluded by the perturbations of a comet having a 

period [of returning] of 1204 days, and as Gauss and Nicolai 
21

 

decided by the perturbations of Vesta and Junon, and Airy by the 

recently measured elongations of the satellites of Jupiter. 

    And still, even if Laplace’s calculations determined the mass of that 

planet with a probability very close to certainty but 1/50 less than its 

veritable value, we can not conclude that the intensity of Jupiter’s 

force of attraction could have acted on Saturn less than on its own 

satellites, on comets or minor planets. And that result did not occur 

because of some inaccuracy in the formulas of probability applied by 

Laplace. We can believe that the mass of Jupiter as obtained by him 

was a bit too small owing to some faulty terms in the expression of 

such complicated perturbations of Jupiter. They were somewhat 

corrected, but other terms can still demand new corrections. A 

complete alteration of the tables of motion of Saturn and Jupiter, even 

now so precise, is an important point of the Mécanique céleste, and the 

present work of Bouvard
22 

will certainly clear it up. 
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Notes 
    1. The sum ∑U(m, n)umvn

 is called the double generating function of u and v.  
See also § 20. 

    2. The formula (95.1) expresses a limit theorem for the pattern of trials with 

variable probability. Then comes the integral limit theorem, formulas (97.1) and 

(101.1). Poisson also studied the central limit theorem, only proved (if disregarding 

its particular case, the theorem of De Moivre − Laplace) by Markov and Liapunov. 

See §§ 102 − 103, and Poisson (1824, §§ 1 – 7; 1837). Issuing from those sections, 

Poisson proved the second main proposition of the law of large numbers (§ 52), but 

he did not sufficiently describe the conditions of that limit theorem, and his account 

is methodically bad.  

    Hald (1998, pp. 317 – 327) described in detail Poisson’s proof of the central limit 

theorem. Without substantiation he stated that the lack of explicitly formulated 

conditions of the theorem conformed to the then prevailing custom. Then, Hald did 

not indicate whether Poisson’s proof was rigorous or not; it is known that only 

Markov and Liapunov were able to provide a rigorous proof. 

    3. Poisson derives the inversion formula for sums of differently distributed lattice 

random variables. Just above he applied a characteristic function. 

    4. Concerning the study of that particular case, I refer readers to my memoir 

(1824) earlier mentioned in § 60. Poisson 

    5. See these previous expressions in § 94. 

    6. The second formula below could have been simplified in an obvious way. 

    7. Poisson did not explain the formulas below and the second one, just as stated in 

Note 6 about a previous formula, could have been simplified.  

    8. Here, Poisson derives the Dirac function which he (1811/1833, p. 637) had 

applied even earlier. 

    9. This phrase should have been inserted somewhat above. 

    10. I (Note 3 to Chapter 3) indicated that Poisson barely applied the notion of 

variance. 

    11. In this section, Poisson studied the admissible difference between the mean 

values of a random variable in two series of trials with a variable probability; in  

§ 109 he investigated the difference of the mean frequencies of the arrivals of a 

random variable. He (§ 88 of Chapter 3) only considered the difference of 

probabilities for series of Bernoulli trials. 

    12. See Note 17 to Chapter 2. 

    13. I can also mention the probability of target firing which I considered in a 

memoir written before this book. It will appear […] (1837). Poisson 

    14. Laplace also issued from data on 10 planets. It was Cournot (1843/1984,  

p. 175) who named them (including 4 minor planets).  

    15. Poisson did not explain why should the sum of the inclinations approximately 

equal 75 right angles. Above, he did not indicate that the eccentricities of the 

planetary orbits are conditioned by the velocity of the planets’ rotation round the 

Sun. It would perhaps be more proper to discuss these velocities. 

    16. A. Bouvard (1767 − 1843), a French astronomer. Poisson should have named 

his nephew. 

    17. In his appended Note, Poisson qualitatively explains the origin of the 

aérolithes (meteorites) and shooting stars by the existence of an inexhaustible 

multitude of very small bodies rotating round the Sun, the planets or even satellites.  

    18. A comparison of the results (d) and (e) shows that Poisson believed that the 

direct and the inverse problem are equally precise. So also had thought Jakob 

Bernoulli and De Moivre, but Bayes proved that the inverse problem was less precise 

(Sheynin 2010). However, Poisson was not altogether consistent, see the end of § 71 

in Chapter 3 and the description of §§ 69 – 72 in his Contents. Anyway, he did not 

study quantitatively the difference between those two problems.  

    19. See Note 17 to Chapter 2. In § 112, just below, Poisson adduced a summary of 

his formulas some of which are provided in a changed form.  

    20. Laplace would have been unable to determine the mass of Jupiter by the 

observations of Saturn. Actually, he had at his disposal 126 equations concerning 

Jupiter and 129, concerning Saturn, see Supplement 1 of 1816 to his Théor. Anal. 
Prob. (Laplace (1812/1886, p. 516 – 519). He concluded that, if observations will be 
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treated the same way, his estimate of the mass of Jupiter will not change during the 

next century even by 1/100. Like Poisson after him, he did not account for the 

unavoidable existence of systematic errors. Note that Laplace almost never, and 

Poisson never referred to the fundamental achievements of Gauss in the theory of 

errors. 

    21. F. B. G. Nicolai (1793 – 1846), a German astronomer.  

    22. Poisson mentioned celestial mechanics as a scientific subject rather than as 

Laplace’s classic, but italicized both these words. 
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Chapter 5. Application of the General Rules of Probability 

to the Decisions of Jury Panels and Judgements of Tribunals
1 

 

Mistakes/Misprints Unnoticed by the Author 
    1. In § 116, p. 327 of the original text. The last bracket in the 

denominator of the displayed formula should be (1 − u′) rather than  

(1 − u″). 
    2. In § 127, p. 350 of the original text. The left side of the second 

formula (14) should be Zi rather than Z.  

    3. In § 130, p. 358 of the original text. The last integral in the 

second displayed formula should be over [− ∞, 0] rather than over  

[∞, 0].  

    4. In § 131, p. 361 of the original text. The integrand on the left side 

of the formula on line 2 from bottom should contain Ui rather than U′i. 
    5. In § 134, p. 370 of the original text, line 7, the difference of two 

ratios. In one of them the numerator ai is missing.  

    6. In § 135, p. 374 of the original text, line 2 after the last displayed 

formula. The numerator of the ratio should be a4 rather than a4
. 

Several similar mistakes are in §§ 140 and 143.  

    7. In § 139, p. 383 of the original text, the last but one term on the 

right side of the last displayed formula should contain t4
 rather than t5

.  

    8. In § 149, p. 409 of the original text. The term 35v4
(1 – v) in the 

first line of the last displayed formula should be 35v4
(1 – v)

3
. 

    All those misprints/mistakes are corrected in the translation. 
 

    114. When studying such a delicate matter, it is convenient to begin 

with the simplest cases, then treating the problem in all generality. 

And I suppose first of all that there is only one juryman. Let k be the 

probability of the defendant’s guilt prior to the court hearing (prior 

probability). This probability is established by preliminary information 

and subsequent charges. I also denote by u the probability that the 

juryman’s decision is faultless, and by γ, the probability that the 

accused will be convicted. This will happen if he was guilty, and the 

juryman was not mistaken or innocent and the juryman mistaken,  

    By the rule of § 5, the probability of the first case is ku, and  

(1 − k)(1 − u), of the second. Therefore (§ 10), the composite 

probability of the defendant’s conviction is 

 

    γ = ku + (1 − k)(1 − u),                                                 (114.1) 

 

and of his acquittal, (1 − γ). This latter happens if the accused is guilty 

and the juryman was mistaken or innocent and the juryman was not 

mistaken. Therefore,  

 

    1 − γ = k(1 – u) + u(1 – k), 

 

which could have been derived from the precedent. When subtracting 

the latter equality from the first one, we get 

 

    2γ − 1 = (2k – 1)(2u – 1), 

 



 193 

so that 2γ − 1 = 0 when either (2k – 1), or (2u – 1)  is zero. It will be 

positive and negative when the signs of (2k – 1) and (2u – 1) are the 

same or contrary. Also, 

 

    γ = 1/2 + (2k – 1)(2u – 1)/2, 

 

so that γ exceeds 1/2 by a half of the positive or negative product  

(2k – 1)(2u – 1).  

    After the juryman’s decision we can formulate the two only possible 

hypotheses: was the accused guilty or not? Their probabilities, like in 

all hypothetic cases, are determined by the rule of § 34 and their sum 

is unity, so that it is sufficient to establish one of them. Suppose that 

the accused is convicted, and the probability of the first hypothesis or 

his guilt is p. According to the mentioned rule, 

 

    
(1 )(1 )

ku
p

ku k u
=

+ − −
                                          (114.2) 

 

since the conviction is the observed event whose probability in 

accordance with both hypotheses, as indicated just above, is ku or  

(1 – k)(1 – u).  

    Suppose that the accused is acquitted, and denote by q the 

probability of the second hypothesis, i. e., of his innocence. The 

observed event is the acquittal of the accused, whose probability in 

accordance with that hypothesis is (1 – k)u or k(1 – u) under the 

contrary assumption, so therefore 

 

    
(1 )

.
(1 ) (1 )

k u
q

k u k u

−
=

− + −
                                   (114.3) 

 

    The denominators of р and q are the expressions of γ and 1 − γ, and 

consequently 

 

    p = ku/γ, q = (1 – k)u/(1 − γ). 
 

The probability that the juryman was not mistaken is 

 

    u = pγ + q(1 − γ), 
 

which is easily verified. This happens in two different cases: the 

accused was guilty and will be convicted, or he was innocent and will 

be acquitted. 

    By the rule of § 9 concerning the probability of an event composed 

of two simple events whose chances influence each other, the 

probability of the first case is γр, and of the second, (1 − γ)q, and  

(§ 10) the composite value of u is the sum of these two products. After 

the juryman’s decision is announced, the probability of its 

faultlessness is p or q, if the accused is convicted or acquitted. And if  

k ≠ 1/2, it, can only equal u if u = 0 or 1. 



 194 

    The formulas above provide a complete solution of the problem in 

the case of only one juryman, of the same problem about the 

probability of an event testified by one witness (§ 36). The event, 

either veritable of false, is here the defendant’s guilt. Before the 

juryman’s decision was announced, there existed some reason for 

believing that that event is veritable; its probability was k with (1 − k) 

being the probability of the defendant’s innocence. New information 

appeared after that decision, and k became another probability, р, if the 

juryman decided, or attested that the accused is guilty; otherwise  

(1 − k) becomes probability q.  

    In each case the preliminary probabilities k and (1 − k) should have 

evidently heightened if the chance of the juryman’s faultlessness 

exceeded 1/2, and lowered otherwise. In other words, heightened or 

lowered depending on whether u > 1/2 or < 1/2. This follows from the 

expressions for р and q leading to 

 

    
(1 )(2 1) (1 )(2 1)

,  1 ,
γ 1 γ

k k u k k u
p k q k

− − − −
= + = − −

−
  

 

so that p > k, p < k, q < (1− k), q > (1− k) depending on whether  

u > 1/2 and u < 1/2 . At u = 1/2 the preliminary probabilities k and  

(1 − k) do not change at all. 

    The just provided expressions of p and q lead to 

 

    pγ + q(1 − γ) = u = kγ + (1 − k)(1 − γ). 
 

If in addition to the probability of guilt k the chance γ of conviction 

somehow becomes known, these formulas can serve for calculating the 

probability that the juryman is not mistaken. This can also be verified 

when observing that he is not mistaken if the accused is guilty and 

convicted or innocent and acquitted. Before the juryman’s decision, 

the probabilities of these two cases are kγ and (1 − k)(1 − γ), and their 

sum is the composite value of u.  
    If k = 1/2, the preliminary values of р and q at once become р = q = 
u. Actually, since there is no reason to believe in advance that the 

accused is rather guilty than innocent, after the juryman’s decision our 

grounds for believing either possibility can not differ from the 

probability that the juryman is faultless. If k = 1, so that the probability 

of guilt is thought in advance to be beyond doubt, then р = 1 and q = 0. 

Whichever was this decision and the chance of its faultlessness, the 

guilt of the accused will become still more certain after that decision. 

The same takes place concerning the innocence of the accused when  

k = 0, i. e., when it is certain in advance. However, it is unknown 

whether the accused will be convicted or acquitted, and in the first 

case the chance of conviction is γ = u and 1 − u in the second. These 

chances will be equal, as it should have been, to the probability that, at 

k = 1 and 0, the juryman is not mistaken or mistaken. 

    115. Suppose that after the juryman’s decision the accused is judged 

by another juryman whose probability of faultlessness is u′. It is 

required to determine the probabilities с, b, а that the accused will be 

convicted by both; acquitted by one of them and convicted by the 
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other; acquitted by both. Suppose that γ′ is the probability of 

conviction of the accused by the second juryman after he was 

convicted by the first one. The chance of the first conviction is γ, so 

that the probability of conviction in both cases will be с = γγ′. 
However, when the accused is brought before the second juryman, 

probability p that he is guilty has already appeared after the decision of 

the first one. Therefore, the value of γ′ is derived from formula (114.1) 

when р and u′ are substituted instead of k and u:  

 

    γ′ = pu′ + (1 – p)(1 − u′) 
 

and formulas (114.1) and (114.2) lead to 

 

    c = kuu′ + (1 – k)(1 – u)(1 − u′). 
 

    By a similar reasoning it follows that 

 

    a = k(1 – u)(1 − u′) + (1 – k)uu′. 
 

Combining these two formulas, we obtain the probability that the 

decisions of both jurymen, whether to convict or acquit, coincide: 

 

    a + c = uu′ + (1 – u)(1 − u′). 
 

Note that this composite probability does not depend on the prior 

probability of the defendant’s guilt. 

    Suppose that the first juryman acquitted the accused and let the 

probability of his conviction by the second be γ1, then the product  

(1 − γ)γ1 will express the probability that these contrary decisions 

occurred in the indicated order. In addition, (1 − q) will be the 

probability of the defendant’s guilt when he, being acquitted by the 

first juryman, appears before the second. The value of γ1  is determined 

by formula (114.1) if k and u are replaced by (1 − q) and u′, so that 

 

    γ1 = (1 − q)u′ + q(1 − u′). 
 

    Taking into account the values of (1 − γ) and q, given by formulas 

(114.1) and (114.3), we have 

 

    (1 − γ)γ1 = k(1 – u)u′ + (1 – k)(1 − u′)u. 

 

Interchanging u and u′ in this expression, we will obviously get the 

probability that the decisions of the jurymen are contrary but were 

made in the inverse order to the precedent. Adding this probability to 

the previous, we obtain the composite probability of contrary decisions 

made by the jurymen in any order 

 

    b = (1 – u) u′ + (1 − u′)u.  

 

    Just like in the case of coinciding decisions, it does not depend on k. 
At u = u′ = 1/2 both these probabilities also equal 1/2, and their sum, 
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a + b + c, invariably equals unity, as it should have been.  

    The probability p′ of guilt of the accused convicted by both jurymen 

is expressed by formula (114.2) when k and u are replaced by р and u′, 
and the probability q′ of his innocence after his being acquitted by both 

is derived from formula (114.3) when those magnitudes are replaced 

by (1 − q) and u′:  
 

    ,  .
(1 )(1 ) (1 )(1 )

pu qu
p q

pu p u qu q u

′ ′
′ ′= =

′ ′ ′ ′+ − − + − −
  

 

Taking account of the values of p and q given by the same formulas 

(114.2) and (114.3), these p′ и q′ become 

 

    
(1 )

,  .
(1 )(1 )(1 ) (1 ) (1 )(1 )

kuu k uu
p q

kuu k u u k uu k u u

′ ′−
′ ′= =

′ ′ ′ ′+ − − − − + − −
  

 

    Suppose also that p1 is the probability of guilt of the accused after 

his acquittal by the first juryman and conviction by the second, and q1, 

the probability of his innocence after conviction by the first juryman 

and acquittal by the second. The value of probability p1 that the 

accused, acquitted by the first juryman is not innocent, is derived from 

formula (114.2) when u and k are replaced by u′ and (1 – q). The value 

of q1 is derived from formula (114.3) when those magnitudes are 

replaced by u′ и p. Thus, 

 

    1 1

(1 ) (1 )
,  

(1 ) (1 ) (1 ) (1 )

q u p u
p q

q u q u p u p u

′ ′− −
= =

′ ′ ′ ′− + − − + −
 

 

and, taking into account the same formulas (114.2) and (114.3),  

 

    1 1

(1 ) (1 )(1 )
,  .

(1 ) (1 )(1 ) (1 )(1 ) (1 )

k u u k u u
p q

k u u k u u k u u k u u

′ ′− − −
= =

′ ′ ′ ′− + − − − − + −
 

 

    The probability that the accused convicted by the first juryman and 

acquitted by the second is guilty is (1 − q1). It can evidently be derived 

from p1 by interchanging u and u′, which indeed takes place: then the 

probability of the innocence of the accused acquitted by the first 

juryman and convicted by the second, or (1 − p1), is derived from q1 

by transposing u and u′.  
    At u′ = u we have p1 = k and q1 = (1 − k), which should have 

occurred since contrary decisions by jurymen having the same chance 

of faultlessness can not change anything in our previous reason in 

believing that the accused is guilty or innocent. 

    116. It is not difficult to generalize these considerations on 

successive decisions of some number of jurymen having a known 

chance of faultlessness. However, it is simpler to arrive at the proper 

results by the following way. 

    For the sake of definiteness I suppose that there are three jurymen. 

Denote their probabilities of faultlessness by u, u′ и u″ and, as before, 

by k, the prior probability that the accused is guilty. Unanimous 
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conviction requires that he is indeed guilty and that not a single 

juryman is mistaken; or, that he is innocent and all the jurymen are 

mistaken. The composite probability of such a conviction will 

therefore be 

 

    kuu′u″ + k(1 − u)(1 − u′)(1 − u″). 
 

