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Foreword 
 
    I am presenting a collection of translations of important Russian papers on probability 
theory and mathematical statiqtics (including applications of these disciplines). With a single 
exception of Bortkiewicz’ article, all these papers belong to the Soviet period of Russian 
history. Living and working here in Berlin from 1901 to the end of his life, Bortkiewicz 
published, in 1921, a paper in the Soviet periodical Vestnik Statistiki and is known to have 
communicated with Soviet statisticians (Slutsky) as well as with Chuprov (who had not 
returned to Russia after 1917) and to have participated in the activities of the Russian 
scientific institutions in Berlin, see my pertinent paper in Jahrb. f. Nat. Ökon. u. Statistik, Bd. 
221, 2001, pp. 226 – 236.  
    One more unusual entry (Anderson’s letters to Pearson left in their original German) 
belongs to a German statistician of Russian extraction who, apparently all his life, justly 
considered himself Chuprov’s student.     
    In many instances I changed the numeration of the formulas and I subdivided into sections 
those lengthy papers which were presented as a single whole; in such cases I denoted the 
sections by numbers in brackets, for example thus: [2]. My own comments are in curly 
brackets. 
    Almost all the translations provided below were published in microfiche collections by 
Hänsel-Hohenhausen (Egelsbach; now, Frankfurt/Main) in their series Deutsche 
Hochschulschriften NNo. 2514 and 2579 (1998), 2656 (1999), 2696 (2000) and 2799 (2004). 
The copyright to ordinary publication remained with me.  
    Acknowledgement. Dr. A.L. Dmitriev (Petersburg) sent me photostat copies of several 
papers published in sources hardly available outside Russia. 
 
    Throughout, I am using the abbreviation 
    M. = Moscow; L. = Leningrad; and (R) = in Russian. 
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0. An Appeal to the Scientists  



of All Countries and to the Entire Civilized World 
    The political situation in the Soviet Union had invariably and most strongly influenced 
science. Here, in this book, it is clearly seen in the section devoted to Romanovsky and it can 
be revealed in the materials concerning Slutsky. For this reason I inserted an appropriate 
Appeal (above) that can serve as an epigraph. 
    The Congress of Russian Academic Bodies Abroad, in appealing to the scientists of all 
countries and to the entire civilized world on behalf of more than 400 Russian scholars 
scattered in 16 states, raises its voice against those conditions of existence and work that the 
Soviet regime of utter arbitrary rule and violation of all the most elementary human rights 
laid down for our colleagues in Russia. 
    Never, under any system either somewhere else or in Russia itself, men of intellectual 
pursuit in general, or academics in particular, had to endure such strained circumstances and 
such a morally unbearable situation. Especially disgraceful and intolerable is the total lack of 
personal immunity that at each turn causes unendurable moral torment and threatens 
{everyone} with bodily destruction. 
    The execution, or, rather, the murder of such scientists as Lasarevsky, a specialist in 
statecraft, and Tikhvinsky, a chemist, cries out to heaven. They were shot, as the Soviet 
power itself reported, – the first, for compiling projects for reforming the local government 
and putting in order the money circulation; and the second, for communicating information to 
the West on the state of the Russian oil industry. And still, these horrible acts are only 
particular cases {typical} of the brutal political regime denying any and every right and 
reigning over Soviet Russia. 
    We would have failed our sacred national and humanitarian duty had we not stated our 
public protest against that murderous and shameful system to our colleagues and to all the 
civilized world. 
 
 

1. S.N. Bernstein. Mathematical problems of Modern Biology 
Nauka na Ukraine, vol. 1, 1922, pp. 13 – 20 … 

 
    Darwin’s ideas are known to have laid the foundation of modern biology and considerably 
influenced the social sciences as well. To recall briefly the essence of his doctrine of the 
evolution of creatures: All species are variable; the properties of organisms vary under the 
influence of the environment and are inherited to some extent by the offspring; in addition, in 
the struggle for existence, individuals better adapted to life, supplant their less favorably 
endowed rivals. 
    The apparent vagueness of these propositions shows that Darwin only formulated the 
problem of the evolution of creatures and sketched the method for solving it, but he remained 
a long way from solving it. He himself, better than many of his followers, was aware of this 
fact, and understood that, for the solution of the posed problem, mathematics along with 
observations and experiments will play a considerable part. For that matter, in one of his 
writings he equated mathematics with a sixth sense 1. 
     The first and very important attempt to present the laws of heredity and the problem of 
evolution {of species} in a precise mathematical form was due to Darwin’s cousin, Galton. 
The essence of his theory consisted in his law of hereditary regression: children only partly 
inherit the deviation of their parents from the average type of the {appropriate} race, and, in 
the mean, the mathematical coefficient of regression (measuring the likeness between father 
and son in any trait) was roughly equal to 1/4. This means that, if, for instance, the father is 2 
vershok {1 vershok = 4.4cm} higher than the mean stature of the race, the son will likely by 
only 1/2 vershok higher. 



   By carrying out numerous statistical observations, the eminent English biometrician 
Pearson corroborated, although by introducing small corrections, the Galton law for various 
physical and even mental {psychological} properties of man. Nevertheless, the law 
undoubtedly leaves room for exception and in any case demands certain restrictions. 
    The discovery of Mendel, an Augustinian monk, delivered a heavy blow to the young 
Biometrical school. His finding, having remained unnoticed for several decades, was 
discovered in the beginning of our {of the 20th} century and at once determined the direction 
for further investigations of heredity. Mendel’s extremely thorough botanical experiments 
upon the crossing of pure races had led him to some remarkable laws of heredity which were 
recently verified by vast tests involving both plants and animals (including man). It occurred 
that in the first generation the crossing of individuals of different races produces individuals 
of a new mixed race (hybrids) who sometimes occupy a middle place between the given pure 
races, and in other cases do not externally differ from one of the parents (whose type is then 
called dominating). However, the crossing of hybrids with each other results, on the average, 
in 1/4 of the offspring being of each of the two pure races, and the other half belonging to the 
mixed race. For example, an epileptic marrying an absolutely healthy woman (with no 
epileptics having been among her ancestors) begets healthy children; however, the crossing 
of healthy individuals of such origin produces children 1/4 of whom are, in the mean, 
epileptics. Epilepsy is transmitted in accord with the Mendelian laws with healthiness 
dominating over sickness. The Mendelian law thus explains, in particular, the paradoxical 
phenomenon of the so-called atavism when a disease or some other property passes not 
directly from parents to children, but jumps over several generations. 
    The Galton law of regression and the Mendelian law of crossing exclude each other since a 
hereditary descent of a certain trait apparently ought to follow either the first or the second 
law (or perhaps none of them). It is therefore necessary to establish in each particular case 
which of the two laws, or some of their modification, is taking place. However, allowing for 
the methodologically unavoidable peculiar quantitative nature equally inherent in each of the 
two laws of heredity, with an essential part played by the notions of probability, probable 
deviation, etc, the solution of this problem demands an application of mathematical methods 
of the theory of probability. 
    Therefore, the application of the mathematical method is equally necessary for Mendelians 
and for their rivals belonging to the Pearsonian Biometrical school, and, in general, for all 
biologists wishing to establish precisely the laws of heredity and variability. However, the 
significance of mathematics is not restricted to the just indicated and essential but 
nevertheless only auxiliary role. 
    In biology, as in the sciences dealing with inorganic nature, mathematics not only records 
facts and checks the agreement of experimental materials with certain laws; it also claims to 
be a lawgiver, it attempts to become the formal supervisor of the investigations directing all 
observations and experiments in accord with a single plan. The mathematical direction in 
biology therefore aims at the main general problem of discovering such a common form of 
the laws of heredity and variability that would cover, in a single system, both the Mendelian 
phenomena and the Galton regression, and, in addition, would conform to all the known 
evolutionary processes (to mutation, for instance) just as theoretical mechanics embraces all 
types of movement. 
    In this case, the part similar to the main postulate of mechanics, – to the principle of 
inertia, – is played here by the law that we may call the Darwin law of stationarity. If the 
existence of some simple trait does not either enhance or lessen the individual’s adaptation to 
life (including fertility and sexual selection), the rate of individuals possessing it persists (in 
the stochastic sense) from generation to generation. Thus, no matter what was the 
physiological nature of the process of the hereditary descent of simple (monogenic) traits, it 



is formally characterized by its inability to change, all by itself, the percentage of the mass of 
individuals possessing such a trait. 
    It is remarkable that the solution of a purely mathematical problem of discovering an 
elementary form of the law of individual heredity obeying the Darwin law of stationarity 
leads to the Mendelian law. This fact establishes the equivalence, in principle, of the Darwin 
law of stationarity and the Mendelian law of crossing which {?}, due to the above, ought to 
serve as the foundation of the mathematical theory of evolution. 
    I briefly indicate three main parts of the problems of that theory. The first part studies the 
processes of heredity irrespective of the influence of selection and environment. In most 
cases, the traits (for example, the color of an animal’s hair) are polygenic, composed of 
several simple components, and the conditions of its descent are easily derived by elementary 
mathematical calculations when issuing from the Mendelian main law. 
    Of special interest is, in principle, the case of a very complicated trait (e.g., stature of man) 
composed of very many simple traits obeying the Mendelian law. The application of general 
stochastic theorems shows that such traits ought to comply with the Galton law of regression. 
The apparent contradiction between the Galton and the Mendelian laws is thus eliminated 
just as the Newtonian theory of universal gravitation removed the contrariness between the 
periodic rotation of the planets round the Sun and the fall of heavy bodies surrounding us on 
the Earth. 
    The second problem of the theory of evolution, the study of the influence of all types of 
selection, presents itself as a mathematical development of the same principles. Whereas, in 
the absence of selection, the distribution of traits persists, the difference in mortality and in 
fertility between individuals and in sexual selection made by individuals essentially change it 
and fix one or several types that can be artificially varied by creating appropriate conditions 
of selection. 
    Finally, the third problem studies the influence of the environment on the variability of 
creatures. Life only consists in responses of a creature to its surroundings, its outward 
appearance is therefore determined by the environment and, in different conditions, 
individuals originating from identical ova, become very different from each other. In 
addition, the environment influences the conditions of selection; it thus changes the type both 
directly and obliquely. As long as such changes are reversible, their study is guided by the 
principles described above. Irreversible changes (mutations) are however also possible. Their 
essence is not sufficiently studied for aptly dwelling on this important issue in an essay. 
    In concluding my note, expanded too widely but still incomplete, I allow myself to express 
my desire that more favorable conditions were created here {in the Ukraine} for an orderly 
work of biologists together with mathematicians and directed towards the study of important 
theoretical and practical issues connected with the problems indicated above. 
 
    Note 
    1. Here is the pertinent passage from Darwin’s Autobiography (1887). London, 1958, p. 
58: 
 
    I have deeply regretted that I did not proceed far enough at least to understand something 
of the great leading principles of mathematics; for men thus endowed seem to have an extra 
sense. 
 