    It is also seen that the probability of a unanimous acquittal is 

 

    k(1 − u)(1 − u′)(1 − u″) + (1 – k)uu′u″. 
 

    The sum of these two expressions will be the probability of a 

unanimous decision whether to convict or to acquit  

 

    uu′u″ + (1 − u)(1 − u′)(1 − u″). 
 

It does not depend on k, which is just as true for any number of 

jurymen. 

    The accused can be convicted by two jurymen and acquitted by the 

third in three different ways depending on whether the chance of 

faultlessness of that third juryman is u, u′ or u″. He can also be 

acquitted by two jurymen and convicted by the third, again in those 

same three ways. It is not difficult to see that the probabilities of all the 

six combinations are 

 

    ku′u″(1 – u) + (1 – k)(1 − u′)(1 − u″)u 

    kuu″(1 – u′) + (1 – k)(1 − u)(1 − u″)u′ 
    kuu′(1 – u″) + (1 – k)(1 − u)(1 − u′)u″ 
    k(1 – u′)(1 − u″)u + (1 – k)(1 − u)u′u″ 
    k(1 – u)(1 − u″)u′ + (1 – k)(1 − u′)uu″ 
    k(1 – u)(1 − u′)u″ + (1 – k)(1 − u″)uu′ 
 

    The sum of these six magnitudes is the composite probability that 

the decisions were not unanimous: 

 

    u′u″(1 – u) + uu″(1 − u′) + uu′(1 − u″) + (1 − u′)(1 − u″)u + 

    (1 − u)(1 − u″)u′ + (1 − u)(1 − u′)u″. 
 

It does not depend on k. The sum of the composite probabilities of the 

unanimous and majority decisions should be unity which is indeed 

fulfilled. 

    After the decisions are announced, it is easy to derive the probability 

of the defendant’s guilt, which, generally speaking, will differ from its 

previous value. If, for example, the accused is convicted by jurymen 

whose chances of faultlessness were u and u′ and acquitted by the 

third, the probability of this result will be kuu′(1 − u″) or  

(1 – k)(1 − u)(1 − u′)u″ in accordance with the hypotheses of his guilt 

and innocence. Therefore, by the rule of § 34, the probability of his 

guilt will be 
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(1 )

.
(1 ) (1 )(1 )(1 )

kuu u

kuu u k u u u

′ ′′−

′ ′′ ′ ′′− + − − −
  

 

    If u′= u″ it becomes independent from the common value of u′ and 

u″. The same will take place if the accused is only convicted by one 

juryman whose chance of faultlessness is u. And actually after the 

decision is announced, various versions of the decision by the two 

other jurymen will not influence the grounds of my belief in the 

defendant’s guilt or innocence. Indeed, there will be no reason to 

heighten rather than to lower the probability of his guilt since the 

chances of faultlessness of the two last jurymen are supposed to be the 

same.  

    The formulas above are equally applicable to the case in which the 

jurymen, instead of judging successively and without communicating 

with each other, are united and judge after deliberation. Discussion can 

clear up the situation for them and, in general, heighten their 

probability of faultlessness
2
. The values of u, u′ and u″ in those two 

cases can differ and less deviate from unity in the second case. 

    117. Consider in particular the case in which the chances of 

faultlessness are the same for all the jurymen. We will then reduce to it 

the general case of determining the probability of the number of 

convictions in a very large number of decisions. 

    Denote by u this given probability of the faultlessness, by n, the 

number of those jurymen, and, finally, by k, the prior probability of the 

defendant’s guilt. Let also i = 0, 1, 2, …, n and γi be the probability of 

his conviction by a majority verdict of (n – i) votes against i.  
    For that compound event to take place it was necessary that the 

accused was guilty, and that (n – i) jurymen were not mistaken 

whereas i of them had mistook; or, that the accused was innocent and 

that (n – i) jurymen were mistaken and i of them made no mistake. The 

probability of the first case is the product of kun−i
(1 − u)

i
 by the 

number of ways for choosing i jurymen from their total number, n. The 

second case has probability equal to the product (1− k)ui
(1 − u)

n−i
 by 

the number of ways for choosing (n – i) jurymen from their total 

number. […] As a result, the composite value of γi is 

 

    γi = Ni[kun−i
(1 – u)

i
 + (1 – k)ui

(1 – u)
n−i

]             (117.1) 

 

[Ni was Poisson’s notation for 
i
nC ]. 

    If n – i > i and n – 2i = m, the accused is convicted by a majority of 

m votes. If, however, i jurymen convict him, and (n – i) absolve, he is 

acquitted by the same majority. The probability of such an acquittal 

which I denote by δi, is determined by the value of γi after transposing 

(n – i) and i without changing the value of Ni. Thus, 

 

    δi = Ni[kui
(1 – u)

n−i
 + (1 – k)un−i 

(1 – u)
i
].        (117.2) 

 

    The sum of the two last equations is 

 

    γi + δi = Ni[u
n−i

(1 – u)
i
 + ui 

(1 – u)
n−i

], 
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and does not depend on k. The probability of either conviction or 

acquittal by a given majority does not therefore depend on the prior 

supposed guilt of the accused. In the particular case of u = 1/2 the 

probabilities γi и δi considered separately are also independent of k, 

and their common value is 

 

    γi = δi = Ni/2
n
. 

 

At k = 1/2 they are again the same for any value of u. 

    118. Suppose now that ci is the probability of the defendant’s 

conviction by a majority verdict of not less than (n – i) votes against 

not more than i of the jurymen, i. e., of a conviction by a majority of at 

least m votes. Denote also by di the probability that the accused is 

acquitted by a majority verdict of not less than (n – i) votes against not 

more than i. Then, by the rule of § 10, 

 

    ci = γ0 + γ1 + γ2 + … + γi, di = δ0 + δ1 + δ2 + … + δi,  

  

and, because of the previous formulas, 

 

    ci = kUi + (1 – k)Ui, di = kVi + (1 – k)Ui.                        (118.1) 

 

    Here, for the sake of brevity 

 

    N0u
n
 + N1u

n−1
(1 − u) + N2u

n−2
(1 − u)

2
 + … + Niu

n−i
(1 − u)

i = Ui, 

    N0(1 −u)
n
 + N1(1 − u)

n−1u + N2(1 − u)
n−2u2

 + … + Ni(1 − u)
n−iui 

= Vi, 

 

where Ui is a given function of u, which becomes Vi when u is 

replaced by (1 − u). At the same time 

 

    ci + di = Ui + Vi 
 

is the probability not depending on k that the accused will be either 

convicted or acquitted by a majority of not less than m votes. 

    When replacing i by (n − i − 1) in the expression of di,  

 

    Ui + Vn−i−1 = 1, ci + dn−i−1 = 1. 

 

Suppose that at least (n – i) votes are needed for conviction, then the 

accused will be acquitted if not more than (n – i – 1) jurymen decide to 

convict. This means that one of the two events with probabilities ci and 

dn−i−1 will certainly occur. 

    For an odd n, supposing that n = 2i + 1 and therefore m = 1, 

  

    Ui + Vi = [u + (1 – u)]
n
 = 1, ci + di = 1.  

 

Consequently, which is evident, the accused will certainly be either 

convicted or acquitted by a majority of at least one vote. For an even n, 

the least majority is m = 2, so that n = 2i + 2. Then 
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    Ui + Vi = [u + (1 – u)]
n
 − Ni+1u

i+1
(1 − u)

i+1
, 

 

    1(2 2)(2 1)2 ...( 2)
1 [ (1 )]

( 1)!

i
i i

i i i i
c d u u

i
++ + +

+ = − −
+

.  

 

    Conviction or acquittal by majority of at least two votes is not 

however certain since the votes for acquittal and conviction can be 

equally strong. The probability of this unique case, independent from 

k, is determined by subtracting the previous value of ci + di from unity. 

Denoting it by Hi, we can write it in the form 

 

    
1

2

(2 2)![ (1 ) ]
.

[( 1)!]

i

i

i u u
H

i

++ −
=

+
  

 

    The function u(1 – u) reaches its maximal value of 1/4 at u = 1/2 

and Hi decreases as u further deviates from 1/2. It also continuously 

decreases as i increases. This conclusion is indeed derived from the 

expression 

 

    1 2

(2 3)(2 4) (1 )

( 1)
i i

i i u u
H H

i
+

+ + −
=

+
.  

 

After passing the maximal value indicated above, the ratio Hi+1:Hi  will 

invariably be less than unity; the largest value of Hi corresponds to  

u = 1/2 и i = 0 and is equal to 1/2.  

    If i + 1 is a very large number, then (§ 67) […] and 

 

    
1[4 (1 )] 1
[1 ...]

8( 1)π( 1)

i

i

u u
H

ii

+−
= − +

++
  

 

will be an approximate value of that magnitude and, as it is seen, if u 

appreciably deviates from 1/2, or 4u(1 – u), from unity, a very small 

fraction. If u = 1/2 and, for example, i + 1 = 6 or n = 12, this formula, 

if restricting its second factor to its first two terms, provides  

230.94 …/1024. Although i + 1 is not a very large number, this very 

little differs from the exact value, 231/1024. 

    The sum Ui + Vi = Gi takes values not exceeding unity, and the 

difference 1 − Gi will be positive or zero. And since the expression for 

ci can be written as 

 

    ci = k − k(1 – Gi) − (2k − 1)Vi, 

 

ci < k if 2k − 1 > 0 or k > 1/2. Therefore, in usual cases in which there 

are grounds for believing rather in the prior defendant’s guilt than his 

innocence, the chance of his conviction by a majority of at least one 

vote, i. e. by any majority, will always be lower than this prior 

probability. Suppose for example that it was possible to bet in advance 

4 against 1 on his guilt, but the ratio of stakes on his conviction will be 

less. 
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    This proposition is obviously independent from either the chances 

of the jurymen’s mistakes or the values of u differing from unity. At  

u = 1 and any i, Ui = 1, Vi = 0, ci = k, di = 1 – k, and at u = 0, Ui = 0,  

Vi = 1, ci = (1 − k), di = k. At these two extreme values of u both 

conviction and acquittal can obviously only occur unanimously. This 

follows from formulas (117.1) and (117.2), which, excluding the case  

i = 0, lead to γi = δi = 0.  

    119. With the previous notation being preserved, we will 

additionally express by pi the probability that the accused is guilty if 

convicted by a majority verdict of (n – i) against i, that is, by a 

majority of m votes, and by qi, the probability of his innocence when 

acquitted by the same majority verdict. In other words, pi and qi are  

the probabilities that both decisions by that majority verdict are proper. 

In the first case the probability of the observed event, i. e., of 

conviction, is Nikun−i
(1 – u)

i
 or Ni(1 − k)(1 – u)

n−iui
 depending on 

whether the accused is guilty or not. According to the rule of § 34, 

after cancelling the factor Ni in the numerator and denominator, 

 

    
(1 )

.
(1 ) (1 )(1 )

n i i

i n i i n i i

ku u
p

ku u k u u

−

− −

−
=

− + − −
                 (119.1) 

 

    In case of acquittal 

 

    
(1 ) (1 )

.
(1 ) (1 ) (1 )

n i i

i n i i n i i

k u u
q

k u u k u u

−

− −

− −
=

− − + −
                (119.2) 

 

If k = 1/2, pi = qi. Indeed, if there are no grounds for believing in 

advance that the accused is rather guilty than innocent, a proper 

decision of the case by the same majority verdict has the same 

probability both when convicting and acquitting. At u = 1/2,  

un−i
(1 – u)

i
 = ui

(1 – u)
n−i

 and, as it should be, pi = k and qi = 1 − k 

whichever are n and i. 
    Suppose that in formulas (119.1) and (119.2) u = t/(1 + t),  
1 − u = 1/(1 + t). Noting that n = m + 2i, we have 

 

    
(1 )

,  ,
1 (1 )

m m

i im m

kt k t
p q

kt k k t k

−
= =

+ − − +
  

 

which proves that the probability of a proper decision, other things 

being equal, only depends on the appropriate majority vote but not on 

the total number n of jurymen. Actually, a contrary vote by the same 

majority with an equal chance of a mistake for all the jurymen can not 

either heighten or lower the grounds for believing that the decision is 

either proper or mistaken. This conclusion, however, essentially 

supposes that the chance u of the jurymen’s faultlessness is known 

before their decision. As shown below, this will not take place if that 

chance is derived after the decision by the number of votes for and 

against. 

    With a given u a decision returned by an odd number of jurymen by 

a majority of, say, only 1 vote, does not deserve either more or less 
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trust than the decision made by a single juryman. However, the 

probability of such a decision, whether to convict or acquit, lowers as 

the total number of jurymen increases. This probability is equal to the 

sum wi of the right sides of formulas (117.1) and (117.2) at n = 2i + 1.  

Taking into account the value of Ni, we get 

 

    12

(2 1)![ (1 )] 2 3
,  4 (1 ) .

( !) ( 1) 2 4

i

i i i

i u u i
w w u u w

i i i
+

+ − +
= = −

+ +
  

 

    Since 4u(1 – u) can not exceed unity, invariably wi+1 < wi. When 

comparing that value of wi with Hi from § 118, we see that the former 

exceeds the latter in the ratio 1:2u(1 – u), whatever was i. 
    120. If it is only known that the accused is convicted unanimously 

or by at least a majority of m votes, i. e., of m, m + 2, m + 4, …,  

m + 2i votes, it occurs that the probability of his guilt Рi is higher than 

pi. Supposing that the accused is guilty, the probability of his  

conviction, or of the observed event, will be, in accordance with the 

above, kUi. It will be (1 – k)Vi, when supposing that he is innocent. 

Therefore, when adding in this latter case the probability of an 

acquittal by [the same] majority of at least m votes we will have  

 

    ,
(1 )

i
i

i i

kU
P

kU k V
=

+ −
 

(1 )
.

(1 )

i
i

i i

k U
Q

k U kV

−
=

− +
         (120.1, 2) 

 

    The probabilities of proper decisions by the indicated majority 

verdict are also expressed by the magnitudes Pi and Qi. Unlike pi and 

qi, they are not independent from the total number n of the jurymen 

and dependent only on m or n − 2i.3 For quantitatively comparing them 

with each other I assume that k = 1/2, which equates Pi and Qi as well 

as pi and qi, and suppose that the prior probabilities of the defendant’s 

innocence and guilt are equal to each other. Finally, I assume that  

u = 3/4, so that you can bet 3 against 1 on the faultlessness of each 

juryman. For the usual number n = 12 of jurymen and i = 5 I find first 

of all that pi = 9/10 and 1 − pi = 1/10 and then, that Ui = 7254·37
/4

12
 

and Vi = 239,122/4
12

. It occurs that almost exactly Pi = 403/409,  

1 − Pi = 6/409. 

    This proves that in the provided example the probability (1 − Pi) of 

a mistaken conviction by a majority of at least 2 votes barely amounts 

to 1/7 of the probability (1 − pi) of the error to be feared when deciding 

by a majority verdict of 2 votes or by 7 votes against 5. 

    The formulas (117.1, 117.2; 118.1; 119.1, 119.2; 120.1, 120.2) are 

easily applicable in the case in which the accused brought before the 

same number of jurymen was already convicted or acquitted by 

another court. The value of k, included in the indicated formulas, will 

here be the probability of the defendant’s guilt resulting from the first 

decision and determined by one of the formulas mentioned above. 

    121. If (n – i) and i are very large numbers, the values of Ui and Vi 

should be calculated approximately. For this aim I assume that 

(1 – u) = v, so that Ui will be the sum of the first (i + 1) terms of the 

expansion of (u + v)
n
, arranged in increasing powers of v. In 
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accordance with formulas (77.1а, b), when replacing p, q, n, µ by u, v, 
i, n we obtain 

 

    2 2

θ

1 ( ) 2
exp( ) exp( θ ),  

π 3 π ( )
i

n i
U t dt

ni n i

∞
+

= − + −
−

∫            (121.1а) 

    2 2

θ

1 ( ) 2
1 exp( ) exp( θ ),

π 3 π ( )
i

n i
U t dt

ni n i

∞
+

= − − + −
−

∫         (121.1b) 

 

with the square of the positive magnitude θ being 

 

    2 1
θ ln ( 1 ) ln .

( 1) ( 1)

i n i
i n i

v n u n

+ −
= + + −

+ +
  

 

These expressions for Ui correspond to the cases in which v/u exceeds 

the ratio i/(n + 1 – i) or is less than it. 

    If the accused was convicted by any majority verdict from 1 or 2 

votes or unanimously, the number (n + 1) and the indicated ratio will 

be almost 2i and 1, and the formulas (121.1a) and (121.1b) should be 

applied at v > u и v < u, and if u and v essentially differ from 1/2, or 

4uv from unity, then almost exactly θ = iln(1/4uv).  

    And so, since i is a very large number, the value of θ2
 will be 

sufficiently large for the integrals and the exponentials in formulas 

(121.1) to become inappreciable. The magnitude Ui will be 1 or 0 at  

u > v and u < v. And since in our case the sum (Ui + Vi) is almost or 

exactly 1 at odd and even values of i, Vi will be 0 or 1 at u > v and  

u < v. 

    It follows that if the prior probability k of the defendant’s guilt is not 

a very small fraction and the chance v of a mistake of each of a very 

large number n jurymen is appreciably less than the chance u of the 

contrary, the probability Pi of guilt after his conviction will be very 

close to certainty. Indeed, it is very unlikely that an indicated large 

number n of jurymen will return a decision by a feeble majority 

verdict. On the contrary, if u is appreciably less than v, and k is not 

very close to unity, the probability Pi of a proper decision becomes a 

very small fraction and the defendant’s innocence, extremely probable. 

The probabilities of conviction and acquittal, ci and di, indicated by 

formulas (118.1), will very little differ from k and (1 – k) if u > v and, 

on the contrary, from (1 – k) and k if v > u.  
    When u = v = 1/2 and n = 2i + 1 or 2i + 2, the ratio i/(n + 1 – i) 
becomes a little less than v/u or 1 so that formula (121.1а) should be 

applied. And since θ will be a very small fraction, then, if neglecting 

the square of θ and the terms having i as the divisor, and noting that in 

formulas (121.1) 

 

    2

θ

π
exp( ) θ,

2
x dx

∞

− = −∫   

 

the equality 
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1 1 θ
2 π π

iU
i

= + −  

 

will become almost exact. 