However, there hardly exists any direct indication for supporting Bernstein’s statement about 
Darwin’s understanding the future role of mathematics in some advanced form in biology.  
 

2. S.N. Bernstein. Solution of a Mathematical Problem  
Connected with the Theory of Heredity (1924). 



�������� 	�
������ (Coll. Works), vol. 4. N.p., 1964, pp. 80 – 107 

 
Foreword by Translator 

 
    This contribution followed the author’s popular note (1922) also translated in this book. 
Already there, he explained his aim, viz., the study of the interrelation between the Galton 
law of regression and the Mendelian law of crossing and stated that his main axiom was “the 
Darwin law of stationarity”, which, as he added, was as important in heredity as the law of 
inertia was in mechanics.  
    Seneta (2001, p. 341) testifies that Bernstein’s main contribution, although partly 
translated (Bernstein 1942), is little known but that it is “a surprisingly advanced for its time 
… mathematical investigation on population genetics, involving a synthesis of Mendelian 
inheritance and Galtonian “laws” of inheritance”. I would add: translated in 1942 freely and 
(understandably because of World War II) without the author’s knowledge or consent. The 
translator (Emma Lehner) properly mentioned Bernstein’s preliminary notes (1923a; 1923b). 
Kolmogorov (1938, p. 54) approvingly cited Bernstein’s study and Aleksandrov et al (1969, 
pp. 211 – 212) quoted at length Bernstein’s popular note. 
    Bernstein described his work on 2.5 pages in his treatise, see its fourth and last edition 
(1946, pp. 63 – 65). Soon, however, the Soviet authorities crushed Mendel’s followers 
(Sheynin 1998, §7). In particular, in 1949 or 1950 a state publishing house abandoned its 
intention of bringing out a subsequent edition of Bernstein’s treatise because the author had 
“categorically refused” to suppress the few abovementioned pages, see Aleksandrov et al 
(1969). And the late Professor L.N. Bolshev privately told me much later that the proofs of 
that subsequent edition had been already prepared, – to no avail! 
    In the methodological sense, Bernstein wrote his contribution carelessly. Having proved 
four theorems, he did not number them but he called the last two of them Theorems A and B. 
The proofs are difficult to follow because the author had not distinctly separated them into 
successive steps; his notation was imperfect, especially when summations were involved 
(also see my Note 13). Many times I have shortened his formulas of the type z1 = f(a1; x; y), 
z2 = f(a2; x; y), … by writing instead zi = f(ai; x; y), i  = 1, 2, .., n, and quite a few misprints 
corrupted his text. I have corrected some of them, but others likely remain. Finally, his 
references were not fully specified. 
    Fisher’s first contribution on the evolutionary theory appeared in 1918 and his next 
relevant papers followed in 1922 and 1930 (Karlin 1992). The two authors apparently had 
not known about each other’s work.  
 

*   *   * 
Chapter 1 

    1. Suppose that we have N such classes of individuals that the crossing of any two of them 
gives birth to individuals belonging to one of these. We shall call the totality of these classes 
a closed biotype and we leave completely aside the question of whether it is possible to 
attribute each individual, given only his appearance, to one of them; we only assume, that, 
when individuals of classes i and k are crossed, the probability that an individual of class l is 
produced, has a quite definite value Aik

l = Aki
l  with 

 
    Aik

1 + Aik
2 + … + Aik

N = 1. 
 

    We shall call these probabilities the coefficients of heredity for the given biotype. Then, if 
the arbitrary probabilities that each individual belongs to one of the N classes are �1, �2, …, 
�N, the corresponding probabilities for the next generation will be determined 1 by the 
formulas 



 
    �1' = �Aik

1 �i�k, �2' = �Aik
2 �i�k, …, �N' = �Aik

N $i�k                                                     (1)                                                                                                                       

 
and in a similar way for the second generation 
 
    �1" = �Aik

1 �i'�k', �2" = �Aik
2 �i'�k', …,    

 
    �N" = �Aik

N�i'�k', etc                                                                                  (2) 
 
where all the summings extend over indices i and k. 
    By applying the same iterative formulas we can obtain the probability distribution for any 
following generation. The problem which we formulate for ourselves is this: What 
coefficients of heredity should there exist under panmixia for the probability distribution 
realized in the first generation to persist in all the subsequent generations? We say that, if 
these coefficients obey the stipulated condition, the corresponding law of heredity satisfies 
the principle of stationarity. 
 
    2. Here 2, I shall not dwell on those fundamental considerations which convinced me in 
that, when constructing a mathematical theory of evolution, we ought to base it upon laws of 
heredity obeying the principle of stationarity. I only note that the Mendelian law, which 
determines the inheritance of most of the precisely studied elementary traits, satisfies this 
principle (Johannsen 1926, p. 486). 
    The so-called Mendelian law concerns three classes of individuals, two of them being pure 
races 3 and the third one, a race of hybrids always born when two individuals belonging to 
contrary pure races are crossing. Thus, 
 
    A11

1 = A22
2 = 1, A11

2 = A22
1 = 0, A12

3 = 1, A11
3 = A22

3 = A12
1 = A12

2 = 0.  
 
According to the experiments of Mendel and his followers, the other nine coefficients have 
quite definite numerical values, viz, 
 
    A33

1 = A33
2 = 1/4, A33

3 = 1/2, A13
1 = A23

2 = A13
3 = A23

3 = 1/2, A13
2 = A23

1 = 0. 
 
    Formulas (1) therefore become 
 
    �1' = [�1 + (1/2)�3]

2, �2' = [�2 + (1/2)�3]
2, �3' = 2[�1 + (1/2)�3]�[�2 + (1/2)�3] 

                                                                                                                         (3)   
 
from which we obtain by simple substitution 
 
    �1" = {[�1 + (1/2)�3]

2 + [�1 + (1/2)�3]�[�2 + (1/2)�3]}
2 = 

          = [�1 + (1/2)�3]
2(�1 + �2 + �3)

2,                                                             (4)    
 
which means that �1" = �1' because �1 + �2 + �3 = 1. 
    In the same way we convince ourselves in that �2" = �2' and �3" = �3'. Consequently, the 
Mendelian law indeed obeys the principle of stationarity. 
 
    3. The first very important result that we now want to obtain is this: 
    Theorem. If three classes of individuals comprise a closed biotype obeying the principle of 
stationarity with the crossing of individuals from the first two of them always producing 



individuals of the third class, then classes 1 and 2 are pure races and their crossing obeys 
the Mendelian law. 
    To simplify the writing, we change the notation in formulas (1) by taking into account that 
we are considering only three different classes. We designate the probabilities that an 
individual from the parental (filial) generation belongs to classes 1, 2 and 3 by �, � and � (�1, 
�1 and �1) respectively. Formulas (1) will then be written as 
 
    �1 = A11�

2 + 2A12�� + A22�
2 + 2A13�� + 2A23�� + A33�

2 = f(�; �; �), 
    �1 = B11�

2 + 2B12�� + B22�
2 + 2B13�� + 2B23�� + B33�

2 = f1(�; �; �),        (5)   
    �1 = C11�

2 + 2C12�� + C22�
2 + 2C13�� + 2C23�� + C33�

2 = �(�; �; �). 
 
    In general, 
 
    Aik + Bik + Cik = 1. 
 
Therefore, in accord with the conditions of the Theorem, we conclude that  B12 = A12  = 0 
since C12 = 1 because obviously no coefficient is negative.  
    Our mathematical problem consists in determining the quadratic forms f, f1, � with such 
non-negative coefficients that 
 
    f + f1 + � = (� + � + �)2 = 1 
 
under the conditions 
 
    f(�1; �1; �1) = f(�; �; �) = �1, f1(�1; �1; �1) = f1(�; �; �) = �1, 
    �(�1; �1; �1) = �(�; �; �) = �1                                                                       (6)  
 
the last of which follows from the first two of them. 
    Equations (6) obviously cannot have only a finite number of solutions; �1, �1 and �1 would 
then have been functions of (� + � + �); therefore, we would have 
 
    �1 = p(� + � + �)2 
 
which is impossible because the coefficient of �� should be zero. Consequently, equations 
(6) may be written out in the form 
 
    �1 = �(� + � + �) + kF (�; �; �), �1 = �(� + � + �) + k1F(�; �; �),                
    �1 = �(� + � + �) – (k + k1)F(�; �; �)                                                           (7)    
 
where F(�; �, �) is such a homogeneous form that F(�1; �1; �1) = 0 for any initial values of �, 
� and �. 
    It is easy to see that F(�; �; �) should be not a linear, but a quadratic form because there 
cannot exist a linear relation of the type 
 
    l�1 + m�1 + n�1 = lf (�; �; �) + mf1(�; �; �) + n�(�; �; �) = 0 
 
with n � 0 between �1, �1 and �1; indeed, f and f1 are devoid of the term �� which is present in 
�. And n = 0 is also impossible because then lm < 0 so that we could have assumed that l  = 1 
and m = – p, p > 0; the last of the equations (7) would then be 
 
    �1 = �(� + � + �) + (A� + B� + C�)�(� – p�) 



 
and, since the coefficients of �2 and �2 are non-negative, A � 0 and B % 0, whereas, according 
to the condition of the Theorem, B – Ap = 2. And so, F(�; �; �) is a quadratic form, k and k1 
are numerical coefficients, and without loss of generality we may assume that k = 1; then, 
obviously, k1 = 1 and the coefficient of �� in the polynomial F(�; �; �) is – 1 since neither 
f(�; �; �) nor f1(�; �; �) contain the term ��. 
    It is still necessary to determine the coefficients of the polynomial 
 
    F(�; �; �) = a�2 + b�2 – �� + c�� + d �� + e�2. 
 
First of all, we note that a = b = 0. Indeed, a cannot be positive because the coefficient of �2 
in f(�; �; �) does not exceed 1; nor can it be negative since then the same coefficient in f1(�; 
�; �) would be negative. In the same way we convince ourselves in that b = 0 as well. 
     To determine the other coefficients we note, issuing from equations (7), that the equations 
of stationarity (6) are transformed into a single equation 
 
    F(�S + F; �S + F; �S – 2F) = 0, S = � + � + �,                                          (8)  
 
which should persist for any values of �, �, �. 
    Expanding equation (8) into a Taylor series we find that 
 
    S2F + SF(F '$ + F'� – 2F'�) + F2F(1; 1; – 2) = 0                                         (9)   
 
or, after cancelling F out of it, 
 
    F(1; 1; – 2) F(�; �; �) = – S2 + S(2F '� – F '� – F '�).                                  (10)   
 
However, on the strength of the remark above, F cannot be split up into multipliers, therefore 
F(1; 1; – 2) = 0, and, after cancelling S out of equation (10), we finally obtain the identity 
 
    S = 2F '� – F '� – F '�                                                                                (11)    
       
or  
 
    � + � + � = 2(c� + d � + 2e�) + � – c� + � – d�. 
 
Therefore                                                                    
 
    c = d = 0, e = 1/4, F(�; �; �) = (1/4)�2 – �� 
 
so that 
 
    f(�; �; �) = �(� + � + �) + (1/4)�2 – �� = (� + �/2)2, 
    f1(�; �; �) = �(� + � + �) + (1/4)�2 – �� = (� + �/2)2,                                 (12)    
    �(�; �; �) = �(� + � + �) + 2�� – (1/2)�2 = 2(� + �/2) (� + �/2),   
 
QED. 
       
    4. As we have shown, the Mendelian law is a necessary corollary of the principle of 
stationarity provided that the crossing of the first two classes always produces individuals of 
the third class; and we did not even presuppose that the two former represent pure races. 



From the theoretical point of view it would be interesting to examine whether there exist 
other laws of crossing of pure races compatible with the principle of stationarity. 
    And so, let us suppose now that the coefficients of �2 in f(�; �; �) and of �2 in f1(�; �; �) are 
both unity. Repeating the considerations which led us to the just proved theorem, we again 
arrive at equations (7) where 
 
    F = – a�� + c�� + d �� + e�2 
 
and we may assume that k = 1 and k1 = 	. For determining the five coefficients a, c, d, e, 	 
we have here, instead of (11), the identity 
 
    S = (1 + 	)F '� – F '� – 	F '�                                                                              (13)  
 
from which we obtain the values of c, d, e through the two parameters a and 	: 
 
    d = (– a + 1)/(	 + 1), c = (– a	 + 1)/(	 + 1), e = (– a	 + 	 + 1)/(	 + 1)2. 
 
    The most general form of the polynomial F satisfying our condition is therefore 
 
    F = – a�� + �� (– a	 + 1)/(	 + 1) + �� (– a + 1)/(	 + 1) +  
           �2(– a	 + 	 + 1)/(	 + 1)2 
 
so that, assuming that a	 = b, we may write the right side as 
 
    – a�� + a�� (1 – b)/(a + b) + a��(1 – a)/(a + b) + a�2(a + b – ab)/(a + b)2 

 
and, by means of simple algebraic transformations, we finally determine that  
 
    f = [� + �a/(a + b)]{� + (1 – a)� + �[1 – ab/(a + b)]}, 
    f1 = [� + �b/(a + b)]{� + (1 – b)� + �[1 – ab/(a + b)]},                            (14) 
    � = (a + b) [� + �a/(a + b)][� + �b/(a + b)]. 
 
    So that the coefficients will not be negative, it is necessary and sufficient to demand in 
addition that 0 
 a, b 
 1. In particular, if a = b = 1, formulas (14) coincide with (12).  
    Whether cases of heredity obeying formulas (14) with a, b < 1 occur or not, can only be 
ascertained experimentally. From the theoretical viewpoint, these formulas provide the most 
general law of heredity for a closed biotype consisting of three classes two of which are pure 
races. It is easy to see that the only law of heredity for all three classes being pure races is 
expressed by the formulas 
 
    f = $(� + � + �), f1 = �(� + � + �), � = �(� + � + �)                                  (15)   
 
which follow from (7) if k = k1 = 0. 
 
     5. To complete the investigation of all the possible forms of heredity for biotypes 
consisting of three classes 4 and assuming as before the principle of stationarity, we still have 
to prove the following proposition. 
    Theorem. If each of the classes can be obtained from the crossing of the other ones, then  
 
    f = p(� + � + �)2, f1 = q(� + � + �)2, � = r(� + � + �)2.                              (16)  
 
If, however, only one class is a pure race, then either 



 
    f = (� + �){[(1 + b)(� + �)/2] + (1 – d)�}, 
   f1 = (� + �){[(1 – b) (� + �)/2] + d�}, � = �(� + � + �).                             (17) 
 
or 
 
    f = $S + a�(µ� + �), � + µf1 = 0. 
 
Indeed, if equations (6) possess a finite number of solutions, they lead to formulas (16); 
otherwise, we arrive at formulas (7), and here two cases are possible. 
    1) F is a quadratic form which cannot be decomposed into multipliers with k and k1 being 
numerical coefficients. 
   2) F is a linear form and k and k1 are also linear forms. 
   Suppose at first that F is a quadratic form. If not a single number from among k, k1 and (k + 
k1) is zero, then obviously two of them, for example, k and k1, can be chosen to be positive, 
and the form F should then lack terms with �2 and �2 so that the form �(�; �; �) will have no 
negative coefficients. This case should therefore be rejected because it returns us to the 
formulas (14) that correspond to two pure races. And so, we have to assume that one of the 
numbers k, k1 and (k + k1) is zero. We may suppose that (k + k1) = 0, i.e., that the third class 
is a pure race (the coefficient of �2 is unity). Then, the same coefficient in F should be zero, 
and, for determining the other coefficients by the same method as before, we obtain for k = 1 
 
    F = (� + �){[�(b – 1)/2] + [�( b + 1)/2] – d�} + ��, 
 
and we arrive at (17.1) and (17.2). 
    We still have to consider the assumption that F is a linear form. Let 
 
    F = 	� + µ� + �. 
 
Then, similar to the above, the condition of stationarity leads to the identity 
 
    S + 	k + µk1 – (k + k1) = 0 
 
where k and k1 are linear forms 
 
    k = a� + b� + c�, k1 = a1� + b1� + c1�. 
 
    Had we been unrestricted with regard to the signs, we could have chosen k arbitrarily, and, 
supposing that 
 
    k1 = [S + k(	 – 1)]/(1 – µ), 
 
we would have obtained solutions for f, f1 and � depending on five parameters (	, µ, a, b, c). 
However, not a single of these solutions fits in with the first condition of the Theorem. 
Indeed, since the coefficients of �2, �� and �2 in 
 
    f = �S + kF 
 
are non-negative, µb � 0, b + µc � 0, c � 0. 
 
And, issuing from the corresponding property of f1, we find that 



 
    	a1 � 0, c1 � 0, a1 + 	c1 � 0. 
 
    It follows that, if µ, 	 � 0, the equality of the type  
 
    	f + µf1 + � = 0 
 
is impossible since then all the coefficients would be positive. If, however, µ < 0, then b = c 
= 0 which is incompatible with the assumption that individuals of the first class can be 
produced when the other classes are crossed. Nevertheless, it is not difficult to conclude that, 
because the coefficients are non-negative, conditions b = c = 0 lead to 	 = 0 and therefore to 
 
    f = �S + a�(µ� + �), � = – µf1 = [µ/(µ – 1)]�[S(� + �) – a�(µ� + �)]       (17�)   
 
And so, all possible cases are exhausted and our Theorem is proved. 
 
    6. Let us summarize the obtained results. Under the principle of stationarity the laws of 
heredity for a closed biotype consisting of three classes can be categorized as follows. 
    1) Two classes represent pure races. Heredity obeys formulas (14) which, specifically, 
express the Mendelian law (12) if the crossing of pure races always produces a hybrid race. 
    2) Not a single class is a pure race but each can be produced when the other classes are 
crossed. Heredity occurs in accord with formulas (16). The distribution of the offspring by 
classes is constant and independent of the properties of the arbitrarily chosen parents. No 
correlation between parents and children exists here and the given biotype, in spite of its 
polymorphism, possesses the essential property characterizing a pure race. 
    3) All three classes represent pure races. Heredity obeys formulas (15). Arbitrary 
distributions by classes are passed on without change. Each two classes of the biotype also 
form a closed biotype. 
    4) One of the classes represents a pure race. Heredity conforms to formulas (17) or (17'). If 
the other classes are united, they, taken together, constitute a closed dimorphic biotype whose 
heredity fits in with the abovementioned Type 2. Together with the class representing a pure 
race it obeys the law of heredity of Type 3. Since it is reduced to Types 2 and 3, this type of 
heredity is not interesting in itself. The case (17') is distinguished from (17) in that the latter 
predetermines a stationary relative distribution of the pure race and the totality of the hybrid 
races, whereas the former, to the contrary, predetermines the relative distribution of the 
hybrid classes with respect to each other 5. 
    In particular, our investigation shows that the equations  
 
    S� = f(�; �; �) and S� = f1(�; �, �) 
 
are always independent if the coefficients in their right sides are positive and (S2 – f – f1) also 
has positive coefficients (not equal to zero). 
 

Chapter 2 

 
    7. Passing on to biotypes with a number of classes N > 3 we shall solve the problem 
formulated in the beginning under three main different suppositions. First case: Among the 
biotypes there is a certain number of pure races whose pairwise crossing is known to follow 
the Mendelian law. It is required to determine the coefficients of heredity when the other 
classes are crossed. 



    Second case: Each crossing can reproduce individuals of the entire biotype. Third case: 
The biotype has two pure races, which, when mutually crossed, produce all classes excepting 
their own. To determine the laws of heredity in these cases as well. 
    The solution in the first case is not difficult and is provided by the formulas 
 
    fii = [�ii+ (1/2)�

h

�ih]
2,                                                                            (19) 

    fik = 2[�ii + (1/2)�
h

�ik]�[�kk + (1/2)�
h

�kh] 

where the first sum 6 is extended over h � i and �ii and �ik are the probabilities that a parent 
belongs to pure race Aii and Aik respectively, and fii and fik are the probabilities that the 
offspring belongs to the pure race Aii and to the hybrid race 7 Aik respectively.  
    Indeed, formulas (19) obviously satisfy the principle of stationarity because 
 
    fii + (1/2)�

l

fil = [�ii + (1/2)�
l

�il]�[�
k

�kk + (1/2)�
kl

�kl] 

where the second factor in the right side is unity. 
    Let us show that the formulas (19) furnish a unique solution. To this end suppose that only 
pure races are being crossed in the parent generation so that  �ik = 0 if i � k and denote 
                                  
    �11 = t1, �22 = t2, … , �nn = tn. 
 
Then, in the next generation,  
 
    �1

ii = ti
2, �1

ik = 2ti tk. 
 