    For an odd n = 2i + 1, substituting 1/2 instead of u and v, we get 

 

    
2 1 1
θ ln[1 ] ( 2) ln[1 ].

2
i i

i i
= − + − + −

+
  

 

    Expanding the logarithms in series, we can obtain to within our 

adopted precision θ = 1/√i and Ui = 1/2. The sum (Vi + Ui) = 1, so that 

Vi also equals 1/2 and, as it should have been, Pi = k whichever was 

the number of the jurymen provided that their chances of being 

mistaken or not are the same. At n = 2i + 2 and u = v = 1/2 

 

    
2 3 3
θ ln[1 ] ( 3) ln[1 ],

2 2 6
i i

i i
= − + − + −

+
 

3 1 1
θ ,  .

22 2 π
iU

i i
= = −  

 

    However, taking into account the value of Hi from § 118, we have in 

this case 

 

    
1

1 ,
π

i iU V
i

+ = −  

 

but 

 

    
1 1

2 2 π
iV

i
= −  

 

and, just like in the previous case, Pi = k since Ui = Vi. The probability 

ci of conviction which we consider will be independent from k and 

equal to Ui or become a bit lower than 1/2. 

    122. Invariably assuming that there are some n jurymen, suppose 

now that for each of them the chance of faultlessness can take v 
different and unequally probable values, х1, х2, …, хv for the first of 

them, х′1, х′2, …, х′v, for the second, х″1, х″2, …, х″v, for the third etc. 

Denote by Xi, X′i, X″i, … the probabilities that the chances хi, х′i, х″i … 

will indeed occur. They will also be the probabilities of the 

corresponding chances 1 − xi, 1 − х′i, 1 − х″i, … One of the chances х1, 

х2, …, хv will certainly take place, the same as one of the chances  

х′1, х′2, …, х′v and х″1, х″2, …, х″v etc, and therefore 

 

    X1 + X2 + … + Xν = 1, 

    X′1 + X′2 + … + X′ν = 1,                                                  (121.1) 

    X″1 + X″2 + … + X″ν = 1, … 

 

    Suppose that 

 

    X1x1 + X2x2 + … + X νx ν = u, 
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    X′1x′1 + X′2x′2 + … + X′νx′ν = u′,                                     (121.2) 

    X″1x″1 + X″2x″2 + … + X″ νx″ ν = u″, 
 

then at the same time 

 

    X1(1 – x1) + X2(1 – x2) + … + Xν (1 – xν) = 1 – u, 

    X′1(1 – x′1) + X′2(1 – x′2) + … + X′ν (1 – x′ν) = 1 – u′, 
    X″1(1 – x″1) + X″2(1 – x″2) + … + X″ν (1 – x″ν) = 1 – u″ 
 

with u, u′, u″ and (1 – u), (1 − u′), (1 − u″) being the mean chances of 

faultlessness and mistake of the respective jurymen. 

    Then the probability П that no juryman having chances хi, х′i′, х″i″ 

… of faultlessness is mistaken will be the product of these chances by 

their respective probabilities Xi, X′i′, X″i″, …: 

 

    П = XiX′i′ X″i″ … хiх′i′ х″i″ … 

 

    Denote by P the probability that none of the n jurymen having the 

indicated chances of faultlessness is mistaken whichever are the 

probabilities of those possible chances. By the rule of § 10 P will be 

the sum of the nv values of П, corresponding to a successive 

substitution of numbers 1, 2, …, ν instead of each of the n numbers i, 
i′, i″, …  It is easy to see that for any n and v this sum is equal to the 

product of the n means u, u′, u″, …, so that P = uu′u″ … 

    Relative to the chances х, х′i′,  х″i″ … of faultlessness, the probability 

that only one single juryman is mistaken can be calculated when 

replacing xi′ by (1 − xi′) in the product П, if that was the first juryman, 

when replacing x′i by (1 − x′i), if that was the second one etc. Denote 

by П′ the composite probability that only one single juryman was 

mistaken: 

 

    П′ = XiX′i′ X″i″ …[(1 – xi)х′i′ х″i″  … +  

            xi(1 – x′i′)х″i″  … + хiх′i′ (1 − х″i″) … + …].  

 

    Taking into account all the possible chances of faultlessness for 

each juryman, denote now by Р′ the probability that only one of them 

is mistaken. It will be the sum of the nv values of П′ obtained by 

successively substituting all the numbers 1, 2, …, v for each of the 

indices i, i′, i″, … It is easy to see that this sum only depends on the 

means u, u′, u″, … and equals 

 

    P′ = (1 – u)u′u″ … + u(1 − u′)u″ … + uu′(1 – u″) … + … 

 

    When continuing such transformations, we can arrive at the 

following general proposition: The probability that (n – i) jurymen out 

of n are not mistaken, and i are mistaken, does not change if for each 

of them the chance of faultlessness can only take one single value, u 

for the first one, u′ for the second etc. Therefore, if the mean chances 

u, u′, u″, … are not equal one to another, the differing probabilities of 

conviction by a given majority verdict and guilt of the accused are 

determined by the rules of § 116 generalized on some number n  of 
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jurymen. If, however, they are equal to each other, their probabilities 

are expressed by formulas (117.1, 117.2; 118.1; 119.1, 119.2; 120.1, 

120.2) when the mean chance, the same for all the jurymen, is 

substituted there instead of u.  
    We can precisely represent the possibility of each juryman having a 

large number of unequally probable chances of faultlessness by 

imagining that the list from which they should be selected is separated 

into v classes, so that all those contained in one of them have the same 

chance of faultlessness. Suppose that the first juryman should be 

selected from a list in which xi is that chance for one of its classes, and 

Xi is the ratio of the number of people of that class to their total 

number in the list. 

    Then the chance of faultlessness for the first juryman, provided that 

he belongs to the indicated class, will be xi with Xi being the 

probability of his belonging there, i. e., of his chance xi. The same 

takes place for the other jurymen selected from other lists.  

    When the jurymen for a session of some assize court
4
 are randomly 

selected from the list of all people who could have been chosen, the 

mean chances u, u′, u″, … are in advance equal one to another. 

However, for other assize courts their common value can differ. […] 

In any case, those mean chances existing before the selection of 

jurymen should not be confused with the chances of faultlessness for 

the randomly selected jurymen. We return to this essential difference 

just below. 

    123. If the number v of the possible chances х1, х2, … is infinite, the 

probability of each will be infinitely small. Suppose that Xdx is the 

probability that the chance of faultlessness of a juryman randomly 

selected from a given list is х. Let also u be the mean of all possible 

chances when taking into account their respective probabilities. The 

sum
5
, which should be unity, and that, which forms u, in accordance 

with the preceding become definite integrals  

 

    

1 1

0 0

1, .Xdx xXdx u= =∫ ∫                                           (123.1, 2)  

 

    The positive magnitude Х can be a continuous or discontinuous 

function of х, absolutely arbitrary but obeying equation (123.1). To 

each given Х there will correspond a completely definite numerical 

value of u which however corresponds to an infinitely differing 

expressions of Х or different laws of probabilities. 

    If all the values of x from 0 to 1 are equally possible Х will be 

independent from х, and equal to unity for satisfying equation (123.1). 

In this case, because of equation (123.2) u = 1/2. If X increases in the 

indicated interval in such a manner that the chance of a juryman’s 

faultlessness by itself becomes the more probable the closer it is to 

certainty and if, in addition, Х increases uniformly
6
, then 

 

    X = αx + β, α > 0, β > 0 

 

and 
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1

0

  α/2 β 1,Xdx = + =∫  β = 1 − α/2, X = 1 − α/2 + αx, 

 

which excludes the inequality α > 2. As a result, u = 1/2 + α/12, and 

the mean chance can not either exceed 2/3, or be less than 1/2; these 

extreme cases correspond to the values of α = 2 and 0. 

     Suppose also that, when x increases by equal increments, Х 

changes by a geometric progression and obeys equation (123.1) and 

that 

 

    
α

α

α
1

xX e
e

=
−

 

 

with an arbitrary value of α. As usual, e is the base of the Naperian 

logarithms. We will get 

 

    α

1 1
.

1 α
u

e−
= −

−
  

 

Therefore, if α increases from − ∞ to ∞, the mean chance u will take 

all the possible values from 0 to 1: at α = − ∞, 0, and ∞, u = 0, 1/2 and 

1 respectively.  

    Suppose that the different chances of faultlessness vary not from 0 

to 1, but are contained in narrower limits; for example, the chance х 
can not be lower than 1/2; and, in addition, that if it is higher, all its 

values are equally possible. Then Х should be a discontinuous function 

to be determined in the following way. I denote by ε a positive and 

finite but quite insensible magnitude and let fx be a function very 

rapidly changing in the interval х = (1/2 − ε) and 1/2, disappearing 

within limits х = 0 and (1/2 − ε) and taking a given constant value g 

within the limits х = 1/2 and 1.  

    Under these conditions I assume that X = fx; by the nature of this 

function fx  

    

1 1/2

0 1/2 ε

  /2 .Xdx g fxdx
−

= +∫ ∫  

 

However, owing to the condition (123.1)  

 

    

1/2

1/2 ε

1 /2,fxdx g
−

= −∫   

 

so that g ≤ 2, since fx can only be positive. 

    We can regard the multiplier x in the integral 

 

    

1/2

1/2 ε

xfxdx
−

∫  

 

as a constant equal to 1/2. The integral will therefore be equal to  
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1/2 − g/4. And, noting that 

 

    

1 1/2 ε 1/2 1

0 0 1/2 ε 1/2

,xfxdx xfxdx xfxdx xfxdx
−

−

= + +∫ ∫ ∫ ∫  

 

we conclude that the left side is equal to 1/2 − g/4 + g/2 − g/8, so that  

u = 1/2 + g/8.  

    Therefore, the mean chance can not in this case either exceed  

u = 3/4, which corresponds to the value of g = 2, or be less than 1/2, 

which corresponds to the value of g = 0. 

    We can thus assume an infinite number of various hypotheses about 

the type of the function Х. If one of them is certain, the corresponding 

value of u will also be doubtless. If, on the contrary, all of them are 

possible, their respectable probabilities will be infinitely low as also 

the different values of the mean chance which appears because of 

those hypotheses. The last case takes place when the various possible 

values of the chance of a juryman’s faultlessness remain unknown and 

we do not even know the law of their probabilities. All possible 

hypotheses can be formulated about that law so that the mean chance 

will take unequally probable values. 

    Denote by φudu the infinitely low probability that that chance 

exactly equals u. The function φu can be continuous or discontinuous, 

its integral over [0, 1] should be equal to unity, and all remarks made 

about X are applicable to it as well. 

    124. The preceding formulas completely answer all the questions 

pertaining to the subject of this chapter if only the prior probability k 

of the defendant’s guilt is known as well as the probability of 

faultlessness of each juryman and kind of cases. If this chance takes 

many possible values, all of them and their probabilities should be 

given. Again, if there are infinitely many of those values, and the 

probability of each is infinitely low, we ought to know the function 

which expresses the law of their probabilities.  

    However, none of these necessary elements is known in advance.  

Before the accused appears in court, he is committed for trial, and the 

pertinent procedures doubtless lead to his guilt being more probable 

than his innocence. Consequently, there are grounds to believe that  

k > 1/2, but by how much? We are unable to know it in advance. All 

depends on the ability and severity of the magistrates charged with 

conducting the preliminary investigation and can change with the 

change of the kind of cases. Neither, either before or after their random 

selection, can we find out the chances of the jurymen’s faultlessness. 

For each of them it depends on his enlightenment, on the advisability 

which he attaches to repression of one or another type of criminality, 

on pity inspired in him by the age or sex of the accused etc. None of 

these circumstances is known to us, neither do we know their 

quantitative influence on the votes. For applying the previous 

formulas, we ought to eliminate the unknown elements from them, and 

with that problem we will occupy ourselves now.  

    125. Consider the case in which the chance of faultlessness is the 

same for all the jurymen. Suppose that before the judgement it is 

unknown and can take all the possible values from 0 to 1 and that the 
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infinitely low probability of its value u, is denoted by φudu. If this 

value is certain, that is, if the chance of faultlessness of each juryman 

is indeed equal to u, the formula (117.1) expresses the probability that 

the accused, whether guilty or not, will be convicted by a majority 

verdict of (n – i) votes against i. In this formula, n is the total number 

of jurymen, and k, the prior probability of the defendant’s guilt. The 

probability of such a division of votes will indeed by determined by 

the right side of that formula multiplied by φudu. And if such a 

division took place, the probability that the common chance of 

faultlessness is equal to u will be the mentioned product divided by the 

sum of its values for all of the u from 0 to 1 (§ 43). Thus, when 

denoting by widu this infinitely low probability, we get 
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    The factor Ni in formula (117.1) does not depend on u and is 

cancelled here from the numerator and denominator. If λi is the 

probability that the chance u of faultlessness is contained within given 

limits l and l′, then 
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∫ ∫
     (125.1) 

 

    When n is even and the votes are equally divided, n = 2i and 
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Thus, λi does not depend on k, but depends on it when the votes are not 

divided equally. When any two values of u, equally remote from the 

extreme values 0 and 1 or from the mean u = 1/2, are equally probable, 

so that φ(1 – u) = φu, then 

 

    

1 1

0 0

(1 ) φ (1 ) φ .n i i i n iu u udu u u udu− −− = −∫ ∫   

 

    If in addition l < 1/2 and l′ = 1 − l, then also 

 

    (1 ) φ (1 ) φ ,

l l
n i i i n i

l l

u u udu u u udu
′ ′

− −− = −∫ ∫  
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and formula (125.1) becomes 
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so that λi is again independent from k, whichever was the division of 

the votes, (n – i) and i.  
    Assume that in formula (125.1) l = 1/2 and l′ = 1 and denote the 

result by λ′i, then 

 

    

1 1

1/2 1/2

1 1

0 0

(1 ) φ (1 ) (1 ) φ

λ
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′ =
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∫ ∫

∫ ∫
 

 

will be the probability that the chance u is contained within the limits 

1/2 and 1, and thus exceeds 1/2. Suppose now that l = 0 and l′ = 1/2, 

and denote the appearing form of (125.1) by λ″i, then the probability 

that u < 1/2 is [Poisson repeated formula (125.1) with the integral in 

the numerator being over [1/2, 1].] And, since the probability of an 

exact equality u = 1/2 is infinitely low, λ′i + λ″i = 1. This can be 

verified at once by noting that the denominators of both magnitudes 

coincide and the sum of the integrals multiplied by k in the numerator 

is equal to the integral multiplied by k in the denominator, and that the 

same is true for the integrals multiplied by (1 − k). 

    126. Suppose that the chance of faultlessness of each juryman is u 

and that the probability that the accused is convicted by a majority 

verdict of (n – i) votes against i is expressed by the magnitude widu. 

Then the probability that that accused is guilty, provided that the 

indicated chances are certainly u, is expressed by the magnitude pi 

from § 119.  

    By the rules of §§ 5 and 10 the composite probability of the 

defendant’s guilt is the integral of piwidu over [0, 1]. Denoting it by χi 

we have  
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n i i
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n i i i n i

k u u udu
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∫

∫ ∫
    (126.1) 

 

where account was taken of the expressions of wi и pi. This probability 

equals 0 and 1 together with k. When representing it as 
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∫ ∫
, 

 

it is seen that at all other values of k the probability of the defendant’s 

guilt after the verdict was returned becomes higher or lower than 

before when the first integrals in the preceding formula are larger or 

smaller than the second. If they are equal to each other, which 

invariably occurs when n = 2i and φ(1 – u) = φu, then χi = k. Indeed,  

the probability of the defendant’s guilt can not change at all when the 

votes were equally divided or when the values of u and (1 – u) or the 

expressions 1/2 ± (1 − 2u)/2 of the chance of faultlessness are equally 

probable. 

    In all other cases χi depends not only on the majority of m or (n – 2i) 
votes and on the value of k, as pi does, but also on the total number of 

the jurymen n and the law of probabilities of the chances of 

faultlessness as expressed by the function φu.  
    Suppose that conviction by 201 jurymen was returned by a majority 

verdict of only one single vote, or, in another case, by one single 

juryman, and that the chance of faultlessness was the same for all of 

them. The probabilities of the propriety of the decisions will be exactly 

equal to each other. However, if in the first case that chance essentially  

differed from 1/2, the observed event will be an exceptional and very 

rare fact; and if that chance is 1/2, the probability of the first event, 

according to the expression of wi from § 119, will be somewhat higher 

than 1/9. And, finally, if the chance of faultlessness was unknown in 

advance, and is determined by the decision itself, the defendant’s guilt 

is much less probable in the first case than in the second. Indeed, 

the result of voting, 101:100, considered by itself is not less correct 

than the decision of one single juryman, but almost an equal division 

of votes means that the chance of faultlessness of the jurymen likely 

not much differed from 1/2, certainly because the case was difficult. 

    127. For expressing a precise idea about the meaning of formulas 

(125.1) and (126.1), we ought to suppose that before a case was 

decided, someone had grounds to believe with probability k that the 

accused is guilty without knowing either the case, or anyone of the n 

jurymen except that they were selected from the general list. For him, 

the probability of their faultlessness is the same for all of them (§ 122), 

but unknown. Before the verdict is returned, it was possible to suppose 

that that unknown u took any possible value from 0 to 1. By some 

considerations, which we do not at all examine, the infinitely low 

probability that that person attaches to the variable u, is φudu with a 

given function φu. Its integral over [0, 1] should be unity, since the 

value of u is doubtless contained within those very limits.  