    Thus, because of the principle of stationarity, we have 
 
    f11(t1

2; 2t1t2; … ; tn 
2) = t1

2(t1 + t 2 + … + tn)
2                                             (20)   

 
and similar equalities for the other functions. Denoting the coefficient of �ik � hl in f11 by Aik, hl 
we infer that it is zero if less than two numbers from among i, k, h, and l are unity. And, 
supposing that h, l and 1 differ one from another, we have 
 
    A11, 11 = 1, A11, hl + 2A1h, 1l = 1, A11, 1h = 1, A11, hh + 4A1h, 1h = 1 
 
and therefore       
 
    f11(�11; �12; … ; �nn) = [�11 + (1/2)�

k

�1k]
2 + 

�
jh,

A11, hj[�11�hj – (1/2)�1h�ij] +�
h

A11, hh[�11�hh – (1/4)�1h
2]                     (21)   

and, since A11, hh = 0 8, the last term in the right side vanishes. 
    The equation of stationarity for the class A11 will therefore be expressed by the identity 
 
    (�11 + �12 + … + �nn)

2f11(�11; �12; …; �nn) =   
    [f11 + (1/2)�

k

f1k]
2 +�

hj

A11, hj[f11fhj – (1/2)f1hf1j].                                   (22)   

 
    Let us equate the coefficients of �11�hj

3 in both of its parts. In the left side it will be A11, hj; 
in the right side, taking into account that, from among all of its functions, only fhj contains 



�hj
2 (with coefficient 1/2), it will be (1/2)A11, hj

2. Therefore, A11, hj = 0 and equation (21) 
becomes (19.1) which we should have established. The other equations are obtained in 
exactly the same way 9. 
    Formulas (19) evidently show that the crossing of Aik with Ail produces 1/4 of pure 
individuals Aii and 1/4 of Aik, A il and Akl each; the crossing of Aik with Ajh produces 1/4 of Aih, 
A ij, Akh and Akj each; and, finally, the crossing of Aii with alien hybrids Akl, – 1/2 of the 
hybrids Aik and Ail each. This result completely coincides with Mendel’s initial physiological 
hypothesis but it demands that the hypothesis of the “presence and absence of genes” be 
revised 10. 
 
    8. The solution of the second problem is expressed by the following proposition. 
    Theorem. If the crossing of any individuals of a closed biotype consisting of n classes can 
produce individuals of any class, – i.e., if the coefficients of all the forms (1) are not zeros, – 
then heredity is determined by the formulas  
 
    �1' = 	1(�1 + �2 + … + �n)

2, �2' = 	2(�1 + �2 + … + �n)
2, … , �	i = 1.      (23)    

 
    This Theorem generalizes the corresponding proposition for n = 3 (§5) and we shall apply 
it now for proving the new statement by the method of mathematical induction. Let n = 4 and 
choose any two classes A1 and A2 from among them; the two other ones, A3 and A4, will 
constitute a special totality, which in general will not possess the characteristic property of a 
class. That is, when its individuals are crossed one with another, or with those of the other 
classes, the probability of the appearance of individuals of a certain class will not be 
constant. However, we can construct a class A3

(k) from out of this totality in such a way that 
the ratio of the number of individuals from class A4 to those of class A3 will remain constant 
(and equal to k) in our totality. 
    And so, suppose that our formulas of heredity are 
 
    �i' = fi(�1; �2; �3; �4), i = 1, 2, 3, 4.                                                            (24)     
 
Let �4 = k�3 and denote 
 
    � = �3 + �4 = �3(1 + k). 
 
Then, restricting �1, �2 and � by an additional condition 
 
    kf3[�1; �2; �/(1 + k); k�/(1 + k)] – f4[�1, �2; �/(1 + k); k�/(1 + k)] = 0 
 
which expresses the equality k�3' = �4', we see that the totalities A3 and A4  maintain under 
heredity the property of the class A3

(k). 
    Thus, supposing that 
 
    fi[ �1; �2; �/(1 + k); k�/(1 + k)] = �i(�1; �2; �), i = 1, 2, 
   f3[�1; �2; �/(1 + k); k�/(1 + k)] +                                                                 (25)    
    f4[�1; �2; �/(1 + k); k�/(1 + k)] = �3(�1; �2; �), 
 
we express the law of heredity in the transformed biotype by means of the functions �1, �2 
and �3. This law satisfies the principle of stationarity if only the initial distribution of 
individuals by classes obeys the equation 
 
    kf3 – f4 = Fk(�1; �2; �) = 0.                                                                          (26)    



 
    On the other hand, for four classes the stationarity condition cannot depend on more than 
one parameter, because, after representing the equations (24) as 
 
    �i' = �iS + �i(�1; �2; �3, �4), i = 1, 2, 3, 4,                                               (24')  
 
we see that the equations 
     
    �1 = 0, �2 = 0, �3 = 0, �4 = 0                                                                    (27)   
 
cannot be equivalent to one equation. Indeed, in this (impossible) case, supposing that �4 = 0 
we could have realized for n = 3 an infinite set of stationary conditions which contradicts §5. 
    If it is not satisfied identically for some k, the equation (26) can therefore provide only a 
finite number of values for �1', �2', �3', �4' 

11. Consequently, if equation (26) is satisfied, the 
functions �i given by formulas (25) can take only a restricted number of values, and, owing 
to their continuity, these values are quite definite. We conclude that 
 
    �i = 	i(�1 + �2 + �)2 + µ iFk, i = 1, 2, 3                                                       (28)   
 
if only Fk is not an exact square 12. And the constants depending on k, 	1, 	2, 	3 are connected 
by the equality 
 
    	1 + 	2 + 	3 = 1 
 
whereas µ1, µ2 and µ3 satisfy the condition 
 
    µ1 + µ2 + µ3 = 0. 
 
    Substituting the expressions of �1, �2, �3, Fk through f1, f2, f3, f4 into equations (28) and 
returning to the initial variables �1, �2, �3, �4 we obtain, with respect to f1, f2, f3, f4 and S2, 
where S = �1 + �2 + �3 + �4 

13, three homogeneous linear equations whose coefficients 
depend on k: 
 
    fi + µ i f4 – kµ if3 = 	iS

2, i = 1, 2, f4(1 + µ3) + f3(1– kµ3) = 	3 S 2. 
 
    If k � 0 these equations are independent and it is therefore always possible to express three 
of the forms fi by the fourth one and S2. Thus, for the sake of definiteness we may assume 
that 
 
    fi = hi S

2 + mi f1,                                                                                          (29)   
 
    �hi = 1, �mi = – 1, i = 2, 3, 4                                                                    (30)  
 
where h1 and m1 can depend on k = �4/�3. In any case, it is easy to see 14 that these two 
magnitudes can only be linear fractional expressions with regard to  �4/�3. 
    The equation of stationarity for f1 provides, however, 
 
    f1(f1, f2; f3; f4) = S2f1(�1; �2; �3, �4); 
 
or, applying equalities (29), we have 
                                                                                                            



    f1(f1; h2S
2 + m2 f1; h3 S

2 + m3 f1; h4 S
2 + m4 f1) = S2f1(�1; �2; �3; �4).           (31)   

 
    Therefore, expanding the right side of equality (31) into a Taylor series, we have 

    S4f1(0; h2; h3, h4) + S2f1(�1; �2; �3; �4)�[h2
2

1

α∂

∂f
(1; m2; m3; m4) + 

    h3
3

1

α∂

∂f
 + h4

4

1

α∂

∂f
] + f1

2(�1, �2; �3, �4)f1(1; m2; m3; m4) = S2f1(�1; �2, �3, �4). (31�) 

    Hence we conclude that either f1/S
 2 = M, where M can be a function of �3 and �4, or the 

coefficients of S4, S2f1 and f1
2 are zeros. But the first supposition can only be realized if M is a 

constant and in that case the Theorem would have been already proved. It remains therefore 
to consider the second case in which 
 
    f1(0; h2, h3, h4) = 0, f1(1; m2; m3; m4) = 0,                                                  (32)   

    h2
2

1

α∂

∂f
(1; m2, m3, m4) + h3

3

1

α∂

∂f
(1; m2, m3, m4) + h4

4

1

α∂

∂f
(1, m2, m3, m4) = 1. 

 
    Supposing now that 
 
    �1(�1; �2; �3, �4) = f1 – �1S, 
 
we conclude that this function vanishes at all the values of its arguments connected by the 
equalities 
 
    [(�2 – m2�1)/h2] = [(�3 – m3�1)/h3] = [(�4 – m4�1)/h4] = p                          (33)   
 
with any p because 
 
    �1(0; h2, h3, h4) = 0, �1(1; m2; m3; m4) = 0,                                               (34)   

    h2
2

1

α

ψ

∂

∂
(1; m2, m3; m4) + h3

3

1

α

ψ

∂

∂
 + h4

4

1

α

ψ

∂

∂
 = 0. 

 
    We also note that the equalities (33) are equivalent to equations 
 
    hiS + mi�1 – �i = 0, i = 2, 3, 4                                                                    (35)   
 
only two of which are independent because of (30).  
    For visualizing the obtained result more clearly we can replace the homogeneous 
coordinates by Cartesian coordinates supposing that for example �3 = 1. Then we may say 
that the surface of the second order �1(x; y; 1; z) = 0 passes through the line of intersection of 
the surfaces expressed by the equations (35). But, supposing now that 
 
    �2 = f2 – �2 S = h2 S

2 + m2 f1 – �2 S = m2�1 + S(h2 S + m2$1 – �2), 
    �i = fi – �i S = mi�1 + S(hi S + mi�1 – �i), i = 3, 4 
 
we conclude that the surfaces �2 = 0, �3 = 0, �4 = 0 also pass through the same line. In 
addition, the form of the functions �2, �3, �4 shows that these equations cannot admit of any 
other positive common solutions excepting those given by equations (35). Consequently, 
noting that, for 
 



    fi = �i S + �i, i = 1, 2, 3, 4,                                                                        (36)    
 
all the stationary solutions are determined by the common solution of equations (27), we 
conclude that all these solutions are determined by formulas (35) with the parameter k = �4/�3 
taking all possible values from 0 to 
. 
    There thus exist such positive values �4/�3 that the other coordinates �1/�3  and 
�2/�3determined by the equations (35) are also positive. Therefore, by continuously varying 
the parameter we can make at least one coordinate (for example, �4/�3) vanish with the other 
ones being non-negative. Then, with �1, �2, �3 taking the respective positive values and 
replacing �4 by zero, we note that (36.4) vanishes which is impossible because all the 
coefficients there are positive. 
    Let us now pass on to the general case and show by the same method that if the Theorem 
is valid for some n it holds for (n + 1). Indeed, if it is valid for n, the equations (36) with i = 
1, 2, …, n cannot include dependent equations  
 
    �1 = 0, �2 = 0, …, �n – 1 = 0  
 
when all the coefficients in fi are positive. Therefore, the similar equations  
 
    �1 = 0, �2 = 0, …, �n = 0, 
 
where fi are the same as in (36) but with i = 1, 2, …, (n + 1), cannot be connected by more 
than one dependence; i.e., the stationarity condition for (n + 1) classes cannot depend on 
more than one parameter. 
    Consequently, the requirement that 
 
    kfn – fn+1 = 0, 
 
if only it does not hold identically for some k, leads to a restricted number of possible values 
for f1, f2, …, fn, fn+1. Therefore, uniting the n-th and the (n + 1)-th classes into one, and 
assuming that in the initial distribution 
 
    �n = �/(1 + k), �n+1 = k�/(1 + k), 
 
the functions 
 
    �i = fi[�1; �2; …; �/(1 + k); k�/(1 + k)], i = 1, 2, …, n – 1, 
 
    �n = fn[�1; �2; …; �/(1 + k); k�/(1 + k)] +  
           fn+1[�1; �2; …; �/(1 + k); k�/(1 + k)] 
 
if only 
 
    Fk = kfn[�1; �2; …; �/(1 + k); k�/(1 + k)] – 
            fn+1[�1; �2; …; �/(1 + k); k�/(1 + k)] = 0                                            (37)  
 
can take only a restricted number of values, and, owing to their continuity, have only one 
definite system of values 15. It follows that if{the left side of} equation (37) is not an exact 
square, then 
 
    �i = 	i(�1 + … + �n–1 + �)2 + µ iFk, i = 1, 2, …, n.                                     (38)  



 
We conclude that 
 
    fi = hiS

2 + mif1, i = 2, 3, …, n + 1                                                              (39)  
 
where �hi = 1, �mi = – 1. 
 
    When compiling the stationary equation for f1 we shall now find, as we did before, that 
 
    �1(0; h2; …; hn + 1) = 0, �1(1; m2; …; mn + 1) = 0,                                      (40)  

    h2
2

1

α

ψ

∂

∂
(1; m2; …; mn+1) + … + hn+1

1

1

+∂

∂

nα

ψ
(1; m2; …; mn+1) = 0  

 
so that for all the values of the parameter p  
 
    �1(�1; �2; …; �n; �n+1) = 0          
 
if 
 
    �i/�1 = mi + hi p, i = 2, 3, …, n + 1. 
 
Again, for all these values, the functions 
 
    �i = mi�1 + S(hi S + mi�1 – �i), i = 2, 3, …, n + 1                                     (41)  
 
also vanish. 
    Consequently, all possible values of the parameter k = �n+1/�n  provide all the stationary 
values of �1. Therefore, some values of that parameter correspond also to the totality of the 
positive solutions, and, when continuously varying k, we could have also obtained such a 
totality of values that one or some of the �i’s would have vanished with the other ones being 
positive. This, however, would have contradicted the assumption that all the coefficients in 
the forms fi are positive (not zeros). 
    The Theorem is thus proved except for the case in which the function in (37) is an exact 
square for any k � 0. Obviously, the occurring difficulty would be only essential if this 
property persisted for any combination of the pairwise united classes. This, however, could 
have only happened if each of the functions fi represented an exact square when the 
respective variable �i = 0. 
    The excluded case therefore demands that all the functions fi be of the type 
 
    fi = &iP

2 + �i Qi, i = 1, 2, …, n + 1                                                             (42)   
 
where 	i are some positive coefficients and P, Q1, Q2, …, Qn+1 are linear forms. Forming the 
equation of stationarity for f1 we will have  
 
    S2f1 = 	1

2P2(f1; f2;…; fn+1) + f1Q1(f1; f2; …; fn+1), 
 
that is 
 
    f1[S

2 – Q1(f1; …; fn+1)] = 	1
2P2(f1; …; fn+1).                                               (43)   

 
    Consequently, either 



 
    f1 = C1P(f1; …; fn+1), C1 = Const                                                               (44)  
 
or f1 is an exact square. Since the equations of stationarity for the other fi lead to the same 
conclusion, we ought to admit that either all the fi or all but one of them are exact squares, or 
that owing to the equality (44) there exist at least two functions fj and fk differing from each 
other only by a numerical coefficient. We may reject the last-mentioned case because the 
previous method of proof is here applicable.  
    And so, suppose that there exist three functions, f1, f2 and f3, which are exact squares. 
Then, eliminating P(f1; …; fn+1) from their equations of stationarity, we obtain 
 
    	i f1[S

2 – Q1(f1; …; fn+1 )] = 	1 fi[S
2 – Qi(f1; …; fn+1)], i = 2, 3 

 
and conclude that at least two from among these three functions only differ one from another 
by a numerical coefficient so that the previous method is again applicable. The Theorem is 
thus proved in all generality. 
 
    9. The proposition just proved for quadratic forms (which correspond to heredity under 
bisexual reproduction) holds, as it is easy to see, for linear forms (corresponding to unisexual 
reproduction). Namely, if 
 
    fi = Ai

1�1 + … + Ai
n �n , i = 1, 2, …, n 

 
are linear forms with positive coefficients satisfying equalities 
 

    �
k

Ak
i = 1 

 
for any i, then the establishing condition of stationarity is quite determined, and, when the 
principle of stationarity is maintained, fi = 	i S. 
    Indeed, supposing that �i = fi – �i, we note that under the condition of stationarity �i = 0, 
and I say that, except for the dependence ��i = 0, no other restrictions on the forms �i can 
exist. In the contrary case �	i�i = 0 which would have meant that 
 
    	1(A2

1 + A3
1 + … + An

1) = 	2 A2
1 + 	3 A3

1 + … + 	n An
1, 

    	2(A1
2 + A3 + … + An

2) = 	1 A1
2 + … + 	n An

2, …, 
    	n(A1

n + … + An) = 	1 A1 + … + 	n–1 An
n–1. 

 
But since all the coefficients Ak

i are here positive we should conclude that each of the 	i is 
some mean of the other similar magnitudes; and, consequently, that all of them are equal one 
to another and our statement about the impossibility of any other restrictions being imposed 
on the �i’s is proved. The condition of stationarity established in the second generation does 
not therefore depend on the initial values of �i and fi = 	i S. 
    By directly going over to the limit as n = 
 both our theorems on the linear and the 
quadratic forms are obviously extended onto the case of linear and double integrals 
respectively. We thus obtain the following two propositions. 
    Theorem A. The equation 
 

    f(y) = �
1

0

K(x ; y)f(x) dx 



in which  K(x; y) is positive and �
1

0

K(x; y) dy = 1 

has only one solution (up to a constant factor). If, however, the equation 

    �
1

0

K(x; y)�(x) dx = �
1

0
�
1

0

K(x; x1)K(x1; y)�(x) dx dx1 

is satisfied by any positive and integrable function �(x), then K(x, y) is a function of y only. 
    Theorem B. If the equation 

    �
1

0
�
1

0

K(x, y; z)�(x)�(y) dx dy = �
1

0
�
1

0

K(x; y; z)�1(x)�1(y) dx dy 

is satisfied by any positive function �(x) obeying the condition 

    �
1

0

�(x) dx = 1 

and 

    �1(u) = �
1

0
�
1

0

K(x; y; u)�(x)�(y) dx dy 

with a positive function K(x; y, z) symmetric with respect to x and y and such that 

    �
1

0

K(x; y; z) dz = 1, 

then K(x ; y ; z) is a function of z only. 
    Without dwelling in more detail on the case n = 
 or on its connection with the theory of 
integral equations, we shall consider now the next important case of a finite number of 
classes. 
 

Chapter 3 
      10. Suppose that there are in all N = n + 2 classes with two of them being pure races. To 
repeat (cf. Note 3), each of these two produces, under internal crossing, only its own 
individuals, and, when being mutually crossed, gives rise to individuals of all the other 
(hybrid) classes. In accord with §6 we would have had Mendelian heredity if the entire 
totality of the hybrids represented a class. We shall see now that if these hybrids represent 
several classes, two possibilities should be distinguished from each other: 
    1) Under internal crossing each of the hybrid classes produces individuals of one of the 
two pure classes. 
    2) There exists a hybrid class, which, under the same condition, cannot produce 
individuals of those two classes. 
    Denote the functions of reproduction for our N classes by f and f1 for the pure races and by 
�i, i = 1, 2, …, n for the hybrid races, and the respective probabilities by �, � and �i.Then our 
main assumption means that all the quadratic forms �i have terms containing �� but that they 
do not include �2 or �2. On the contrary, the form f contains �2 (with coefficient 1) and does 
not include either �� or �2 and f1 contains �2 (with coefficient 1) 
but does not include either �� or �2. 
    It is not difficult to prove, first of all, that in this case f does not at all depend on �, nor 
does f1 depend on �; in other words, that crossing with one of the parents belonging to a pure 
race never produces an individual of the other pure race. Indeed, let us assume that initially �i 
= 0 for all values of i; then, because of the principle of stationarity, 
 
    ( � + �)2 f = f2 + f�Ai �i + �Aik�i�k + f1�Di�i, 
 



but in this case f = �2, f1 = �2, and �1 = 2c1�� where c1 > 0. Since � is not included in the left 
side in a degree higher than the second, Di = 0 for all values of i which confirms the above. 
  
    11. Before going on to the proof of the general proposition, we dwell for the sake of 
greater clearness on the case N = 4. The general statement will be its direct generalization 
demanding some additional essential considerations. 
    Theorem. For N = 4 the formulas of reproduction should have one of the two following 
forms: either 
 
    f =[� + (1/2) A1 �1 + (1/2)A2�2 ]

2, f1 = [� + (1/2)B1�1 + (1/ 2)B2�2]
2, 

    �i = 2ci[� + (1/2)A1�1 + (1/2)A2�2]�[� + (1/2)B1�1 + (1/2)B2�2], i = 1, 2,   (45)    
 
where c1 + c2 = 1, A1 + B1 = A2 + B2 = 2, A1c1 + A2c2 = 1. Or, 
 
    f = (� + �1)�(� + �2), f1 = (� + �1)�(� + �2),                                                 (46) 
    �i = (� + �i)�(� + �i), i = 1, 2. 
 
    Indeed, let us assume at first that there exists an identical dependence 
  
    c2�1 = c1�2                                                                                                                                                  (47)      

 
between �1 and �2. Then, supposing from the very beginning that c2�1 = c1�2, we may unite 
both hybrid classes in one so as to obtain a biotype of three classes that must obey the 
Mendelian law. Consequently, 
 
    f(�; �; c1�; c2�) = (� + �/2)2, f1(�; �; c1�; c2�) = (� + �/2)2. 
 
Therefore, assuming that 
 
    f = �2 + ��Ai�i + �Aik�i�k, f1 = �2 + ��Bi�i + �Bik�i�k, 
 
we find that 
 
    A1c1 + A2c2 = B1c1 + B2c2 = c1 + c2 = 1, 
    �Aikcick = �Bikcick = (1/4)(c1 + c2)

2.                                                          (48)   
 
But, forming the equation of stationarity for f, we obtain 
 
    ff1 = f[(A1 – 1)�1 + (A2 – 1)�] + �Aik�i�k,                                                (49)  
 
and, applying equalities (48) and the relation (47), we conclude that 
 
    ff1 = (1/4)(�1 + �2)

2. 
 