    Then it becomes known that the accused was acquitted by i votes 

and convicted by (n – i) of them. This is additional information, and 

for the mentioned person the probability λi that the chance u of 

faultlessness of each juryman will now be contained within the limits l 
and l′. The grounds for believing that the accused is guilty is also 
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strengthened or weakened because its prior probability k became equal 

to χi. For another person having other information those grounds will 

differ, but they should not be confused with the chance itself of guilt. 

It depends on k and on the chance of faultlessness proper to each 

voting juryman according to his capacities and the essence of the case 

under consideration. Had the numerical values u, u′, u″, … of that 

chance been known for each juryman as well as k, the veritable chance 

of the defendant’s guilt after the decision could have been calculated 

by the rules of § 116 generalized on the case of n jurymen. However, a 

determination of these values in advance is impossible, and the 

indicated rules are inapplicable.  

    Suppose that it is only known that the accused was convicted by a 

majority of at least m or (n – 2i) votes, that is, by m, m + 2, m + 4, … 

votes or convicted unanimously, and denote by Yi the probability that 

the chance of faultlessness, common for all jurymen, is contained 

within the limits l′ and l, and by Zi, the probability that the convicted 

accused is guilty. Then it will be possible to derive these two 

magnitudes by the same reasoning as made use of for deriving λi и χi, 

but applying ci and Pi (§§ 118 and 120) rather than γi and рi, as it was 

done when establishing formulas (125.1) and (126.1). We will thus get 
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    These formulas, like formulas (125.1) и (126.1), can be generalized 

on the case in which it is known that n′ jurymen out of n were 

randomly selected from the first list, n″, from another etc. if supposing 

also that the mean chance u′ of faultlessness in the first list had 

probability φ′u′du′, that in the second list, u″ and φ″u″du″ respectively 

etc. However, such a generalization is both easy and useless, and we 

will not write out the pertinent complicated formulas
7
. 

    128. When i and (n – i) are very large numbers, we ought to apply 

the method of § 67 for calculating approximate values of the integrals 

contained in formulas (125.1, 126.1, 127.1). I begin by considering the 

first two. In the interval between u = 0 and 1 the product un−1
(1 – u)

i
 

has only one maximal value. I denote it by β, and let α be the 

corresponding value of u. Then 

 

    2( )
α ,  β ,  (1 ) βexp( ).

i n i
n i i

n

n i i n i
u u x

n n

−
−− −
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    Passing over to logarithms, I get 
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    x2
 = lgβ − (n – i)lgu − ilg(1 − u). 

 

The variable х continuously increases from − ∞ to ∞ and the values  

х = − ∞, 0, ∞ correspond to u = 0, α, 1. The limits of the integral are  

х = ± ∞ at u = 0 and 1. In general, denoting by λ и λ′ the limits of x 

corresponding to u = l и l, and accounting for the preceding values of β 

and х2
 we will obtain 

 

    λ ( ) ln[( )/ ] ln[ / (1 )]n i n i ln i i n l= ± − − + − ,  

    λ ( ) ln[( )/ ] ln[ / (1 )].n i n i l n i i n l′ ′ ′= ± − − + −  

 

    If l и l′ exceed α, then λ и λ′ will become positive, and the superior 

signs should be applied, and otherwise, the inferior. And if l < α and 

l′ > α, the superior sign should precede the second radical, and the 

inferior sign, the first of them, so that λ will be negative, and λ′, 
positive. 

    For expanding u in power series of x, we assume that the 

coefficients γ, γ′, γ″, … are constant and that 

 

    u = α + γx + γ′x2
 + γ″x3

 + … 

 

Taking into account the values of α, β and х2
, we will get 
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    Equating the coefficients of the same powers of x on both sides of 

this equation [?], we can derive the values of γ, γ′, γ″, …, so that 
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    If the function φu does not decrease very rapidly when u deviates in 

some direction from its particular value u = α, it will be possible, after 

substituting u as expressed by the series, to expand φu as well in 

powers of (u − α), then in powers of х. We will thus arrive at 
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By applying these various values, the series expansion of the integral 

of un−1
(1 – u)

iφudu over [0, 1] from formula (126.1) will contain 

integrals over [− ∞, ∞] of exp(−x2
)dx, multiplied by even and odd 
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powers of x. The value of the integrals containing the even powers of 

х, are known, whereas the others will disappear. The numbers i and  

(n – i) are of the same order as n is, and the series under consideration 

will be arranged by magnitudes of the order of smallness of 1/√n, 

1/(n√n), 1/(n2√n), … Restricting our calculations to its first term and 

noting that 
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we establish that 
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In addition, interchanging i and (n − i), we get  
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    Denote by δ a positive magnitude, very small as compared with √n, 

let 
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and, neglecting terms of the order of smallness of 1/√n, expand the 

logarithms in the expressions for λ and λ′. It will then occur that 

λ = − δ and λ′ = δ. After that we have 
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to within terms of the order of 1/n. As δ increases, the integral on the 

right side will tend to √π. For its being very little different from that 

value, it is sufficient for δ to equal such numbers as 2 or 3. And if the 

limits l и l′ become appreciably larger or smaller than (n – i)/n, the 

integral on the left side will almost disappear. 

    Denote by ε a positive magnitude, very small as compared with √n, 

and let 
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Then 
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For the limits l и l′ becoming appreciably larger or smaller than i/n, the 

integral on the left side will almost disappear. 

    If the fractions (n – i)/n and i/n noticeably differ from each other, 

the first of the preceding values of l and l′ will also differ from the 

value u = i/n, corresponding to the maximal value of ui
(1 – u)

n−i
, and 

the integral on the left side of equation (128.1) will little differ from 

zero. The subsequent values of l and l′ will also appreciably differ 

from the value u = (n – i)/n, which corresponds to the maximal value 

of un−i
(1 – u)

 i
, and the integral of un−i

(1 – u)
 iφu over [l, l′] will also 

almost disappear. 

    129. When substituting in formula (126.1) approximate values of 

the integrals included there and cancelling common factors in the 

numerator and denominator, we will obtain the probability of the guilt 

of the accused convicted by a majority of m = n − 2i votes if the 

number n of jurymen is very large: 
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    As is seen, it depends on the ratio i/n, or, we can also say, on the 

ratio (n – i)/n, but not on the difference of these numbers as the 

probability pi does if (§ 119) the chance u of faultlessness was known 

in advance. Thus, if the accused is convicted by 1000 votes against 

500 when the total number of jurymen is 1500 or by 100 votes against 

50 when that number is 150, the probability χi will be the same, but the 

probabilities pi will very much differ. On the contrary, suppose that the 

second case persists but that in the first case 550 jurymen convicted 

the defendant and 500 acquitted him. Then the probabilities pi will be 

equal to each other, but the probabilities χi can much differ one from 

another. 

    If the accused is convicted; then (n – i)/n > 1/2 and i/n < 1/2. 

Supposing that at u < 1/2 the function φu is almost zero; in other 

words, if the mean chance of faultlessness, when lower than 1/2 or 

lower than the chance of error, is considered unlikely; and if, in 

addition, the fraction k is not too close to zero, so that it will be 

possible to neglect the second term of the denominator of χi as 

compared with the first term, − then χi = 1 or at least is very close to 

certainty. 

    When applying approximate values of the integrals in formula 

(125.1) and assuming that the fractions (n – i)/n and i/n do not differ 

too little from each other, we will get the probability 
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that, when deciding to convict the accused, the common chance u of 

faultlessness is contained within the limits 
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    Retaining the hypothesis under which one of the two integrals in the 

numerator of formula (125.1) disappears, we have 
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for the probability that that chance is contained within the limits 
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    Sufficient, but not excessively large values can be assigned to the 

magnitudes δ and ε so that the integrals with variable x very little 

differ from √π. Then the sum of both values of λi will also very little 

differ from unity. The mean chance will almost certainly be contained 

either within the first limits little differing from the fraction (n – i)/n 

which exceeds 1/2, or within the second limits little differing from i/n 

which is less than 1/2.  

    When supposing that φ(i/n) is insensible or negligible as compared 

with φ[(n – i)/n], the second case is eliminated, and we can assume 

that almost certainly the value of u very little differs from (n – i)/n. In 

other words, the chances u and (1 – u) of faultlessness and error are in 

the ratio of the convicting and acquitting votes, (n – i) and i. And now 

it seems that the probability χi is not sensibly reduced to unity, but 

very little differs from pi at u = (n – i)/n. However, it should be 

remarked that the probability pi corresponds to the case in which the 

chance u definitely takes only one possible value. For including this 

case in that to which χi is corresponding, we ought to suppose that φu 

only disappears within infinitely short intervals on both sides of the 

possible value of u, and that this function very rapidly decreases in the 

vicinity of that value. However, the analysis in § 128 essentially 

supposed, as it was seen, that φu does not change at all in any direction 

from the value of u = (n – i)/n. The probability χi derived there is not at 

all applicable to the case to which corresponds pi from § 119. It can 

also be remarked that formula (126.1) describes the latter.  

    When in general denoting by v the only possible value of u, and by 

η, a positive infinitely small magnitude, and supposing that φu is a 

function disappearing at all values of u beyond the limits v ± η, the 

limits of the integrals in formula (126.1) will coincide with these 

extreme points. Within them the factors un − i
(1 – u)

i
 and u i

(1 – u)
 n − i
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are constant; after withdrawing them beyond the sign of the integrals 

and cancelling the integral of φudu over [v − η, v + η], which will be 

a common multiplier in the numerator and denominator of formula 

(126.1), this formula will coincide with formula (119.1) at u = v.  
    Supposing that the fractions (n – i)/n and i/n do not essentially differ 

from each other, and assuming that ε = δ, the preceding values of λi 

will correspond to the same limits of the chance u. However, their 

common value will differ from the preceding and become independent 

from k and equal to  

 

    

δ
2

δ

1
exp( )

π
x dx

−

−∫  

 

since in this particular case both integrals in the numerator of formula 

(125.1), as well as the integrals in its denominator, are almost equal to 

each other. 

    130. For determining approximate values of the integrals in 

formulas (127.1) we should express the values of Ui and Vi by means 

of formulas (121.1). The first of them concerns the case in which 

(1 – u)/u > i/(n + 1 − i), and the second, the contrary case. The first 

formula therefore subsists within the interval u = 0 and α, and the 

second, within u = α and 1, when (n + 1) is replaced by n and  

(n – i)/n = α. In accordance with the equation which determines θ in 

formulas (121.1),  

 

    2( )
(1 ) exp( θ ).

i n i
n i i

n

i n i
u u

n

−
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This coincides with the preceding equation connecting u and х [§ 128] 

from which it follows that 
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    However, θ should invariably be positive (§ 121), and, at u = 0, α 

and 1, it equals ∞, 0 и ∞. The variable u increases from 0 to α, and θ 

decreases from ∞ to 0. Then u increases once more from α to 1, and θ 

increases from 0 to ∞. Therefore, in accordance with formulas (121.1),  
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    2

0

( ) 2
exp( θ )φ θ.

θ3 π ( )
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∞
+

−
−
∫  

 

    The values of these integrals as well as the double integrals can be 

obtained in the form of converging series of θ when substituting the 

preceding series instead of u and its differential coefficient instead of 

du/dθ, and expanding φu into a series. This supposes that that function 

does not change very rapidly in any direction from the particular value 

of the argument u = α. When neglecting terms of the order of 

smallness of 1/n, then, simply, 
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α θ ,  ,  φ φα.
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u u
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    The square root can be preceded here by two signs. Plus should be 

chosen in the integrals [above] if the variable θ increases, and minus 

otherwise. Then the signs of the integrals are changed, and their limits 

interchanged so that 
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    Adding up these formulas, we get 
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0 α
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In the general case, denoting by a and a1 two such values of u that  

a < α and a1 > α, and by b and b1, positive values of θ, corresponding 

to values u = a and a1, it will occur to within our order of 

approximation
8
 that 
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When integrating by parts, we can obtain […] and therefore 
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In formulas (121.1) I replaced Ui by Vi and therefore replaced u by  

(1 – u) (§ 118). The first substitution takes place if u/(1 – u) exceeds 

i/(n + 1 – i), i. e. in the interval from u = 1 − α to 1; I had also replaced 

(n + 1) by n and again assumed that α = (n – i)/n. 

    The second substitution concerned the case in which u changed 

from 0 to 1 − α. Denoting by θ′ the value of θ when u is replaced by  

(1 – u) and neglecting, as previously, terms of the order of smallness 

of 1/n, I first arrive at […], so that 
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    Now, if a′ and a′1 are such values of u, that a′ < 1 − α and  

a′1 > 1 − α, and denoting by b′ and b′1 the positive values of θ′, which 

are derived from the equation 
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and correspond to values of u = a′ and a′1, then also 
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    131. The approximate values of the integrals in formulas (127.1) are 

thus calculated and we obtain 
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                                             (131.1) 
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for the probability of the guilt of the accused convicted by at least  

(n – i) jurymen out of their very large number n. The ratio α = (n – i)/n 

exceeded 1/2. If at u < 1/2 the function φu is insensible or disappears,  

the same will happen with the second integral in the denominator of 

(131.1). And if k is not a very small fraction, Zi will almost equal 

unity. And if φ(1 – u) = φu for all values of u, then 
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and Zi becomes equal to k, which should have indeed taken place. 

    If a = 1 − α and a′i = α, the corresponding values b and b′1 of θ and 

θ′ will be equal to each other. Denote them by c and take into account 

the meaning of α, then c will be a positive magnitude determined by 

the equation 
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and therefore  
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If the accused had been convicted, the probability that the chance u of 

faultlessness, common for all the jurymen, is contained within the 

limits (1 − α) and α, or within i/n and (n – i)/n, is equal to 
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    It is feeble owing to the very small radical. It is therefore likely that 

the chance u was either greater than α or smaller than (1 − α). For 

verifying this, I assume that a1 = a′1 = 1. The corresponding values of 

θ and θ′ will be b1 = b′1 = ∞, and 
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    Subtract from this latter integral its previous value over [(1 − α), α], 

and then 
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When taking into account the integrals of Uiφudu и Viφudu over [α, 1]  
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will be the probability that the chance u is contained within the limits  

u = α and 1, and thus exceeds α. I also assume that a = a′ = 0, then  

b = b′ = ∞, so that […]  
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will be the probability that the chance u is contained within the limits  

u = 0 and (1 − α), and is thus less than (1 − α). The sum of the two last 

values of Yi is almost unity, which should be verified. If the values of 

φu at u < 1/2 are zero or almost zero the last value of Yi will be very 

low, and the preceding value very little differing from certainty. In any 

case, the sum of the three just calculated values of Yi is unity, as it 

should have indeed been. 

    132. Owing to the preceding, even if the number n of the jurymen is 

very large, for deriving the probability of the guilt of the accused 

convicted by (n – i) votes against i we ought to formulate a hypothesis 

about the type of the function φu or the law of probabilities of the 

chances of faultlessness. In usual cases, when the number n is not very 

large, this is all more necessary. Laplace’s pertinent hypothesis 

consisted in assuming that the function φu is zero at all values of  
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u < 1/2 and constant at all u > 1/2. It means that each chance of 

faultlessness lower than the contrary chance is assumed impossible, 

and that all the other chances of faultlessness are considered equally 

probable. His hypothesis is admissible since it satisfies the condition 

of the integral of φudu over [0, 1] being equal to unity; in addition  

(§ 123), the mean of the possible values of u, or the same integral of 

uφudu, will be contained within the limits of 1/2 and 3/4, and, at  

u > 1/2, will depend on the value of φu.  
    By that hypothesis φu = 0 at u < 1/2 and is constant at u > 1/2, and 

therefore the interval between the limits of the integral in formula 

(126.1) shortens and is contained between u = 0 and 1/2. The function 

φu can be taken out beyond the sign of the integral, and since 
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that formula becomes 
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Here, the constant common multiplier φu in the numerator and 

denominator is cancelled. 

    Laplace did not at all account for the prior probability of the 

defendant’s guilt. Accordingly, for the derived formula to coincide 

with his result we ought to suppose that this guilt is not either more, or 

less probable than his innocence, i. e., to assume that k = 1/2. Then 
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    After the integration it occurs that the probability the innocence of 

the accused convicted by(n – 2i) jurymen out of their total number n is  
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    Laplace (1816/1886, с. 527) actually derived this formula. The sum 

in brackets consists of (i + 1) terms and is unity at i = 0 and therefore 

the probability of a mistaken unanimous conviction is 1/2
n+1

. Without 

admitting the value k = 1/2 and assuming that i = 0, we will get 
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which is larger or smaller than 1/2
n+1

 at k larger or smaller than 1/2. 

    In ordinary cases n = 12; from formula (132.1), supposing 

successively that i = 0, 1, 2, …, 5, we will obtain fractions 

 

    1/8192, 14/8192, 92/8192, 378/8192, 1093/8192, 2380/8192, − 

 

the probabilities of mistaken conviction by 11 jurymen against 1; by 

10 against 2; …; by 7 against 5. When the majority is least, the 

probability of a mistake is almost 2/7, which means that, among a very 

large number of accused convicted by such a majority, 2/7 were likely 

convicted mistakenly; for a majority of 8 against 4 the indicated 

probability is almost 1/8. 

    Let us apply the Laplace hypothesis to formula (125.1) and denote 

by δ a positive magnitude not exceeding 1/2. Supposing that k = 1/2,  

l = 1/2 and l′ = 1/2 + δ, we get 
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for the probability that the chance u of faultlessness which, by that 

hypothesis, can not be lower than 1/2, is contained within the limits 

1/2 and 1/2 + δ when conviction was decided by (n – i) votes against i.  
Integration is not difficult. At i = 0 or unanimity it occurs that 

 

    λi = [(1/2) + δ]n+1
 − [(1/2) − δ]n+1

. 

 

    If, for example, n = 12 and δ = 0.448, then almost exactly λi = 1/2, 

so that even money can be bet on the chance u to be contained between 

the limits 0.5 and 0.948. At δ = 1/4, without supposing that i = 0, we 

obtain 
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for the probability that the chance u is contained within the limits of 

1/2 and 3/4, or that it is closer to 1/2, than to unity. At n = 12 and i = 5 

it equals 0.915 … In cases of the least majority we can bet a little more 

than 10 against 1 on that chance being lower than 3/4.  