It follows that f and f1 should be exact squares and we immediately arrive at formulas (45). 
    Let us suppose now that, on the contrary, there is no identical proportionality between the 
functions �1 and �2. Then any dependence between the functions of reproduction should 
contain at least three of them. We have seen, however (§10), that there exists an infinite set 
of stationary conditions, under which relation (47) holds with 2c1 and 2c2 being the 
coefficients of �� in �1 and �2 respectively, and satisfying the equation 
 



    4c1
2ff1 = �1

2.                                                                                               (50) 
 
    Therefore, if there exists a quadratic dependence F(f; f1; �1, �2) = 0 between  the four 
arguments (no linear dependence can exist), it should be identically obeyed, when, at the 
same time, equalities (50) are satisfied and (47) holds. Consequently, 
 
    F(�; �; �1; �2) = P(�; �; �1; �2)�(c2�1 – c1�2) + k(4c1

2�� – �1
2) 

 
where P is a polynomial of the first degree and k is a constant. Therefore, a second similar 
restriction together with the first one would have led to a linear dependence which is 
impossible. We thus conclude that the equations of stationarity for f and f1 
 
    ff1 = f[(A1 – 1)�1 + (A2 – 1)�2] + �Aik�i�k, 
    ff1 = f[(B1 – 1)�1 + (B2 – 1)�2] + �Bik�i�k 
 
should be equivalent, 
 
    A1 = B1 = A2 = B2 = 1, Aik = Bik 
 
and the equation of stationarity becomes 
 
    F = ff1 – �Aik�i�k = 0.                                                                                (51)   
 
    The forms �1 and �2 should therefore be 
 
    �i = 2ci(�� – �Aik�i�k) + �iS, i = 1, 2.                                                        (52) 
 
But A11 = A22 = 0, otherwise our forms will admit negative coefficients. Thus, 
 
    ff1 = 2A12�1�2                                                                                             (53) 
 
and we conclude that 
 
    f = �2 + ��1 + ��2 + 2A12�1�2, f1 = �2 + ��1 + ��2 + 2A12�1�2 
 
can be decomposed  into factors. Therefore, A12 = 1/2 and 
 
    f = (� + �1)�(� + �2), f1 = (� + �1)�(� + �2). 
 
    Noting finally that c1, c2 
 1/2 is necessary for the coefficients in �1 and �2 to be positive, 
we find that c1 = c2 = 1/2 and 
 
    �1 = (� + �1)�(� + �1), �2 = (� + �2)�(� + �2), QED. 
  
    The law of heredity represented by formulas (45) does not fundamentally deviate from the 
Mendelian law. On the contrary, formulas (46) provide a really peculiar “quadrille” law of 
heredity when both hybrid classes are pure races. This is the only law (apart from its simple 
modifications which will follow from the general theorem) admitting a direct appearance of a 
new pure race when the given pure races are being crossed. It would be interesting to apply it 
for an experimental investigation of the cases contradicting the Mendelian theory in which 
the appearance of “constant” hybrids is observed. 



    I also note the essential difference between the formulas (45) and (46): the former 
correspond to the case in which each hybrid can reproduce the initial pure races whereas the 
latter correspond to the contrary case. We go on now to the main proposition. 
 
    12. Theorem. Given, a closed biotype consisting of (n + 2) classes two of which are pure 
races; under mutual crossing these two produce individuals belonging to any of the other 
classes but cannot give rise to individuals of the parent classes. Then, the law of heredity 
obeying the principle of stationarity must belong to one of the two following types. 
    1) If, under internal crossing, each of the other (hybrid) classes can produce an individual 
belonging to one of the abovementioned pure classes, the law of heredity is a generalization 
of the Mendelian law and is represented by the formulas 
 
    f = [� + (1/2)(A1�1 + … + An�n)]

2, f1 = [� + (1/2)(B1�1 + … + Bn�n)]
2,    (54) 

    �i = 2ci[� + (1/2)(A1�1 + … + An�n)]
2[� + (1/2)(B1�1 + … + Bn�n)]

2, 
 
    �ci = 1, �Aici = 1, Ai + Bi = 2.      
 
    2) If there exist such hybrid classes which, under the same condition, cannot give rise to 
individuals of the abovementioned pure races, the law of heredity belongs to the “quadrille” 
type and is represented by the formulas 
 
    f = (� + �1 + �2 + … + �k)�(� + �k+1 + … + �n), 
    f1 = (� + �1 + �2 + … + �k)�(� + �k+1 + … + �n), 
    �i = ci(� + �1 + … + �k)�(� + �1 + … + �k), i 
 k, �ci = 1,                        (55) 
    �j = dj(� + �k+1 + … + �n)�(� + �k+1 + … + �n), j > k, �dj = 1. 
 
    Keeping to the previous notation, we obtain 
 
    f = �2 + ��Ai�i + �Aik�i�k, fi = �2 + ��Bi�i + �Bik�i�k.                              (56)  
 
Let us first consider the case of Ai = Bi = 1 and Aik = Bik. The equations of stationarity for the 
functions f and f1 will then be identical and have the form 
 
    F = �� – �Aik�i�k = 0.                                                                                 (57)   
 
Before proving our proposition, which certainly demands that all the coefficients be non-
negative, I indicate, as an overall guidance, the most general solution (without allowing for 
the signs of the coefficients) under the condition that the stationary distribution is only 
restricted by one equation. Since this single equation must be (57), the general type of the 
functions �i is 
 
    �i = 2ciF + �iS, �ci = 1. 
 
    Consequently, the equation of stationarity becomes 
 
    (�S – F)�(�S – F) =�

ik

Aik[2ciF + �iS]�[2ciF + �kS] 

or   
 
   F2 – (� + �)FS + ��S2 = 4F2�

ik

Aikcck + 4SF�
ik

Aikci�k + S2�
ik

Aik�i�k (58)  



     
and, after cancelling F out of it, 
 
    F(1 – 4�

ik

Aikcick) = S(� + � + 4�
ik

Aikci�k).                      (59) 

 
It is thus necessary and sufficient that 
 
    4�Aikci = 1, �ci = 1 
 
because these conditions also lead to 4�

ik

Aikcick = 1. 

 
The general solution therefore depends on {[n(n + 1)/2] + n} parameters connected by (n + 1) 
equations; that is, actually, on (n + 2) (n – 1)/2 independent parameters. 
    It is, however, easy to see that for n > 2 neither of these solutions suits us: in this case the 
number of independent stationary equations is always greater than unity. And so, we ought to 
assume, that, in general, 
 
    �i = 2cF + �iS + �Si + �Si' + �i                                                                 (60)  
 
where Si and Si' are linear functions of (�1; �2; …; �n), �i are quadratic functions of the same 
variables, and   
 
    �Si = �Si' = ��i = 0.                                                                                 (61)  
 
    We shall now determine the functions Si, Si' and �i noting that the conditions of 
stationarity for each �i become 
  
    fSi(�1; �2; …; �n) + f1Si'(�1; �2; …;  �n) + �i(�1; �2; …; �n) = 0.             (62) 
 
Assume now that 
 
    Si =�

h

Ah
i �h, Si' =�

h

Bh 
i�h.                                                                  (63)  

 
Then, equating to zero the coefficient of �3 in the identity (62), we obtain 
 
    Si(�1 + S1; �2 + S2; …; �n + Sn) = 0                                                            (64)  
 
or 
 
    �

h

Ah
i Sh + Si = 0, i = 1, 2, …, n. 

 
In exactly the same way we could have gotten 
 
    �

h

Bh
i Sh' + Si' = 0                                                                                    (65) 

so that all conclusions which we reach concerning Si will also hold for Si'. 
    Let us compile the table 



 
    A1

1 + 1   A1
2               A1

3    …       A1
n 

    A2
1          A2

2 + 1        …      …       A2
n 

   …………………………………………………..                                              (66) 
    An

1         An
2              …      …       An

n
 + 1 

 
On the strength of equations (65), for each of the columns 
 
    �

h

	h
i Sh = 0 

where 	h
i is the term in column i and line h (counting from above). 

    Note that all the coefficients in Sh excepting Ah
h are non-negative because they are non-

negative in �n, and that 
 
    – Ah

h = Ah
1 + … + Ah

h–1 + Ah
h+1 + … + Ah. 

 
Let 	r

i, 	s
i, 	t

i  be he maximal terms of column i 16. In general, for any value of p,  
 
    �

h

	k
i Ap

k = 0. 

 
Therefore, choosing, in particular, p = r, s, t, we obtain 
 
    (	1

i – 	r
i)Ar

1 + (	2
i – 	r

i)Ar
2 + … + (	n

i – 	r
i)Ar

n = 0, 
    (	1

i – 	s
i)As

1 + (	2
i – 	s

i)As
2 + … + (	n

i – 	s
i)As

n = 0,                                 (67) 
    (	1

i – 	t
i)At

1 + (	2
i – 	t

i)At
2 + … + (	n

i – 	t
i)At

n = 0. 
 
    Noting that, if k differs from r, s, t 
 
    	k

i – &r
i = 	r

i – 	k
i – 	s

i = 	k
i – 	t

i < 0, 
 
we conclude that for these values of k Ar

k = As
k = At

k = 0. 
 
But 	h

i = Ah
i for i ' h and 	i

i = Ai
i + 1. Therefore, i should be equal to one of the numbers r, 

s, t. In addition, if the maximal values in the r-th column correspond to the r-th, s-th, t-th 
lines, then the maximal values of the s-th and the t-th columns will be on the same lines. It 
follows that 
 
    Sr + �r = 	r

r(�r + �s + �t), Ss + �s = 	s
s(�r + �s + �t), 

    St  + �t = 	t
t(�r + �s + �t), 	r

r + 	s
s + 	t

t = 1.                                                (68)   
 
    In general, all our linear forms Sh break down into several groups so that only the forms of 
one and the same group depend on the same variables and obey relations of the type of (68). 
We shall prove now that the number of these groups cannot exceed two. 
    Indeed, suppose for the sake of definiteness that the first i forms, S1, S2, …, Si, belong to 
the same group so that 
 
    (S1 + �1)/	1 = (S2 + �2)/	2 = … = (Si + �i)/	i = (�1 + �2 + … + �i).             (69) 
 
Then the equations of stationarity for �1, �2, …, �i will be 
 



    f[	j(�1 + �2 + … + �i) – �i] + f1Sj'(�i; …; �n) + �j(�1; …; �n) = 0,          (70) 
                                                      
where j = 1, 2, …, i. 
    Adding up these equalities we see that the term including f vanishes from the left side and 
the quadratic form, which is the coefficient of �2 in the sum 
 
    �1(�1; �2; …; �n) + �2(�1; �2; …; �n) + … + �i(�1; �2; …; �n), 
 
should therefore be identically equal to zero. Consequently, 
 
    �1(S1 + �1; S2 + �2; …; Sn + �n) + … + �i(S1 + �1; …; Sn + �n) = 0.           (71) 
 
    However, since the terms not including  �k  in the function �k (�1; �2; …; �n) cannot be 
negative, we ought to conclude that the coefficients of �k�l in each function � of the group are 
equal to zero if k, l > i. It follows that, for these values of k and l, Akl is all the more zero. The 
same reasoning might obviously be applied to each group, and, had their number exceeded 
two, all the Akl would have vanished which is impossible because the equation of stationarity 
(57) would then be ff1 = 0. Employing the same argument with respect to Sh'  we convince 
ourselves that these forms also break down into two groups possessing the abovementioned 
properties. 
    Thus, with respect both to S and S ', all the functions �i break down into groups 
constituting not more than four subgroups. We should also note that, when equating to zero 
the coefficients of �3� in each of the equations (70) we obtain 
 
    	1 = c1/(c1 + c2 + … + ci) etc. 
 
Therefore, supposing that �1 and �2 belong to one and the same subgroup, we conclude from 
the respective equations of stationarity that  
 
    (f + f1)�(c2�1 – c1�2) = c2�1(�1; �2; …; �n) – c1�2(�1; �2; …; �n)             (72) 
 
and 
 
    (f + f1)[(c2�1 – c1�2)�(�1 + �2 + … + �n) + c2�1 – c1�2] = 
    c2�1(�1; �2; …; �n) – c1�2(�1; �2; …; �n).                                                (73)   
 
    Equating the coefficients of �2 and �2 in both parts we find that 
 
    (c2�1 – c1�2) (�1 + �2 + … + �n) + c2 �1 – c1�2 =  
    c2�1(S1 + �1; …; Sn + �n) – c1�2(S1 + �1; …; Sn + �n) = 
    c2�1(S1' + �1; …; Sn' + �n) – c1�2(S1' + �1; …; Sn' + �n).                             (74)  
 
    Consequently, if the groups with respect to S and S ' do not coincide,  
 
    (c2�1 – c1�2) (�1 + �2 + … + �n) + c2�1 – c1�2 = A(�1 + �2 + … + �n)

2       (75)   
 
where A is a numerical coefficient. But since the left side does not include terms with 
products �k�l where neither k nor l belong to the considered subgroup, A = 0 and we obtain 
the very important relation (47). It can also be derived when assuming that the groups with 
respect to S and S ' coincide because then Sh' = Sh so that the quadratic form that serves as the 



coefficient of  2�� in the right side of equality (73) and ought to be identically equal to zero, 
should also be equal to the expression (74).  
    And so, in any case, the functions �h belonging to the same subgroup differ one from 
another only by numerical coefficients. It remains to show that there cannot exist more than 
two such subgroups. To this end we transform our biotype by uniting all the classes of each 
subgroup. The transformed biotype of each subgroup will then have only one class. It is 
necessary to check that the assumptions n = 4 and n = 3 are impossible.  
    Let at first n = 4. Then, in accord with the above, 
 
    F = �� – A14 �1�4 – A23 �2�3                                                                       (76)  
 
if, for the sake of definiteness, we suppose that S1 and S2 belong to the same group, and S3 
and S4, to another one, and that the same is true for S1' and S3' and S2' and S4'. 
    Issuing from the equation of stationarity 
 
    ff1 = A14 �1�4  + A23 �2�3 
 
we obtain, by equating the coefficients of �2, the equality 
 
    A14 �1�4 + A23 �2�3 = (A14 	1	4 + A23 	2	3)

 (�1 + �2) (�3 + �4) 
 
and arrive at an impossible conclusion that A14 = A23 = 0. In the same way, if  n = 3, 
 
    F = �� – A13�1�3 – A22�2

2 
 
and we get an impossible equality 
 
    A13 �1�3 + A22 �2

2 = A13 	1	3(�1 + �2)�3 + A22(�1 + �2)
2. 

 
    Consequently, n 
 2; that is, the number of subgroups, where all the �n differ one from 
another only by numerical factors, is never greater than two if only  
 
    f = �2 + �(�1 + … + �n) + �Aik �i�k,      
    f1 = �2 + �(�1 + … + �n) + �Aik �i�k. 
 
    13. We shall show now that the same conclusion persists also in the general case when f 
and f1 can be represented as  
 
    f = �2 + �(�1 + … + �n) + �So + �Aik �i�k,     
    f1 = �2 + �(�1 + … + �n) + �So' + �Bik �i�k,                                                (77) 
 
    So =�

h

Ah
0 �h, So' =�

h

Bh
0 �h, |Ah

0| 
 1, |Bh
0| 
 1. 

 
In this case the equations of stationarity for f and f1 become 
 
    F = �� – �So – �Aik �i�k = 0, F1 = �� – �So' – �Bik �i�k = 0.                      (78) 
 
We may therefore assume that 
 
    �i = ci(F + F1) + �iS + �Si + �Si' + �i                                                        (79) 



 
where, as before, 
 
    �ci = 1, �Si = �Si' = ��i = 0 
 
and the equation of stationarity for �i remains in the form (62). Equating to zero the 
coefficients of �3 in (62) we obtain now for any i 
 
    Si(– c1So + �1 + S1; – c2So + �2 + S2; …; – cnSo + �n + Sn) = 0.                  (80) 
 
    It is evident, however, that the equation of stationarity for f leads to  
 
    So(– c1So + �1 + S1; …; – cnSo + �n + Sn) = 0.                                            (81)   
 
Therefore, if we assume that Pi = Si – ciSo, then 
 
    Pi(�1 + P1; �2 + P2; …; �n + Pn) = 0, i = 1, 2, …, n.                                  (82) 
 
The forms Pi thus have the property 
 
    �

h

	h
i P = 0 

 
where 	h  is the term of the i-th column and the h-th line in the table 
 
    A1

1 – c1A1
0 + 1            A1

2 – c2A1
0                …         A1

n – cnA1
0 

       A2
1 – c1 A2

0          A2
2 – c2A2

0 + 1          …             A2
n – cnA2

0 
       A3

1 – c1 A3
0              A3

2 – c2A3
0                  …       A3

n – cnA3
0     (83)  

       An
1 – c1An

0               An
2 – c2An

0                 …     An
n – cnAn

0 + 1 
 
In addition, 
 
    �Ah

0(Ph + �h) = 0. 
 
    Let us now divide the terms of each h-line by (1 – Ah

0) and assume that 
 
    	r

i/(1 – Ar
0) and 	s

i/(1 – As
0) 

 
represent two (for the sake of definiteness) maximal values which will then be obtained in 
the i-th column. Then 
 
    (1 – Ar

0)�
h

	h
iPh + 	r

i�
h

Ah
0(Ph + �h) = 0 

 
so that, equating the coefficients of � to zero, we get 
 
    (1 – Ar

0)�
h

	h
i(Ar

h – ch Ar
0) + 	r

i[�
h

Ah
0(Ar

h – ch Ar
0) + Ar

0] = 0          (84)   

and a similar equality for s. 
    Noting then that 
 



    �
h

(Ar
h – ch Ar

0) = – Ar
0  

we transform the equality (84) obtaining 
 
    (1 – Ar

0)�
h

(	h
i – 	r

i) (Ar
h – ch Ar

0) + 	r
i[�

h

Ah
0(Ar

h – ch Ar
0) + (Ar

0)2] = 0,  

 
or, finally, 
 
    �

h

[	h
i(1 – Ar

0) – 	r
i(1 – Ah

0)] (Ar
h – ch Ar

0) = 0.                                     (85) 

But, since on the one hand 
 
    Ar – ch Ar

0 � 0, 
 
and the multiplier 
 
    	h

i(1 – Ar
0) – 	r

i(1 – Ah
0) = 0 

 
when h = r and h = s and is negative at the other values of h, it is necessary that, for the last-
mentioned values, 
 
    Ar

h – ch Ar
0 = 0, As

h – ch As
0 = 0. 

 
    We conclude therefrom that one of the values r and s should coincide with i and that the 
maximal values of the r-th and the s-th columns should be situated in the lines with the same 
numbers. All the forms Ph can be therefore united into groups of the type of 
 
    (P1 + �1)/ 	1 = (P2 + �2)/	2 = … = (Pk + �k)/	k = 
    (1 – A1

0)�1 + (1 – A2
0)�2 + … + (1 – Ak

0)�k, 	1 + 	2 + … + 	k = 1.            (86)    
 
We would have obtained a similar result for Ph' = Sh' – ch S0'. 
    Issuing from this main finding, it is easy to determine that the equation of stationarity for 
�1 will become   
 
    f{	1[(1 – A1

0)�1 + (1 – A2
0)�2 + … + (1 – Ak

0)�k] – �1 + 
    c1(A1

0�1 + … + Ak
0�k)} + f1{	1

1[(1 – B1
0)�1 + … + (1 – Bl 

0)�l] – 
    �1 + c1(B1

0�1 + … + Bl 
0�l)} + �1(�1; �2; …; �n) = 0.                               (87)   

 
    Compiling the stationary equations for �i belonging to the same group with respect to S, 
we find, by equating to zero the coefficients of �3�, that 
 

    	1/c1 = … = 	k/ck =
kk

kk

cAcA

cAcA

 )  -  1 (   ...    )  -  1 (

)    ... (  -  1
  0

1
 0

1

0
1

 0
1

++

++
= 1/(c1 + … + ck). (88)  

Therefore, 

    if�
=

k

i 1

ci Ai
0 � 0, then c1 + c2 + … + ck = 1. 

Consequently, k = n, otherwise all the other ci = 0 which contradicts the condition of the 
Theorem. We thus have only one group with respect to S except for the case in which the 
first sum just above vanishes. But then there will be no terms including � in 



    �
=

k

i 1

Ai
0 �i 

and the sum�
=

k

i 1

�i(�1; �2, …; �n) 

will not therefore contain terms with �2. We conclude that, as before, the products �g�h where 
both g and h are greater than k are absent from any �i belonging to the given group. 
    Consequently, for these values of g and h, Agh = Bgh = 0 so that the number of groups with 
respect to S does not exceed two and we can obtain the same result for S ' . Finally, if �1 and 
�2 belong to one and the same group with respect to S and S ', we find that 
 
    (f + f1) (c2�1 – c1�2) = c2�1(�1; �2; …; �n) – c1�2(�1; �2; …; �n), 
 
and, as before, we convince ourselves that equality (49) holds.  
    Thus, all the hybrid races again break down in subgroups not exceeding four in number 
and for whom functions �i differ only by numerical factors. It is not difficult to show that, as 
before, the number of subgroups does not actually exceed two. Hence, the most general 
instance is also reduced to the case of n = 2 considered in §11, and the Theorem is proved. 
 