    133. Formula (132.1) was derived from another one in which the 

chance u of faultlessness had been assumed the same for all the 

jurymen. Therefore, although Laplace did not mention it, that chance 

can not be admitted for each of them as their proper chance. That 

should be the mean chance for the entire list from which the jurymen 



 224 

are randomly selected (§ 122). People whose chance of faultlessness, 

at least in difficult cases, is lower than 1/2, i. e., lower than the 

contrary chance will doubtless be included in such a list. Laplace’s 

hypothesis demands, however, that there will be an inconsiderable 

number of such people and that, consequently, they will not prevent 

the mean chance of faultlessness to be invariably higher than 1/2. The 

illustrious geometer also supposed that all values of that chance from 

1/2 to 1 were equally probable. 

    He only justified these two assumptions by stating that The opinion 
of the judge more strongly tends to the truth than to error. However, 

issuing from this principle, he only concluded that the values of the 

function φu, expressing the law of probabilities of the values of the 

mean chance, should be larger at u > 1/2 than otherwise. This 

condition can be fulfilled in an infinite number of ways without 

requiring that either φu = 0 at u < 1/2, or its invariability at u > 1/2. 

His hypothesis is not sufficiently justified in advance, whereas its 

corollaries, as it will be shown, render it quite inadmissible. 

    Actually, the formula (132.1), which is one of its necessary 

corollaries, does not include anything depending on the abilities of the 

people from the general list of jurymen. Someone who only knows, for 

example, that two convictions were returned by the same majority 

verdict and the same total number of jurymen selected from two 

different lists, could have had the same grounds for believing that both 

convictions were mistaken in spite of knowing that people included in 

one list were much more able than those selected from the other one. 

And it is impossible to agree anymore with this conclusion.  

   If the accused is convicted by a majority verdict of (n – i) votes 

against i, so that i/n < 1/2, then, by the hypothesis under consideration, 

the value of φ(i/n) is zero or almost zero. When the number n of the 

jurymen is very large, the probability χi of the defendant’s guilt is 

therefore very close to unity whatever is the difference [(n – i) − i]  
(§ 129). If, for example, 520 jurymen against 480 convicted him, his 

guilt should be considered almost certain, although 480 jurymen 

denied it with their chance of faultlessness, as can be supposed, not 

differing from that of the 520 others. This conclusion is sufficient for 

rejecting the hypothesis on which it was based. Indeed, no one will 

assign considerable confidence to such a decision, and the less so, the 

same confidence as to an almost unanimous decision of a 1000 

jurymen. 

    According to that hypothesis, when the ability of people included in 

the general list change or when they differ in different regions or 

different kinds of cases, the probability of those chances of 

faultlessness which are closer to unity or differ from 1/2 less than the 

others, will heighten in the same ratio. This does not really occur; 

when for some reason this ability strengthens, the probability of the 

chances of faultlessness closest to certainty heightens, whereas the 

contrary happens to chances remotest from unity. By adopting a 

function φu, which can satisfy these conditions, and in addition should 

not disappear or become almost zero at u < 1/2, it will be possible to 

overcome the indicated difficulties. However, that is not sufficient: an 

infinite number of continuous and discontinuous kinds of φu satisfy 
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those conditions; for the same number n of jurymen and the same 

difference [(n – i) − i] they lead to very unequal values of the 

probability χi expressed by formula (126.1). 

   And so, when knowing those numbers for one single convicting 

decision and supposing that the prior probability k is 1/2 or any other 

fraction, we will be unable, as said above, to determine the real 

probability of the virtue of that decision. It depends on the chance of 

faultlessness proper to each juryman which we can not know. In 

addition, for someone, who only knows that the n jurymen were 

randomly selected from the general list and has grounds to believe that 

the virtue of a decision only depends on the mean chance of 

faultlessness common to all the jurymen from that list (§ 122), it is 

impossible to calculate the value of that probability. Indeed, such a 

calculation requires a formulation of a particular hypothesis about the 

law of probabilities of the values of the mean chance when it changes 

from 0 to 1. It should not be the Laplace hypothesis, or any other if 

insufficiently justified. 

    If the jurymen selected from the general list make only one decision, 

the previous formulas are useless. The same will happen if the number 

of decisions is inconsiderable; on the contrary, a very large number of 

convictions and acquittals in known ratios are pronounced by jurymen 

successively and randomly selected from the same general list. And 

we will show at once that the formulas (117.1, 117.2; 118.1; 119.1, 

119.2; 120.1, 120.2) were based on these grounds. They contain only 

two unknown magnitudes, k and u, and therefore only require results 

of two observations. And we will first of all determine these results. 

    134. The general list of citizens who can become jurymen contains a 

number of people. Each jury panel consists of n jurymen randomly 

selected from that list for one year or many years, and they judge a 

very large number µ of accused. Denote by ai the number of those 

accused convicted by a majority verdict of at least (n – i) votes against 

i. This means that i is zero or a positive number less than n/2. In 

advance, the prior chance of such a conviction should change from one 

decision to another, but anyway the mean of its unknown values 

calculated for µ decisions will likely be almost equal to the ratio of 

ai/µ (§ 95).  

    Furthermore, the values of this mean chance and that ratio very little 

change with µ, supposed to be very large. And if that number increases 

further and further, they will indefinitely tend to a special constant Ri 

and reach it if µ can become infinite without any changes in the 

various causes of convictions by the indicated majority verdict. This 

special constant is the sum of the chances provided by all possible 

causes for conviction, or the event under consideration, multiplied by 

the respective probabilities of those very causes (§ 104).  

    It is impossible to enumerate them and calculate their influence in 

advance, but we do not need to know them. It is sufficient to suppose 

that neither their probabilities, nor the chances they attach to 

convictions are changing, and the observation itself will let us know 

whether this assumption conforms to reality. If so, then, denoting by 

a′i the number of convictions decided by a majority verdict of at least 

(n –i) votes against i for another very large number µ ′ of accused, the 
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difference (a′i/µ ′ − ai/µ) will likely be a very small fraction (§ 109). If, 

on the contrary, this difference is not very small, we can justifiably 

believe that in the interval between the two series of decisions 

occurred some essential change in the causes of conviction. 

Calculation can only tell us about the existence of such changes, but 

will not say anything about its essence. 

    What we say about convictions by at least (n – i) votes against i 
equally concerns convictions by (n – i) votes against i. Denote by bi 

the number of those when there are µ accused. There exists a special 

constant ri, to which the ratio bi/µ indefinitely tends as µ increases and 

reaches it if µ can become infinite without any changes in the causes 

of conviction. And if b′i is the number of convictions for µ ′ accused, 

the difference (b′i/µ − bi/µ) will likely be a very small fraction. The 

following equalities will evidently take place: 

 

    ai = bi + bi−1 + bi−2 + … + b0, 

    a′i = b′i + b′i−1 + b′i−2 + … + b′0, 
    Ri = ri + ri−1 + ri−2 + … + r0. 

 

    Suppose that α is a positive magnitude very small as compared with 

√µ and √µ ′ and  
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In accordance with the formulas of § 112 the magnitude P will also be 

the probability that the limits of the differences (a′i/µ ′ − ai/µ) and 

(b′i/µ ′ − bi/µ) for the unknowns Ri and ri are 

 

    
3 3

2 (µ ) 2 (µ )
α ,  α

µ µ µ µ
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m m           (134.1а, b)  

 

and again for them 
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m                       (134.1с)  
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2 (µ ) 2 (µ )
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′

m                        (134.1d)  

 

    Other things being equal, the extent of these limits shortens as µ and 

µ ′ increase almost proportional to the square roots of these large 

numbers. Indeed, ai and bi increase almost like µ, and a′i and b′i, 
almost like µ ′. And this extent narrows as much as α decreases, but 

their probability P then lowers. 

    135. As I indicated in § 7 of the Preamble, all the numerical data 

below were picked out from the Comptes généraux de l'Administration 
de la justice criminelle9

 published by the government. From 1825 to 
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1830 inclusive the number of cases yearly passed over for 

consideration by jury panels in the entirety of France was 

 

    5121, 5301, 5287, 5721, 5506, 5068, 

 

and the number of the accused in these criminal cases was 

 

    6652, 6988, 6929, 7396, 7373, 6962, 

 

or almost 7 defendants in 5 cases yearly. During those years the 

number of convicted by majority verdicts of at least 7 votes against 5 

was 

 

    4037, 4348, 4236, 4551, 4475, 4130, 

 

so that the conviction rates were 

 

    0.6068, 0.6222, 0.6113, 0.6153, 0.6069, 0.5932. 

 

    It is already seen that during those six years with an invariable 

criminal legislation these yearly rates changed very little. 

    I accept the total number of the accused during those six years as µ 

and as a5, the corresponding number of convictions: µ = 42,300,  

a5 = 25,777. The corresponding limits (134.1а) are 0.6094 ± 0.00335α; 

assuming, for example, that α = 2, we get Р = 0.9953, the probability, 

very close to certainty, that the unknown R5 only differs from 0.6094 

by 0.0067. 

    When separating the period under consideration in two equal parts, 

then, for them, 

 

     µ = 20,569, µ ' = 21,731, a5 = 12,621, a'5 = 13,156,  

    a5/µ = 0.6136, a'5/µ ' = 0.6054, a5/µ − a'5/µ ' = 0.0082. 

 

The limits (134.1с) of the derived difference will be ± 0.00671α; 

supposing that α = 1.2, we obtain the limits ± 0.00805 and Р = 0.9103, 

(1 − Р) = 0.0897. We can therefore bet almost 10 against 1 on that 

difference to be contained within limits ± 0.00805. Although the actual 

difference, ± 0.0082, somewhat exceeds the derived limits, both the 

deviations and the probability that this should not have taken place are 

not sufficiently essential for justifiably believing that some appreciable 

change occurred in the pertinent causes.  

   In 1831 the number of the accused increased to 7606, and the 

number of those convicted reached 4098. The law demanded that the 

majority verdict for conviction should not be less than 8 votes against 

4. And it accordingly occurred that  

 

    µ = 7606, a4 = 4098, a4/µ = 0.5388. 

 

If the required majority is excluded and the other causes influencing 

the decisions of the jurymen remained during that year as they were 

before, the ratio b5/µ will be obtained by subtracting a4/µ from a5/µ, or 
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by subtracting 0.5388 from the derived above fraction 0.6094, and 

then b5/µ = 0.0706. 

    For verifying this result I note that in 1825 − 1830 the law stipulated 

an intervention of judges composing the assize
10

 courts each time 

when the jurymen’s decision was adopted by the least majority verdict 

of 7 votes against 5. And the Comptes généraux state that during the 

five last years of those six the number of such interventions  

 

    398, 373, 373, 395, 372 

 

barely changed. It occurred 1911 times in all, but the corresponding 

number of the accused was not indicated. Accordingly, for those years, 

we ought to compare the number of cases rather than of the accused. 

Their total number amounted to 26,883, so that µ = 26,883, b5 = 1911 

and b5/µ = 0.0711, very little differing from the previous result
11

. 

    This accord of two values of b5/µ proves that in 1831 the 

probabilities u and k, on which depends the indicated ratio, remained 

almost the same as in the previous years. We should nevertheless point 

out that the calculation of the last value was based on the hypothesis 

that the number of convictions by 7 votes against 5 is to the number of 

the accused as the number of cases in which this majority took place is 

to the total number of cases. This can not be verified in advance, since 

the Comptes généraux lacks necessary data. 

    In 1832 and 1833 the number of the accused without those in 

political cases amounted to 7555 and 6964. An essential difference 

between these numbers took place owing to the new legislative 

measure according to which in 1833 many kinds of cases were given 

over from the assizes to the police courts. The number of convictions 

decided, as in 1831, by majority verdicts of at least 8 votes against 4 

increased to 4105 and 4448, so that a4/µ = 0.5887 and 0.5895.  

    It is seen that these ratios little differ from each other, but their 

mean, 05888, exceeds a4/µ = 0.5388 for 1831 by 0.05 or by about 1/10 

of this value. If no changes occurred in the causes which could have 

influenced the jurymen’s voting, then, after taking into account the 

limits (134.1с) and their probability Р, this would have been absolutely 

unlikely. And indeed, from 1832 criminal legislation underwent such a 

change: the question of mitigating circumstances was brought before 

the jury panels. If present, they led to diminution of penalty which 

rendered convictions easier and increased their number. 

    136. Various ratios which we provided just above for the entirety of 

France are not the same in all parts of the kingdom. However, it turned 

out that, excluding the department of Seine and some others, the 

number of criminal cases judged during a few years was not enough 

for deriving with a sufficiently high probability and for the jurisdiction 

of each assize court that constant to which the rate of conviction 

should tend. Here are the results for the Paris court.  

    In 1825 − 1830 the yearly numbers of the accused were 

 

   802, 824, 675, 868, 908, 804,                                      (136.1) 

 

and the numbers of those convicted 
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    567, 527, 436, 559, 604, 484,                                     (136.2) 

 

so that the rates of conviction were 

 

    0.7070, 0.6396, 0.6459, 0.6440, 0.6652, 0.6020. 

 

    Let µ and a5 be the sums of the former, (136.1), and the latter, 

(136.2), six numbers, then µ = 4881, a5 = 3177, a5/µ = 0.6509. For 

France in its entirety the first two of these derived numbers during the 

same years were 42,300 and 25,779, and we established that that rate 

should very little differ from 0.6094 [= 25,779: 42,300]. This is less 

than the previous value [0.6509 for the department of Seine] by 0.0416 

or about 1/15 of its value. However, taking into account the limits 

(134.1с) and their probability Р, this would have been absolutely 

unlikely if only some particular cause did not lead there to easier 

convictions than in other parts of France. What was this cause? This is 

what calculus can not tell us. Anyway, for the same interval of time in 

that department, whose population barely amounts to 1/36 part of the 

population of France, the number of the accused exceeded 1/9 of them 

for France as a whole, which means 4 times as many. So the repression 

of criminality is more necessary there, and perhaps for this reason 

local jurymen are more severe
12

. 

    When issuing from those values of µ and a5 the limits (134.1а) 
become 0.6509 ± 0.00965α, and, at α = 2, Р = 0.99532, (1 − Р) = 

0.00468. You can bet more than 200 against 1 on the unknown R5 only 

differing in any direction from 0.6509 by 0.0193. 

    The last of the four ratios quoted above, 0.6020, is appreciably less 

than the mean of the five others. It makes sense to investigate whether 

this difference indicates in a sufficient measure some particular cause 

that could have in 1830 led the jurymen to be less severe than in the 

previous years.  

    Denote the numbers of the accused and the convicted in the 

department of Seine for 1825 – 1829 by µ and a5, and the same 

numbers for 1830 by µ ' and a'5. Then 

 

    µ = 4077, a5 = 2693, µ' = 804, a'5 = 484,  

    a5/µ = 0.6605, a'5/µ' = 0.6019, a5/µ − a'5/µ' = 0.0585. 

 

    The limits (134.1с) become ± 0.02657α; if α = 2, you can bet more 

than 200 against 1 on the difference (a5/µ − a'5/µ') not to exceed 

0.05314. Actually, however, it exceeds that fraction almost by 1/10 of 

its value, and we can believe that at that time [1830] some anomaly 

happened in the jurymen’s votes. The cause that rendered them a bit 

less severe could have been the Revolution of 1830. Whatever it was, 

it apparently influenced the jurymen over all France, since the rate of 

conviction in the kingdom lowered almost to 0.59 whereas its mean 

value for the 5 previous years was 0.61. 

    During 1826 – 1830 inclusive the number of criminal cases in the 

department of Seine amounted to 2963. The majority verdict of 7 votes 

against 5 was returned 194 times, and the [assize] court had to 
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intervene. With b5/µ = 194/2963 = 0.0655 we obtain a value somewhat 

smaller than for France in its entirety.  

    137. When, like in the Comptes généraux, separately considering all 

the kinds of crimes brought before the assize courts, the numbers of 

the accused and the convicted will not be large enough for the ratios to 

become invariable and serve as the basis of our calculations. However, 

all criminal cases in those Comptes are also separated in two 

categories, crimes against the person, and against property. These 

large categories yearly lead to very different ratios, almost invariable 

by themselves. We will cite them. 

    During the six years 1825 – 1830 the number of the accused in the 

entirety of France in those categories amounted to  

 

    1897, 1907, 1911, 1844, 1791, 1666; 

    4755, 5081, 5018, 5552, 5582, 5296. 

 

The corresponding numbers of convictions for the same criminal 

legislation amounted to  

 

    882, 967, 948, 871, 834, 766; 

    3155, 3381, 3288, 3680, 3641, 3364, 

 

and the rates of conviction were 

 

    0.4649, 0.5071, 0.4961, 0.4723, 0.4657, 0.4598; 

    0.6635, 0.6654, 0.6552, 0.6628, 0.6523, 0.6352. 

 

    It is seen that in each category these rates did not change much from 

year to year, but that the latter appreciably exceeded the former. 

Denote by µ and µ' and a5 and a'5 the total number of the accused and 

the convicted, then 

 

    µ = 11,016, a5 = 5268, µ' = 31,284, a'5 = 20,509,  

    a5/µ = 0.4782, a'5/µ' = 0.6556. 

 

    The second rate exceeds the first one by a little more than 1/3 of its 

value. Issuing from these numbers, we can conclude that the limits 

(134.1а) of the unknown R5 are respectively 

 

    0.4782 ± 0.00675α and 0.6556 ± 0.00380α. 

 

It follows that for α = 2 with probability very close to certainty R5 does 

not differ from 0.4782 by more than 0.0135, and from 0.6556 by more 

than 0.0076. 

    In 1831 a majority verdict of at least 8 votes against 4 was required 

for conviction. And, accordingly, 

 

    µ = 2046, a4 = 743, µ' = 5560, a'4 = 3355,  

    a4/µ = 0.3631, a'4/µ' = 0.6034. 
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When subtracting these ratios from the previous it occurs that the rates 

of conviction with a majority verdict of at least 7 votes against 5 were 

b5/µ = 0.1151 and b'5/µ' = 0.0522. It is remarkable that the former 

concerning crimes against the person is almost twice larger than the 

latter, whereas, on the contrary, a'5/µ' exceeds a5/µ almost by 1/3. 

Thus, convictions in the second category of crimes are not only 

proportionally more numerous, but are also returned by a larger 

majority. 

    For both sexes, the rates under consideration are not the same at all. 

In the assize courts women almost invariably composed 0.18 of all the 

yearly accused. During the five years 1826 – 1830 inclusive, the 

respective numbers for women amounted to 

 

    µ = 1305, µ' = 5465, a5 = 586, a'5 = 3312,  

    a5/µ = 0.4490, a'5/µ' = 0.6061. 

 

When comparing the calculated rates with their preceding values, it 

occurs that they are smaller, although only by about 1/16 and 1/12 of 

their values. 

    In 1832 and 1833, when convictions were returned not less than by 

8 votes against 4 with mitigating circumstances being allowed for, the 

numbers of the accused and the convicted men and women were 

 

    µ = 4108, µ' = 10,421, a4 = 1889, a'4 = 6664,  

    a4/µ = 0.4598, a'4/µ' = 0.6395. 

 

Like above, the letters with strokes concern crimes against property. 

At α = 2 the limits (134.1а) indicate that with probability very close to 

certainty the unknown R5 deviates from 0.4598 not more than by 

0.022, and from 0.6395 not more than by 0.0133 respectively. We can 

remark that the ratio a4/µ:a'4/µ' was almost equal to the derived above 

ratio a5/µ:a'5/µ'. When comparing a4/µ and a'4/µ' with those 

magnitudes for 1831, we can also indicate that the influence of the 

mitigating circumstances only increased the rate a'4/µ' for crimes 

against property by 1/15, but a4/µ, for crimes against the person, was 

increased almost by 1/3 of its value.  

    138. In § 122 we established that the chance of an accused to be 

convicted by jurymen randomly selected from the general list of a 

department or an assize court would have been the same had all of 

them a common chance of faultlessness. Therefore, when convictions 

are decided by majority verdicts of at least (n – i) votes against i, that 

chance is expressed by formula (118.1a), and by formula (117.1) for 

majority verdicts of (n – i) votes against i. For each department and 

category of crime the magnitudes ci and γi, expressed by these 

formulas are those to which the rates ai/µ and bi/µ indefinitely tend as 

µ, proposed very large, increases further. In other words, when 

considering cases of the same category and the same department 

separately for the accused men and women, ci and γi will coincide with 

the unknowns Ri and ri (§ 134).  

    As done above, we will separate all kinds of criminal cases into two 

distinct categories, crimes against the person and against property, and 
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letters with a stroke will concern the latter. However, to prevent the 

calculations from being too complicated, we will not at all account for 

the sex of the accused. Its influence on the rate of conviction can be 

neglected since more than 5/6 of the total number of the accused 

consisted of men. For each department we will get  

 

    ai/µ = ci, bi/µ = γi, a'i/µ ' = c'i, b'i/µ ' = γ'i,           (138.1а, b, с, d)  

 

with the approximation being the better and the probability the higher, 

the larger were the numbers µ and µ'. 

    If for different departments the ratios on the left sides of equations 

(138.1) are known, those four equations will suffice for determining 

the unknowns k and u, included in the magnitudes ci and γi and their 

analogues k′ and u′ in c′i and γ′i. At present however, the need to have 

very considerable µ and µ ′ makes it impossible to apply separately the 

equations (138.1) to each department. We have to suppose that as a 

rule the unknowns u, u′, k, k′ little change from one of them to another 

so that the numbers concerning the whole of France can be assumed as 

the left sides of those equations. 

    The magnitudes u and u' thus determined will exactly coincide with 

the chances of faultlessness had the lists of the jurymen of all the 

departments been combined together for randomly selecting each 

juryman from it. Since the magnitudes k and k′ also depend on the 

ability of magistrates directing preliminary investigations, they can 

differ in different departments. However, the equations (138.1) are 

linear with respect to these unknowns and their derived values are the 

means of those actually taking place in all the departments. Finally, I 

should note that the need to be content with these general values of u, 

u′, k, and k′ is only due to the lack of complete observational data 

rather than some imperfection in the described theory. 

    The magnitudes ci and γi do not change if k and u are replaced by  

(1 – k) and (1 – u), see §§ 117 и 118. Therefore, if k and u larger than 

1/2 correspond to the given ai/µ and bi/µ and satisfy the equations 

(138.1а, b), then there exist other k and u, also satisfying them but 

smaller than 1/2. However, we ought to suppose that the prior 

probability of the guilt of the accused exceeds the probability of his 

innocence, and that the mean chance of a juryman’s faultlessness 

exceeds 1/2. We should therefore apply the values of k and u which are 

larger than 1/2 and reject the other values as alien for the problem. 

    The same remark concerns the equations (138.1с, d) and the values 

of k′ and µ ′ derived from them. Nevertheless, when applying these 

equations to the judgements returned in the numerous political trials 

during the ill-fated years of the Revolution, it will be possible, as 

described in § 12 of the Preamble, to apply their roots smaller than 1/2, 

because in those times the prior legal innocence of the accused could 

have been more probable than their guilt, and the probability of 

voluntary mistakes made by the jurymen could have exceeded their 

chance of faultlessness. 

    139. I suppose that in the formulas (117.1) and (118.1) n = 12 and  

i = 5. The coefficients included there will be  
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    N0 = 1, N1 = 12, N2 = 66, N3 = 220, N4 = 495, N5 = 792. 

 

I also suppose that 

 

    5 5 1
,  792γ,  ,  1

µ µ 1 1

a b t
c u u

t t
= = = − =

+ +
 

 

so that the equation (138.1b) becomes 
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    Since 
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the equation (138.1) can be written as 

 

    
6

12

924
[1 ]

(1 )

t
c k

t
= − −

+
  

    2 3 4 5

12

(2 1)
[1 12 66 220 495 792 ].

(1 )

k
t t t t t

t

−
+ + + + +

+
      (139.2) 

 

    Equations (139.1) and (139.2) apply to crimes against the person. 

The corresponding equations for the second category of crimes are 

established when replacing magnitudes c, γ, k, t by c', γ', k', t'. The 

unknown t can take all values from t = 0 when u = 0 to ∞ when u = 1. 

However, we should only admit the values t > 1 corresponding to  

u > 1/2. Then, the unknown k should be contained within limits 1/2 

and 1, and therefore, see equation (139.1), t should be such that its 

limits could be determined by the inequalities 
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                                 (139.3а, b) 

 

The right side of the inequality (139.3a) continuously decreases from  

t = 0 to ∞. In inequality (139.3b) it increases from t = 1 to 7/5, then 

decreases to t = ∞. 

    By eliminating k from equations (139.1) and (139.2), a reciprocal 

equation of the 24
th

 degree in t can be derived and reduced to an 

equation of the 12
th

 degree. However, it is much simpler directly to 

calculate simultaneously k and u satisfying equations (139.1) and 

(139.2) by successive approximations. 

    140. For the six years 1825 – 1830 we have 

 

    c = 0.4782, γ = 0.1151/792 = 0.0001453.  

 

    At t = 2 the fraction in inequality (139.3а) exceeds this value of γ, 
and at t = 3 γ exceeds the fraction in (139.3b). The value of t should 
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therefore be larger than 2 and smaller than 3. It is easy to become 

assured that within those indicated limits that unknown has only one 

possible value. After a few attempts, I adopted the value 2.112, and 

then equation (139.1) led to k = 0.5354. Inserting these values in the 

right side of equation (139.2), I find that it is 0.4783, only differing 

from the left side by 0.0001. Therefore, with a very good 

approximation 

 

    k = 0.5354, t = 2.112.  

 

For the same years 

 

    c′ = 0.6556, γ′ = 0.0523/792 = 0.00006604. 

 

    I insert these values in equations (139.1) and (139.2) instead of c 

and γ and replace t and k by t′ and k′. Solving them as previously, I 

find with the same degree of approximation that k′ = 0.6744,  

t′ = 3.4865, so that for those years 

 

    0.6786,  0.7771
1 1
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will be some juryman’s chances of faultlessness in both categories of 

crimes.  

   Before the decision of a case someone who does not know either the 

jurymen or even the place where it is judged, can bet a little more than 

2 against 1 and almost 7 against 2 on every juryman to vote properly in 

those categories. Here, it is usually said, parier tant contre tant (bet 

something against something) for rendering more sensible the 

signification to be attached to u and u′, and also because the proposed 

bet is illusory since it will never be known who won. The person who 

knew nothing about the case could have also bet by issuing from the 

previous values of k and k′ and staked somewhat less than 7 against 6 

and a little more than 2 against 1 on the guilt of the accused in cases of 

those categories. Below, we will see the probability of the defendant’s 

guilt after his case was decided. 

    When considering the number of the accused and convicted without 

distinguishing between those categories, it will necessary to adopt, 

again for those years and for France in its entirety,  

 

    c = 0.6094, γ = 0.0706/792 = 0.00008914. 

 

When solving equations (139.1) and (139.2), we will then establish 

that 

 

    k = 0.6391, t = 2.99, u = 0.7494. 

 

If, however, separately studying the department of the Seine, we will 

have to adopt the values of c и γ (§ 136) 

 

    c = 0.6509, γ = 0.0655/792 = 0.00008267, 
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which lead to 

 

    k = 0.678, t = 3.168, u = 0.7778. 

 

    Again in those years, without distinguishing between those 

categories of crime, the probabilities k and u in the Paris assize court 

were a little higher than in the rest of the kingdom and somewhat 

exceeded 2/3 and 3/4. However, the differences of the two values of 

each of these magnitudes are inconsiderable, which is one of the 

causes to believe that the value of each of them in one part of France is 

the same as in another one. This justifies as much as possible the 

hypothesis about their equality over all the kingdom which we indeed 

adopted for being able to calculate their approximate values by issuing 

from a sufficiently large number of observations. 

    Thus, as I said before, in 1831 the values of k and u or k' and u' 

remained invariable, but they had to change later along with the ratios 

derived from them. We know the ratios a4/µ и a'4/µ' only for 1832 and 

1833 which is not sufficient for determining the unknowns u and k or 

u′ and k′. These magnitudes possibly changed for the second time after 

the latest law which, maintaining the problem of mitigating 
circumstances, stipulated secret voting which could have influenced 

their [!] chance of faultlessness. 

    After 1831, we therefore are unable to determine the values of u and 

k or u′ and k′. However, that law, while establishing that majority 

verdicts of 7 votes against 5 are sufficient for convictions, required the 

jury panels to report whether they had decided a case by the minimal 

majority. If, in future, the Comptes généraux will indicate the number 

of convicted rather than only the number of cases decided by that least 

majority; if it will become known how many men and women were 

there among the accused and how many of them were in each category 

of crime, − if these conditions will be met, in a few years it will 

become possible to determine quite precisely u and k for the different 

parts of the kingdom, for men and women and for those categories of 

crime. 

    141. When knowing the values of u and k, formulas (117.1, 117.2, 

118.1) allow to determine the probabilities of either conviction or 

acquittal given a required majority verdict or the least majority verdict.  

For n = 12 and i = 0  

 

    γ0 = ku12
 + (1 – k)(1 – u)

12
, δ0 = (1 – k)u12

 + k(1 – u)
12

  

 

will be those probabilities for unanimous conviction or acquittal. 

Therefore  

 

    γ0 + δ0 = u12
 + (1 – u)

12
 

 

will indeed be the indicated probability. In addition, the magnitude 

 

    γ0 − δ0 = (2k − 1)[u12
 − (1 – u)

12
] 
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is positive since k > 1/2 and u > 1 − u, so that an unanimous decision 

of a case is less probable for acquittals than for convictions. If the 

chance u of faultlessness essentially differs from 0 and 1, these various 

probabilities will be very low. Adopting, for example, the values of u 

and k for France in its entirety without distinguishing between the 

categories of crime, which means that k = 0.6391 and u = 0.7494, we 

get 

 

    γ0 = 0.0201, δ0 = 0.0113, γ0 + δ0 = 0.0314. 

 

This suffices for proving how rare should be unanimous decisions by 

12 jurymen. If, however, unanimity is required for both conviction and 

acquittal, then, in accord with this value of (γ0 + δ0), almost 32 can be 

bet against 1 on the lack of any decision. And if the jurymen do not 

communicate with each other, and do not agree to decide by majority, 

this will indeed happen in about 32 cases out of 33. 

    Denote by M the probability that one out of µ cases was decided 

either unanimously or not. Then 

 

    M = (1 − γ0 − δ0)
µ
, 

 

and if desired that M = 1/2, then, maintaining the previous value of the 

sum (γ0 + δ0 ), 

 

    
0 0

lg 2
µ 21.73.

lg(1 γ δ )

−
= =
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    This means that it is possible to bet a little more than even money on 

at least 1 case out of 22 to be decided unanimously. And that bet will 

be disadvantageous for 21 cases.  

    142. Before going ahead, it is necessary to recall what was said in  

§ 2 of the Preamble about the sense attached in the decision of a case 

to the word guilty and to derive a few important corollaries. 

    When announcing that the accused is guilty, the juryman declares 

that, in his opinion, there is sufficient proof for convicting him. 

Therefore, the decision that the accused is innocent means that the 

probability of guilt is insufficiently high for conviction. This latter 

consideration does not mean that the juryman believes that the accused 

is innocent; he doubtless oftener thinks that the accused is rather 

guilty. The probability of guilt sometimes exceeds 1/2 but remains 

lower than the value at which both the juryman’s conscience and 

public security would have demanded conviction. The real sense of 

one or another decision made by a juryman consists in that the accused 

is, or is not convictable. The probabilities Pi and Qi that conviction or 

acquittal are virtuous (§ 120) also express our grounds for believing 

that the convicted accused was subject to conviction and the acquitted 

accused was not. 

    Therefore, Pi is doubtless lower than the real guilt of the convicted 

whereas, on the contrary, Qi is higher than the probability of the 

innocence of the acquitted accused. Unlike Pi and Qi, which are thus 

determined and considered for a very large number of decisions of 
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cases of the same kind, those other probabilities can not at all be 

calculated. Nor should we believe that Pi and Qi express the general 

opinion; they express the probabilities of conviction or acquittal by a 

court consisting of all citizens included in the general list from which 

the 12 jurymen are randomly selected. 

    The chance ci of being convicted by a certain number of jurymen is 

lower than the fraction denoted by k (§ 118) which as a rule is much 

lower than Pi. Similarly, the chance di of acquittal is always lower than 

the fraction (1 – k), which in turn is much lower than Qi. For the 

jurymen of each assize court and each of the two categories of crime 

we should therefore imagine that there exists a definite probability z, 

considered sufficient and necessary for conviction. And the chance u 

of faultlessness for a juryman randomly selected from a list of his 

department is equal to the probability with which he decides whether 

the guilt of the accused is equal to, or exceeds z or not. The probability 

u mainly depends on the degree of instruction of the class of people 

included in the general list of jurymen and on the probability z; that is, 

on the opinion formed by them on the necessity of a more or less 

strong repression of different kinds of crimes. These two differing 

probabilities can therefore change in time and from on department to 

another. It is understandable how u can be derived from observation, 

but we are quite unable to establish z. We can only conclude that, other 

things being equal, it heightens and lowers when noting that the rate of 

conviction remarkably lowered or heightened. Thus, when the problem 

of mitigating circumstances was posed before the jurymen it occurred 

that that rate increased from 0.54 to 0.59 (§ 135), and it was 

necessarily concluded that aside from positive decisions they assumed 

a lower than previously probability z, since the penalties became less 

severe. 

    The prior probability of guilt of the accused doubtless much exceeds 

that which we denoted by k. Its maximal value derived by us was 

almost 3/4, but nevertheless no one will hesitate to bet much more than 

3 against 1 on the real guilt of someone brought before an assize court. 

However, what was stated about Pi equally concerns k; and it should 

also be understood that k only expresses the prior probability that the 

accused is convictable. This probability therefore can depend on the 

probability which the jurymen require for conviction but which by its 

nature does not depend on the probability u that some juryman is 

faultless. It follows that k can change with z even when the forms of 

preliminary investigation and the ability of those who directed them 

remain invariable, whatever was the probability u. Here is an example 

of such a change. 

    In 1814 – 1830, criminal cases in Belgium
13

 were decided by 

tribunals of five judges, and majority verdicts of 3 votes against 2 were 

sufficient for conviction. In 1830, the composition of the tribunals 

changed and in 1831 jury panels existing under the French domination 

were re-established with majority verdicts of 7 votes against 5 

becoming necessary for conviction. The forms of preliminary 

investigation remained as they were. 

    It follows from the Comptes de l′administration de la justice 
criminelle recently published by the [Belgian] government, that in 
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1832 − 1834 the rates of conviction in that kingdom were 0.59, 0.60 

and 0.61. It is seen that they changed very little and that their mean 

was almost equal to the mean for France before 1830. However, these 

Comptes say nothing about the number of convictions returned either 

by the least majority of 7 votes against 5, or by some other definite 

majority. The quoted rate [?] is therefore insufficient for deriving the 

values of u and k in Belgium. However, the total rate which we 

denoted by a5/µ so little differs in Belgium from the French value that 

we can believe that the partial rate b5/µ in both countries is almost the 

same. Consequently, u and k in these countries are also almost the 

same. Therefore, we can admit that in Belgium the value of k does not 

much differ from the fraction 0.64, which was previously obtained for 

France in its entirety without distinguishing between the categories of 

crime. 

    In the same Comptes we find that in 1826 − 1829 those rates 

increased to the almost equal values of 0.84, 0.85, 0.83 and 0.81 with 

their mean being a little larger than 0.83. However, in accordance with 

§ 118 the probability whose approximate value is this mean, should 

invariably be lower than k. Therefore, in those years k should have 

been much higher than in 1832 – 1833. This can only be attributed to 

the change of the unknown z in those two periods, i. e., to the jurymen 

demanding for conviction a higher probability that the accused is 

guilty than the judges thought sufficient. This conclusion is in addition 

independent from the chance u of faultlessness which possibly 

changed, and was possibly higher for the judges than for the jurymen 

or vice versa, a question that remains indecisive owing to the lack of 

necessary observational data.  

    Magnitude k depends on the probability z, and the inequality of its 

values in the two categories of crime could have resulted from two 

different causes. It is more difficult to establish an assumption of prior 

guilt in cases of crimes against the person and in those cases the 

jurymen require a higher probability z for conviction. It can be thought 

that, acting jointly, these different causes had indeed led to the 

indicated inequality. 

    It follows from the dependence between z and k that, if in 1832 and 

1833 the allowance for mitigating circumstances led to a noticeable 

lowering of the probability which the jurymen believed sufficient for 

conviction, the probability k, on the contrary, should have heightened. 

The change in u and k in contrary directions should have also led to the 

heightening of u. Indeed, we can suppose that the chance of the 

jurymen’s faultlessness lowered since, on the one hand, they required a 

lower probability for conviction, and, on the other hand, there existed a 

higher prior probability of the defendant being convictable.  

    143. We only have to calculate the probabilities of the guilt of the 

convicted and of the innocence of the acquitted by means of formulas 

(120.1) and (120.2) and the derived values of u and k or u' and k'; more 

precisely, to calculate the probabilities that in the former but not in the 

latter case the accused is convictable. At first, however, we will 

transform those formulas into equations more convenient for 

calculation and add other formulas whose numerical values 

[parameters] are also very important to know. 
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    Owing to equation (118.1а) formula (120.1) can be replaced by the 

equation 

 

    Pici = kUi, 

 

where the ratio ai/µ known from observations is adopted as the 

approximate value of ci. The magnitude (1 – Pi) is the probability that 

the accused convicted by a majority verdict of not less than (n – i) 
votes against i is innocent; ci is the probability that the accused, 

whether guilty or not, is convicted by this majority. The product 

ci(1 – Pi) therefore expresses the chance of an innocent accused to be 

nevertheless convicted. 

    Denoting it by Di and taking into account the preceding equation 

and equation (118.1а), we get 

 

    Di = (1 – k)Vi.  
 

This result was also possible to obtain by considerations applied in  

§ 120 for deriving Pi. If the number of votes required for conviction is 

not less than (n – i), the probability Пi that an acquitted accused is 

innocent is determined by Qi  or by formula (120.2) when i is replaced 

by (n – i – 1). Allowing for the equation (118.1b), we conclude that 

  

    Пidn−i−1 = (1 – k)U n−i−1,  

 

or, which is the same, in accordance with § 118 

 

    Пi(1 − ci) = (1 – k)(1 – Vi). 

 

    The probability that an acquitted accused is guilty is (1 − Пi), and 

the probability for the accused not to be convicted is (1 – ci). 

Therefore, the product (1 − Пi)(1 – ci) expresses the chance ∆i of a 

guilty accused to be nevertheless acquitted: 

 

    ∆i = 1 – ci − (1 – k)(1 – Vi) 

 

or, owing to the equation (118.1а),  
 

    ∆i = k(1 – Ui). 

 

    The chances Di and ∆i are, so to say, measures of the danger to 

convict an accused not subject to be convicted, and the danger to the 

society to see a convictable accused acquitted. With regard to the 

veritable guilt or innocence of the accused we should not forget that 

Di, unlike Pi, is only the superior limit and that ∆i, unlike Qi, is only 

the inferior limit. After calculating Pi and Пi the magnitudes Di and ∆i 

are determined at once since, owing to the previous equations 

 

    Di = 1 – k − Пi(1 − ci), ∆i = k − Pici, 
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and it is seen that the chances ∆i and Di are always lower than, 

respectively, the probabilities k and (1 – k) of the prior guilt and 

innocence. When the number µ of the accused is very large, the 

numbers of convictions and acquittals will be ai and (µ − ai). The 

numbers of the innocent convicted and acquitted guilty accused will 

likely almost equal the products Diai and ∆i(µ − ai).  

    For n = 12 and i = 5 and 4, adopting a5/µ and a4/µ as the 

approximate values of c5 and c4 and substituting, as done before,  

t/(1 + t) and 1/(1 + t) instead of u and (1 – u), we will derive from the 

previous equations that 
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At the same time, 

 

    D5 = 1 – k − (1 −a5/µ)П5, ∆5 = k − (a5/µ)P5, 

    D4 = 1 – k − (1 −a4/µ)П4, ∆4 = k − (a4/µ)P4. 

 

    So these are the various formulas which [whose parameters] 

should have been reduced to numbers. The magnitudes included there 

concern crimes against the person; similar magnitudes concerning the 

second category of crimes are denoted by the same letters with strokes. 

    144. During 1831 the majority verdict required for conviction was 8 

votes against 4 whereas the problem of mitigating circumstances did 

not exist. We had  

 

    a4/µ = 0.3632, t = 2.112, k = 0.5354, 

 

so that 

 

    P4 = 0.9811, П4 = 0.7186, D4 = 0.00689, ∆4 = 0.1791. 

 

Out of 743 then convicted accused almost 5, as that value of D4 shows, 

should not have been convicted, and ∆4 establishes that approximately 

233 accused out of 1303 should not have been acquitted. The chance 

of being convicted although not being convictable a bit exceeded 

1/150, and of being acquitted although not being subject to acquittal 

was contained within the interval of 1/6 and 1/5. Finally, the 

probability of guilt of the accused did not differ by 1/50 from 

certainty, and the probability of innocence of the acquitted, that is, of 

insufficiently proved guilt, a little exceeded 2/3. 

    These results concerned crimes against the person. For crimes 

against property the results for the same year were  

 

    a'4/µ ' = 0.6034, t' = 3.4865, k' = 0.6744 
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so that 

 

    P'4 = 0.9981, П'4 = 0.8199, D'4 = 0.0004, ∆'4 = 0.0721. 

 

Mistakenly convicted were thus only 4 out of 10,000, or less than 2 out 

of the 3355 announced convictions. The proportion of the convictable 

acquitted exceeded 7/100, and they should have numbered about 159 

out of the 2205 acquittals. The probability of guilt of the convicted 

differed from certainty less than by 2/1000, and the probability of 

innocence of the acquitted was a bit higher than 4/5. It is seen that 

these results are more satisfactory than those concerning the first 

category of crimes; indeed, the convictions, although proportionally 

more numerous, were likely returned by a stronger majority (§ 141). 

    The eight just calculated probabilities P4, P'4, … are based on the 

ratios a4/µ, a'4/µ ', b4/µ, b'4/µ ' derived from observation and applied 

previously for calculating t, t', k, k'. All these eight magnitudes are 

fractions less than unity which all the more remarkably confirms the 

theory since, when issuing from arbitrary t and k and t' and k', although 

not much differing from those derived from observation, this result is 

not anymore repeated with the same generality. 

    In the years preceding 1831, a majority verdict of 7 votes against 5 

had been sufficient for conviction; however, the assize courts 

intervened when the majority was [thus] minimal. Conviction was only 

finalized if a majority of the 5 judges who then composed those courts 

agreed with the majority of the jurymen. For this reason it is necessary 

to consider separately the convictions returned by this least majority 

and by majorities of at least 8 votes against 4. In this second case the 

values of the probabilities P4 and P'4, П4 and П'4, D4 and D'4, ∆4 and 

∆'4 are those calculated just above since before and during 1831 the 

values of t and k and t' and k' had been the same (§ 137).  

    And so, in 1825 – 1830 about 5000 and almost 20,000 accused were 

convicted by this majority of at least 8 votes against 4 for crimes in the 

two categories. According to the previous values of D4 and D'4, about 

35 and 8 of them were likely not convictable, doubtless too many if 

wishing to say that they were really innocent. 

    Concerning the other convictions announced by the least majority 

verdicts of 7 votes against 5, the probability of guilt of the accused, see 

formula (119.1), for n = 12, i = 5, u = t/(1 + t), 1 – u = 1/(1 + t) is 
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    For crimes against the person we have, just like above, t = 2.112,  

k = 0.5354 and p5 = 0.8372. For crimes against property, after 

substituting p′5, k′, t′ instead of p5, k, t and adopting as above  

t′ = 3.4865, k′ = 0.6744, we get p′5 = 0.9618. 

    Finally, without distinguishing between these categories of crimes, 

and again for France in its entirety, we should assume that k = 0.6391 

and t = 2.99 (§ 140). Denoting by w5 the corresponding value of p5 of 

the probability of guilt of the convicted, we have w5 = 0.9406. 
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    Subtracting p5, p′5, w5 from unity, we get almost exactly 0.16, 0.04 

and 0.06 for the probability of a mistaken decision in the three cases 

under consideration. According to the Laplace formula (§ 132), it 

should have been 0.29, the same in all those three cases, that is, almost 

twice higher than (1 − p5) and five times higher than (1 − w5). In the 

next section we will see what reduction experiences this probability  

(1 − w5) of the innocence of the accused, if his conviction was 

confirmed by an assize court by a majority of not less than 3 votes 

against 2. 

    After combining the data sufficient for determining, in the manner 

stated in § 140, the values of k and u or k′ and u′ which existed at the 

considered time, calculating the corresponding probabilities P5, Π5, D5, 

∆5 or P′5, Π′5, D′5, ∆′5 as previously, and comparing them with the 

probabilities P4, Π4, D4, ∆4 or P′4, Π′4, D′4, ∆′4, which we determined 

for 1831, we can ascertain without any illusions, for example, the 

relative advantages of the criminal legislations in those two epochs for 

both public security and guaranties due to the accused.  

    As remarked in § 138, two different pairs of values of k and u or k′ 
and u′ either larger than 1/2 or smaller than 1/2 correspond to the same 

observational data and complement the first values to unity. Thus, we 

found out that in 1831 for crimes against property k′ = 0.6744,  

u′ = 0.7771, but, when applying the same observational data, we can 

also determine that  

 

    k′ = 1 − 0.6744 = 0.3256, u′ = 1 − 0.7771 = 0.2229. 

 

The value of u′ became (1 − u′) and at the same time t′ changed into 

1/t′, so that t′ = 1/3.4865 = 0.2868. Invariably adopting a′4/µ ′ = 0.6034, 

we find that P′4 = 0.000675, since conviction instead of heightening 

the guilt of the accused, lowered it almost to zero. However, as 

indicated in § 138, we should in general reject the values of the 

unknowns k and u or k′ and u′ smaller than the contrary probabilities. 

They are nevertheless indicated by the calculations for including the 

case in which among a very large number of extraordinary judicial 

decisions the legal guilt of the convicted is less probable than his 

innocence. 

    145. If adopting in formula (118.1а) n = 5, i = 2, u = t/(1 + t),  
1 – u = 1/(1 + t), the probability that the accused will be convicted by a 

tribunal of five judges by a majority verdict not less than of 3 votes 

against two is  
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Here, as always, k denotes the prior probability of guilt of that 

accused, and u is the chance that no judge is mistaken. Because of 

formula (120.1) we also have 
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or simpler, when applying the previous equation, 

 

    (2k – 1)c2P2 = k(k – 1 + c2) 

 

for determining the probability P2 of the guilt of the accused after his 

conviction. 

    Let us apply these equations to an accused convicted by the least 

majority verdict of 7 votes against 5 and then brought before an assize 

court, as it was done before 1831. Here, magnitude k is the probability 

of his guilt resulting from the jurymen’s decision; an approximate and 

likely value of c2 is established by observation and is equal to the rate 

of conviction by an assize court for a very large number of 

convictions. 

    We see in the Comptes généraux that in 1826 – 1830 the assize 

courts over the kingdom received 1911 cases after the accused were 

convicted by a majority verdict of 7 votes against 5. Those convictions 

were confirmed in 1597 cases, but the Comptes do not indicate how 

these numbers are distributed among the categories of crime, and we 

have to determine P2 and the unknown t without distinguishing 

between them. Thus, с2 = 1597/1911 = 0.8357. Adopting the value of 

w5 from § 144 as k, that is, assuming that k = 0.9406 which exceeded, 

as it should be (§ 118), the proportion c2 of convictions, we get  

P2 = 0.9916. The probability of innocence of the accused convicted 

both by the jurymen by the least majority verdict of 7 votes against 5 

and by the judges at least by 3 votes against 2 therefore very little 

differed from 1/100. From the 1597 convicted about 15 likely were not 

convictable.  

    The same values of k and c2 lead to  

 

    2 0.1188,
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k c
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=
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and the equation from which we should determine the unknown t, 
becomes 

 

    1 + 5t + 10t2
 = 0.1188(1 + t)5

, 

 

so that t = 2.789, u = 0.7361. This proves that the chance u of the 

judges’ faultlessness very little differs from 0.7494 as determined in  

§ 140 for jurymen without distinguishing between the categories of 

crime
14

. 

    146. The formulas which we applied to various problems of 

decisions in criminal cases equally concern all other very numerous 

decisions as for example made by police and military courts. However, 

for considering them the observations should provide the necessary 

data for determining the elements included in those formulas. 

    The Comptes généraux de l′administration de la justice criminelle 

also contain the results pertaining to the police courts. For the nine 

years 1825 – 1833 1,710,174 people all over France were brought 

before them and 1,464,500, or 0.8563 were convicted. This rate little 
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varied from year to year and always remained within the limits of 0.84 

− 0.87. The number of judges in police courts was not invariable, but 

not less than 3 were required, and most often there were 3 indeed. 

Thus, 2 votes against 1 were sufficient for conviction. Supposing that 

in equation (118.1а) n = 3 and i = 1, and replacing u by t/(1 + t), we 

get  
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    We can adopt the approximate and likely value of c1 = 0.8563 

obtained from observations, but this is not sufficient for determining 

the two unknowns, k and t. We ought to know in addition how many 

convictions out of those 1,464,500 were unanimous and how many 

were returned by majority verdict of 2 votes against 1. This, however, 

is lacking in the Comptes généraux. Suppose that in those police courts 

the chance of the judges’ faultlessness, just as of judges in general, is 

3/4, and adopt, in the preceding equation, c1 = 0.8563 and t = 3, then k 

will exceed unity which renders that hypothesis inadmissible. We can 

suggest that for judges that chance is higher than for the jurymen, but 

without the necessary observations it is impossible to say by how 

much.  

    Military courts consist of 7 judges, and for conviction the law 

requires a majority verdict at least of 5 votes against 2. Probability c2 

of conviction of an accused is derived from equation (118.1а) when  

n = 7, i = 2 and u is replaced by t/(1 + t). It occurs that 
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    According to the Comptes généraux de l′administration de la justice 
militaire published by the War Minister, the number of the convicted 

is estimated as 2/3 of the accused. This rate was derived from a large 

number of decisions and we can therefore adopt it an approximate and 

likely value of c2. But this is not sufficient for determining the two 

unknowns included in the preceding equation. When supposing that 

the chance of faultlessness of military judges and judges of the assize 

courts very little differ from each other, assuming therefore that it is 

3/4 for the former, and supposing that t = 3 and c2 = 2/3, it follows 

from that equation that k = 0.8793, (1 – k) = 0.1207. We can bet 

somewhat more than 7 against 1 on the guilt of a serviceman brought 

before a military court. 

    Formula (120.1) and equation (118.1а) lead to the expression  

 

    (1 + t)7c2P2 = k(t7
 + 7t6

 + 21t5
) 

 

for determining the probability P2 of the guilt of the accused after his 

conviction. For the preceding values of c2, t, k it occurred that  

P2 = 0.9976 which shows how little the indicated probability differs 

from certainty. The obtained result is based on a hypothetical value of 
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t or u, whose degree of precision we do not know, but it would be 

interesting to be able to compare positively the justice in military 

courts and assize courts from the standpoint of the probability of their 

decisions [being proper]. For achieving this goal, it is necessary to 

know, in addition to the rate of conviction equal to 2/3, the same rates 

for unanimous convictions and convictions by majority verdicts of 6 

votes against 1 and of 5 votes against 2. These data are regrettably 

lacking in the observations and we are unable to provide any 

somewhat probable assumption.  

    147. For completing our work, we still have to consider the 

probability of decisions by tribunals dealing with civil cases. In a civil 

case it is required to decide who of the litigants has the right on his 

side. This would have been decided in a certain manner by judges who 

never err, and their decision will always be unanimous whatever their 

number. 

    This, however, never happens. Two equally enlightened judges who 

most attentively investigate the same case are often led to contrary 

decisions. We should admit that each judge has a chance of being 

mistaken at voting, or not to judge as an ideal judge for whom any 

cause of erring is impossible. This chance depends on the degree of 

enlightenment and the integrity of the judge, and it is not known in 

advance. If possible, its value should be derived from observations by 

methods which we will indicate. And if this, or the contrary chance is 

established for each judge of some tribunal, it will be possible to 

derive the probability of the virtue of their decision; or, in other words, 

of its conformity to the decision that would have been pronounced by 

ideal judges. It is also possible to establish the probability that other 

judges, again with a known chance of faultlessness, will confirm the 

decision of the former. 

    This second problem is similar to that which we presented in 

criminal cases. The magnitude formerly denoted by k is replaced by 

the probability that the right is on the side of the litigant determined by 

the first decision favourable to him. However, if the case is considered 

by a tribunal for the first time, there is no preliminary probability that 

the decision will favour one or another side. It is then senseless to 

consider a probability similar to k, and the only unknowns which 

should be determined by observations are the probability of the judges’ 

faultlessness. 

    148. Consider first of all a tribunal of first instance consisting of 

three judges, А, А′ и А″. Denote by u, u′ и u″ their probability of 

faultlessness and by c, the probability of their unanimous decision. 

Such decisions will occur if either no judge is mistaken, or they are all 

mistaken. The pertinent probabilities are uu′u″ and  

(1 – u)(1 – u′)(1 – u″), so that the composite value of c is 

 

    c = uu′u″ + (1 – u)(1 – u′)(1 – u″). 
 

    After a unanimous decision is returned, two hypotheses can be 

formulated, either that it was proper or not. The former means that no 

judge was mistaken, the latter, that all three of them were mistaken. 

The probability of the observed event, of a unanimous decision, will 
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be uu′u″, if the first hypothesis is correct, or (1 – u)(1 – u′)(1 – u″), if it 
is mistaken. When applying to these hypotheses the rule about the 

probability of causes (§ 28), and denoting by р the probability of the 

first cause, of the correctness of the decision, we obtain 

 

    ,
(1 )(1 )(1 )
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p
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′ ′′
=

′ ′′ ′ ′′+ − − −
  

 

or, otherwise, cp = uu′u″. 
    If the decision was not unanimous, one judge voted in favour of one 

side, and the two others, in favour of the other side. Denote by a, a′ 
and a″ the probabilities of such a decision when the first judge was А, 

А′ or А″. Then 

 

    a = u′u″(1 – u) + u(1 – u′)(1 – u″), 
    a′ = uu″(1 – u′) + u′ (1 – u)(1 – u″), 
    a″ = uu′ (1 – u″) + u″(1 – u)(1 – u′). 
 

    For example, the first equation conforms to the case in which A′ and 

A″ were not mistaken, and A was mistaken, or vice versa and the same 

for the other equations. Now denote by b the probability of some non-

unanimous decision. Then 

 

    b = a + a′ + a″,  
 

and since a decision can only be either unanimous or not, b + c = 1, 

which is easy to verify. As a result, it occurs that simply 

 

    b = 1 − uu′u″ − (1 – u)(1 – u′)(1 – u″). 
 

    For the decision to be proper, it is required that the two judges 

forming the majority vote the same way without erring; for the 

decision to be mistaken, it is necessary for them to err. Therefore, 

when denoting by q the probability of a proper non-unanimous 

decision, and conforming with the rule of the probability of causes or 

hypotheses,  

 

    bq = (1 – u)u′u″ + (1 − u′)uu″ + (1 − u″)uu′. 
 
    Then, having a very large number µ of decisions announced by the 

same judges А, А′, А″, let γ and β be the numbers of decisions 

returned unanimously and otherwise. Among the latter let α, α′, α″ be 

the numbers of decisions in which judges А, А′, or А″ voted contrary 

to the two others. Then with a very close approximation it will likely 

occur that 

 

    γ/µ = c, β/µ =b, α/µ = a, α′/µ ′ = a′, α″/µ″ = a″. 
 

    The number β is the sum of α, α′, and α″, and the number b, the sum 

of a, a′ and a″ [see above]. Thus, the second of those equations is the 

sum of the 3 last ones, and the 5 equations are reduced to 4. If the 
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numbers α, α′, and α″ are known from observations, and the preceding 

expressions for а, а′, а″ are substituted in the last three equations, it 

will be possible to derive the values of u, u′, u″, and γ is determined by 

substituting the expression of c in the first equation. And if γ is also 

known from observations, the comparison of its two values will serve 

for confirming the theory. Since u, u′, u″ are also determined, the 

probabilities p and q that the unanimous and majority decisions are 

proper is easily established by the preceding equations. 

    Observations do not indicate the numbers γ, α, α′, or α″ for any 

tribunal. However, for showing how to apply these formulas I have 

arbitrarily chosen the probabilities u = 4/5, u′ = 3/5 and u″ = 3/5 and 

supposed that the chance of faultlessness of each of the three judges 

exceeds the contrary chance, that judges А′ and А″ are equally 

educated and their chances of faultlessness are the same whereas А is 

better educated and his chance of error is lower. Then c = 8/25,  

b = 17/25 and p = 9/10 and q = 57/85. We can bet 17 against 8 or 

somewhat more than 2 against 1 on the decision of the judges to be not 

unanimous, and 9 against 1 on a proper unanimous decision and only 

57 against 28 or almost 2 against 1 on a proper non-unanimous 

decision.  

    For those three judges the mean chance of faultlessness is  

(u + u′ + u″)/3 = 2/3. When considering them equally educated and 

adopting that fraction, 2/3, as the common value of u, u′, u″, then  

 

    c = 1/3, b = 2/3, p = 8/9, q = 2/3. 

 

These values of p and q are a little smaller than the previous so that in 

our example an equal education of the three judges lowered the 

probability of a proper decision both unanimous or not. On the other 

hand, the latter value of c occurred to be higher than the former 

whereas the former value of b exceeded the latter value so that the 

equal education of the judges heightened the probability of unanimity 

and therefore lowered the probability of a majority decision.  

    If, however, we do not know whether the decision was unanimous 

or not, the grounds for believing it proper will differ from р and q. 
Denoting it in this case by r, we have 

 

    r = uu′u″ + (1 – u) u′u″ + (1 − u′) uu″+ (1 − u″) uu′, 
 

since under the hypothesis of the decision being proper it, or the 

observed event can occur in 4 different ways whose probabilities are 

the 4 terms of this formula. Under the contrary hypothesis the 

probability of this event will be 

 

    (1 − u)(1 − u′)(1 −  u″) + u(1 − u′)(1 − u″) + 

    u′(1 – u)(1 − u″) + u″(1 − u)(1 − u′). 
 

    The sum of the probabilities of the considered event constitutes 

certainty or unity, whereas the divisor of r, which appears by the rule 

of § 28, is also unity. Note that, as it was possible to show directly, 
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    r = cp + bq. 
 

    Taking the previous values of u, u′, u″, we find that r = 93/125. The  

mean of this value and 2/3 is r = 20/27 [19/27]. This second value of r 

is a little less than the previous and therefore the virtue of the decision, 

as in the previous case, became less probable when all the three judges 

were equally educated. 

    149. It is not difficult to generalize these formulas on the case of a 

tribunal consisting of an arbitrary number of judges, but such a result 

will be impossible to apply owing to the insufficient observational data 

necessary for determining the chance of faultlessness of the different 

judges. When supposing that those chances are equal one to another 

and that there are three judges, then, in previous notation, 

 

    c = u3
 + (1 – u)

3
, b = 1 − u3

 − (1 – u)
3
, cp = u3

,  

    bq = 3(1 – u)u2
, r = u3

 + 3(1 – u)u2
. 

 

    Adopting now approximate and likely values of γ/µ or β/µ, it will be 

possible to determine u from either of the two first equations. For this 

determination it will suffice to know the numbers γ and β of the 

unanimous and non-unanimous decisions out of their total and very 

large number µ, but we do not have these data. If, for example, we 

suppose that γ = β, then 

 

    u3
 + (1 – u)

3
 = 1 − 3u + 3u2

 = 1/2 

 

and therefore 

 

    u = [1 ± √3/3]/2. 

 

One of the two values of u is larger, and the second is smaller than 1/2. 

We should believe that the judge’s chance of faultlessness exceeds the 

contrary chance and, choosing the former value, u = 0.7888, we get  

 

    p = 0.9815, q = 0.7885, r = 0.8850. 

 

    Suppose that the decision of the 3 judges, whether unanimous or 

not, is revised by a tribunal of appeal consisting of, say, 7 other judges 

whose common chance of faultlessness is v. Denote by С the 

probability that the decision of the first tribunal will be confirmed by a 

majority verdict with not less than 4 votes against 3. The value of С 

will be provided by formula (118.1а) with k and u replaced by r and v 

and, for n = 7 and i = 3, 

 

    C = r[v7
 + 7v6

(1 – v) + 21v5
(1 – v)

2
 + 35v4

(1 – v)
3
] + 

    (1 – r)[(1 – v)
7
 + 7v(1 – v)

6
 + 21v2

(1 – v)
5
 + 35v3

(1 – v)
4
]. 

 

    Suppose that the first decision was proper since confirmed by the 

second tribunal, then out of the 7 judges of the tribunal of appeal none 

was mistaken, or 1, 2, or 3 were mistaken. The pertinent probabilities 

will conform to the 4 terms of the first square bracket. Their sum 
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multiplied by r is the probability that the decision was proper and will 

be confirmed. It is also seen that the part of this expression of С which 

is multiplied by (1 – r) expresses the probability that the decision was 

mistaken but will nevertheless be confirmed and the sum of both parts 

is the composite expression of С. It is seen just as well that, when 

denoting by С′ the probability that the second tribunal repealed the 

decision of the first, then 

 

    C′ = (1 − r)[v7
 + 7v6

(1 – v) + 21v5
(1 – v)

2
 + 35v4

(1 – v)
3
] + 

    r[(1 – v)
7
 + 7v(1 – v)

6
 + 21v2

(1 – v)
5
 + 35v3

(1 – v)
4
]. 

 

    The decision of the first tribunal should have been either confirmed 

or repealed, and therefore С + С′ = 1 which can be verified by noting 

that the sum of the square brackets in the last formula equals 

[v + (1 – v)]
7 

= 1. Then, for r = 1/2 and arbitrary value of v, or for  

v = 1/2 and arbitrary value of r it occurs that С = С′ = 1/2. These 

results are obvious by themselves. 

    When separately considering the two parts of С and С′ we can also 

say that the first part of С is the probability that both tribunals decided 

properly; its second part, the probability that both were mistaken. The 

same parts of С′ are the probabilities that the first tribunal was 

mistaken and the second decided properly whereas its second part 

expresses the contrary. Denote by ρ the probability that the tribunal of 

appeal decided properly whether the first tribunal was, or was not 

mistaken, then that magnitude will be the sum of the first parts of С 

and С′, and (1 − ρ), the sum of their second parts which was possible 

to establish directly. 

    Denote also by Г the probability that the decision of that [!] court 

was confirmed by the second Royal court composed of 7 judges as 

well, by Г′, the probability of the contrary event, and by w, the chance 

of faultlessness of each of these 7 judges. Then Г and Г′ can be 

derived from С and С′ when replacing r and v by ρ and w, so that if  

w = v 

 

    Г = ρ2
 + (1 − ρ)

2
, Г′ = 2ρ(1 − ρ). 

 

    These values satisfy the condition Г + Г′ = 1. The expressions of ρ 

and ρ′ can also be written as 

 

    ρ ,  1 ρ .
2 1 2 1

r C r C

r r

′− −
= − =

− −
  

 

    Denote also by Р and Р′ the probabilities that the decision of the 

first court of appeal was proper if it confirmed or repealed the decision 

of the court of first instance. In the first case, when supposing that the 

decision of the court of first instance was proper or not, the probability 

of the observed event, i. e., of the coincidence of both decisions will 

be, respectively, equal to the first and the second part of С, and the 

probability Р of the first hypothesis will be equal to that first part 

divided by the sum of both parts. Therefore, 
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    CP = r[v7
 + 7v6

(1 – v) + 21v5
(1 – v)

2
 + 35v4

(1 – v)
3
]. 

 

    In addition, C′P′ is equal to all the first part of C′, which can also be 

derived, as it should have been, from formulas (120.1) and (120.2) if  

k = r, n = 7, i = 3. The obtained results can be replaced by 

 

    CP = rρ, C′P′ = (1 – r)ρ. 

 

    150. The decision in the court of first instance should be made at 

least by 3 judges, and at least by 7 in the court of appeal. Usually, 

these least numbers are not exceeded which is why I adopted them. If r 

is replaced in my formulas by its value as a function of u, they will 

include the chances u and v, which can only be determined by 

observations. Only one magnitude regrettably is known, the rate of the 

number of decisions in the court of first instance confirmed by the 

Royal courts. For applying those formulas it is therefore necessary to 

reduce both unknowns, u и v, to one single magnitude by introducing a 

particular hypothesis. Most natural, as it seems to me, is to suppose 

that v = u, that is, to suppose that the chance of faultlessness is the 

same for the judges of both tribunals. 

    Suppose then that m decisions of the court of first instance out of a 

very large number µ of them were confirmed and that, therefore,  

(µ − m) were not. The ratio m/µ can be adopted as an approximate and 

likely value of the probability which we denoted by С, so that 

 

    
1

,  ,  ,  1
µ 1 1

m t
C v u u u

t t
= = = − =

+ +
. 

 

Therefore, 

 

    
2 3

7

(2 1)(1 7 21 35 )

µ (1 )

m r t t t
r

t

− + + +
= −

+
,  

    
3 3

1 3 2(1 3 )
1 ,  2 1 1

(1 ) (1 )

t t
r r

t t

+ +
= − − = −

+ +
. 

 

    By substituting these values in the ratio m/µ, we obtain an equation 

of the 10
th

 degree for determining t and then u. With v = u the 

expression of С will not change if u and r are replaced by (1 – u) and 

(1 − r), which conforms to replacing t by 1/t. This means that if t < 1 

satisfies the given value of m/µ, then t > 1 will satisfy that value as 

well. The equation in the unknown t is reciprocal and does not change 

when t is replaced by 1/t. We should adopt the value t > 1 since it 

conforms to the value of u > 1/2, to the chance of faultlessness 

exceeding the contrary chance which should take place if the 

magistrates are honest and educated.  

    151. During the three last months of 1831 and in 1832 and 1833 the 

Compte généraux de l'administration de la justice civile published by 

the government indicates the numbers m and (µ − m) of the confirmed 

and not confirmed decisions for each Royal court. However, for 

determining t the number µ is only sufficiently large in the jurisdiction 
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of the Paris Royal court. At present, we are therefore obliged to 

suppose, just as we did in the case of jurymen, that the chance u of 

faultlessness is almost the same for all the kingdom’s judges. This will 

enable us to determine t by the values of m and (µ − m) for all the 

Royal courts taken together. 

    For the period stated above and for France in its entirety 

 

    m = 976, 5301, 5470; µ − m = 388, 2405, 2617;  

    m/µ = 0.7155, 0.6879, 0.6764 

 

    The last ratios for the two complete years differ one from another 

not more than by 1/70 of their mean, which is a very remarkable 

example of the action of the law of large numbers
15

. When adopting 

the sums of the numbers for all three periods as m and µ, we get 

 

    m = 11,747, µ = 17,157, m/µ = 0.6847. 

 

    Separately for the Paris Royal court 

 

    m = 2510, µ = 3297, m/µ = 0.7613. 

 

The obtained ratio m/µ almost by 1/9 exceeds its mean value for 

France as a whole. And when adopting the value 0.6847 for France, 

we arrive at 

 

    t = 2.157, u = 0.6832, r = 0.7626. 

 

    According to the obtained r, without knowing either the tribunal, or 

the nature of the case, we can bet a little more than 3 against 1 on the 

decision of the court of first instance to be proper. It is also seen that 

the chance u of faultlessness for judges of civil cases very little differs 

from the fraction 0.6788 expressing that chance for the jurymen 

existing before 1832, i. e., before the law stipulated that mitigating 
circumstances ought to be considered. 

    When adopting this value of r and the ratios m/µ и (µ − m)/µ as the 

values of С and С′, it follows from the formulas of § 150 that 

 

    Р = 0.9479, Р′ = 0.6409, Г = 0.7466, 

 

which proves that we can bet almost 19 against 1 on the proper 

decision of the court of appeal confirming the decision of the court of 

first instance, and less than 2 against 1 if those decisions were 

contrary. 

    Note also that without knowing whether the decision of the court of 

first instance was confirmed or not, the probability Г that it will be 

confirmed by a second Royal court when issuing from the same data is 

a little less than 3/4. The values of the four parts constituting the 

expressions of С and С′ are  

 

    rp = 0.6495, (1 – r)ρ = 0.2022,  

    r(1 − ρ) = 0.1131, (1 – r)(1 − ρ)=0.0352. 
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    These fractions, whose sum is unity, express the probabilities that 

the decisions of the court of first instance and then the court of appeal 

were proper; that the former was mistaken and the latter proper; that 

the former was proper and the latter mistaken; that both were 

mistaken. 

 

Notes 
    1. This problem was treated in a memoir, read at the St. Petersburg Academy in 

June 1834 by Mr. Ostrogradsky, a member of that Academy. Judging by the 

published extract which the author sent me, he considered the problem in a manner 

quite different from which I am following in this chapter and which is indicated in 

the Preamble. Poisson  

    2. Speculative considerations are unfounded. The chance of a juryman’s mistake 

undoubtedly changes in time and depends on his physical and moral state. My 

witness is an attorney from The Posthumous Papers of the Pickwick Club, Chapter 

34, who stated that Discontented or hungry jurymen always find for the plaintiff.  
    3. This is difficult to understand. 

    4. Concerning the assize courts see Note 7 to the Preamble. 

    5. Apparently, sums (121.1) and (121.2). 

    6. Uniformity alone would have been sufficient for the existence of a linear 

relation between Х and х. 
    7. An easy generalization led, however, to complicated formulas. 

    8. Poisson did not always calculate with the same degree of approximation. 

    9. At the end of the chapter Poisson also issued from other sources. 

    10. In the sequence, Poisson studied data from several types of courts, and it is 

sometimes difficult to understand which type he referred to. 

    11. In the same section above, Poisson stated that there were 7 accused in 5 cases. 

    12. Poisson’s statement is doubtful. The relative number of crimes in a certain 

region could have been connected with its economic situation.  

    13. Quetelet repeatedly discussed legal proceedings in Belgium (Sheynin 1986, 

especially pp. 302 – 303). His mathematics was pedestrian, but, for instance, in 1846 

he clearly stated that after the introduction of jurymen the proportion of acquittals 

doubled. True, in 1833 and later he stated the contrary, but perhaps jurymen were 

initially selected from a narrow layer. In 1832 and later Quetelet published a table of 

the rates of conviction of the accused depending on their personality, sex included. 

    14. Assuming t = 2.789, I concluded that the left side of that equation was equal to 

91.73, but that its right side was 92.78. 

    15. This law of large numbers was confirmed anew by the value of the ratio m/µ in 

1824. Poisson 
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