    14. I shall briefly indicate some conclusions following from my investigation. The closed 
biotype in which each crossing can produce individuals of any class must posses the 
properties that the proportion of the individuals of different kinds produced after some 
crossing does not at all depend on their parents. In spite of the obvious difference between 
the parents, the properties of their sexual cells obey one and the same law of randomness. 
Had a correlation between parents and offspring been nevertheless observed here, its cause 
should be only sought in the differing influence of the environment and unequal conditions of 
selection. The considered biotypes, although polymorphic in appearance, do not essentially 
differ from pure races. I could have proved that the crossing of various biotypes of this kind 
indeed obeys the same laws as does the crossing of pure races, see formulas (17). The main 
problem is the crossing of pure races. As is seen from the theorem proved in Chapter 3 17, if 
hybrids of different kinds are produced, only two cases are possible: 
    1) The proportion of the produced hybrids does not depend on the parents 18; the entire 
totality of the hybrids here follows the Mendelian law, satisfying, as is seen from formulas 
(54), the main relation 
 
    4ff1 = (�1 + �2 + … + �n)

2. 
 
    Thus, an usual large-scale statistical investigation, that does not differentiate between the 
hybrids, would have registered the existence of an elementary Mendelian law and only 
indicated a more or less greater variance. 
    2) The hybrids comprise two essentially different groups. Assuming for the sake of 
simplicity that each group is homogeneous, both these hybrid classes will also represent pure 
races characterized by producing, under mutual crossing, in turn, the initial pure races. The 
considered four pure races constitute a peculiar quadrille, and I call their law of heredity, 
essentially differing from the Mendelian, the quadrille law. I have found only a few 
controversial cases (De Vries) in the pertinent literature suiting the indicated law and it 
would be necessary to carry out a more thorough check and establish whether the elementary 
quadrille law, or some generalized form of that law, is applicable here. Finally, the problem, 
which I solved by means of formulas (19) in the particular case of a simple Mendelian 
heredity, indicates the nature of the laws of heredity for a complicated biotype consisting of 
any number of pure races.    



 
    Notes 

 
    1. Our formulas obviously presuppose an absolute absence of any selection whatsoever. 
The biotype is reproduced under conditions of panmixia. 
    2. See my paper (1922). 
    3. By a pure race we designate a class which, when the crossing is interior, only produces 
individuals of its own class.  
    4. The case of two classes is obviously exhausted by the formulas 
 
    f = �(� + �), f1 = �(� + �) and f = p(� + �)2, f1 = q(� + �)2. 
 
    5. An essential part in our derivations, which were meant for biological applications, was 
played by the restriction imposed on the signs of the coefficients. If we assume that their 
signs can be arbitrary, the solutions, except for formulas (16), can be of two types. The first 
one corresponds to a linear function F that depends on five parameters. The second type is 
characterized by a quadratic function F and is represented by the formulas depending on four 
parameters P, Q, d and d1: 
 
    f = (1/4P)[P� – Q� + (d – 1) (d1 – 1)S] [P� – Q� + (d + 1) (d1 + 1)S],    (18)     
    f1 = (1/4Q)[P� – Q� + (d – 1) (d1 + 1)S] [P� – Q� + (d + 1)(d1 – 1)S],  
 
    � = S2 – f – f1. 
 
    6.{Bernstein only explains the composition of the sum of the terms �ih.}  
    7. If n is the number of the pure races, then the number of all the classes is N = n (n + 1)/2. 
    8. Because of the assumption that the crossing of races A11 and Ahh only produces only the 
race A1h. 
    9. Incidentally, the law of heredity expressed by equations (19) and representing a simple 
generalization of the Mendelian law, was applied when studying Aquilegia as investigated by 
Bauer (Johannsen 1926, p. 581).{In this sentence, Bernstein made a grammatical error and 
“investigated by Bauer” is only my conjecture.} 
    10. Our theoretical conclusions are fully confirmed by Morgan’s (1919) experimental 
investigations. 
    11. Otherwise we directly apply the theorem proved for n = 3 and obtain 
 
    �i = 	i(�1 + �2 + �)2, i = 1, 2, 3. 
 
Hence we immediately prove the theorem also for n = 4. 
    12. We consider the contrary case below. 
    13.{In §3, see formula (8), Bernstein made use of the same letter S in another sense.}  
    14.{It is difficult to understand the end of this sentence. The author wrote: In any case, 
after equating both parts of (29) to each other …} 
    15. When �1 + �2 + … + �n–1 + � = 1. 
    16. For the sake of definiteness we assumed that such terms are three in number, but our 
reasoning will not change had we chosen another number. 
    17. The case in which, apart from the hybrids, individuals of the parent classes can also be 
produced, would have led to an appropriate generalization of the formulas. 
    18. If the parents themselves are hybrids, a certain part of the offspring, depending on the 
kind {the sex? – difficult to understand the Russian text}of the parents, belongs to pure races, 
but the proportion of the different types of the hybrid offspring persists. 
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3. S.N. Bernstein. An Essay on an Axiomatic Justification of the Theory of Probability 

�������� 	�
������ (Coll. Works), vol. 4. N.p., 1964, pp. 10 – 60 … 
 

  
The human mind experiences  

less{difficulties}when moving 
ahead than when probing itself 

 (Laplace 1812) 
 

Foreword by Translator 
 

    The first to argue that the theory of probability should be axiomatized was Boole (1854, p. 
288); Hilbert, in 1901, attributed the theory to physical sciences and formulated the same 
demand. Bernstein was likely the first to develop an axiomatic approach to probability, and 
he later described his attempt in each edition of his treatise (1927). Then, in an extremely 
short annotation to vol. 4 (1960) of his �������� ��
������ (Coll. Works), where his work 
was reprinted, he stated that his axiomatics was the basis of a “considerable part” of his 
writings of 1911 – 1946. Slutsky (1922) examined the logical foundation of the theory of 
probability. Several years later he (1925, p. 27n) remarked that then, in 1922, he had not 
known Bernstein’s work which “deserves a most serious study”. 
    Kolmogorov (1948, p. 69) described Bernstein’s work as follows: the essence of his 
concept consisted “not of the numerical values of the probability of events but of a 
qualitative comparison of events according to their higher or lower probabilities …” Then, he 
and Sarmanov (1960, pp. 215 – 216) largely repeated that statement and added that Koopman 
had “recently” been moving in the same direction. In turn, Ibragimov (2000, p. 85) stated that 
both Bernstein and Kolmogorov had “adopted the structure of normed Boolean algebras as 
the basis of probability theory”. Ibragimov (pp. 85 and 86) also politely called in question 



Bernstein’s standpoint regarding infinitely many trials (his §3.2.1) and even his opinion 
concerning general mathematical constructions such as convergence almost everywhere.  
    Bernstein’s contribution translated below is hardly known outside Russia. Even 
Hochkirchen (1999) only mentioned it in his list of Quellen und Fachliteratur but not at all in 
his main text. 
    Bernstein had not systematized his memoir. The numbering of the formulas was not 
thought out, theorems followed one another without being numbered consecutively; notation 
was sometimes violated and misprints were left unnoticed. Finally, in §3.2.5 Bernstein 
introduced function F(z) which appeared earlier as F(x). And, what happens time and time 
again in the works of many authors, he had not supplied the appropriate page number in his 
epigraph above. I have not been able to correct sufficiently these shortcomings but at least I 
methodically numbered the axioms, theorems and corollaries although several propositions 
not called either theorems or corollaries; again,  yet others were named principles. 
 

*   *   * 
    The calculation of probabilities is based on several axioms and definitions. Usually, 
however, these main axioms are not stated sufficiently clearly; it remains therefore an open 
question which assumptions are necessary, and whether they do not contradict one another. 
The definition itself of mathematical probability implicitly contains a premise (Laplace 1814, 
p. 4) in essence tantamount to the addition theorem which some authors (Bohlmann ca. 1905, 
p. 497) assume as an axiom. Consequently, I consider it of some use to explicate here my 
attempt to justify axiomatically the theory of probability. I shall adhere to a purely 
mathematical point of view that only demands a rigorous and exhausting statement of 
independent rules not contradicting each other, on whose foundation all the conclusions of 
the theory, regarded as an abstract mathematical discipline, ought to be constructed. It is of 
course our desire for cognizing the external world as precisely as possible that dictates us 
these rules. However, so as not to disturb the strictly logical exposition, I prefer to touch the 
issue of the philosophical and practical importance of the principles of probability theory 
only in a special supplement at the end of this paper.                                                                           
 
    Chapter 1. Finite Totalities of Propositions 

    1.1. Preliminary Definitions and Axioms 

    1.1.1. Equivalent and Non-Equivalent Propositions 
    Let us consider a finite or infinite totality of symbols A, B, C, etc which I shall call 
propositions. I shall write M = N (N = M) and call M and N  equivalent after agreeing that, 
when performing all the operations defined below on our symbols, it is always possible to 
replace M by N and vice versa. In particular, if M = N and M = L, then N = L. 
    Suppose that not all of the given propositions are equivalent, that there exist two such A 
and B that A ' B. If the number of non-equivalent propositions is finite, I shall call their 
given totality finite; otherwise, infinite. In this chapter, I consider only finite totalities. 
 
    1.1.2. Axioms Describing the Operation (of Partition) Expressed by the Sign “Or” 
    1.1. The constructive principle: If (in the given totality) there exist propositions A and B, 
then proposition C = (A or B) also exists. 
    1.2. The commutative principle: (A or B) = (B or A ). 
    1.3. The associative principle: [A or (B or C)] = [(A or B) or C] =                            (A or B 
or C). 
    1.4. The principle of tautology: (A or A) = A. 
    By applying the first three principles it is possible to state that, in general, there exists a 
quite definite proposition H = (A or B or … E). I shall call it a join of propositions A, B, …, 
E. Each of these is called a particular case of H.  



    Corollary 1.1. If y is a particular case of A, i.e., if (x or y) = A, then (A or y) = A. Indeed, 
given that (x or y) = A, we conclude that 
 
    [x or (y or y)] = (A or y), 
 
hence (x or y) = (A or y) = A, QED. 
    Corollary 1.2. If y is a particular case of A and A is a particular case of B, then y is a 
particular case of B. 
    Corollary 1.3. The necessary and sufficient condition{s} for H to be a join of propositions 
A1, A2, …, An is that 
    1) If for some i, i  = 1, 2, …, n, we have (Ai or y) = Ai, then (H or y ) = H, and 
    2) If for each  i (Ai or M) = M, then (H or M) = M. 
    Indeed, if H = (A1 or A2 … or An) then (A1 or y) = A1 immediately leads to        H = (H or 
y), and in the same way we find that 
 
    [(A1 or M) or (A2 or M) or … (An or M)] = M 
 
follows from (A1 or M) = M, (A2 or M) = M etc so that (H or M) = M. 
    Suppose now that, in addition to the join H, there exists a proposition H1 possessing the 
same two properties. Then, since (Ai or Ai) = Ai, we have, for any i, (H1 or Ai) = H1, hence (H1 
or H) = H1. But, since on the other hand (Ai or H) = H for each i, we have, in accord with the 
second condition, (H1 or H) = H. Consequently, H1 = H, QED.  
    Corollary 1.4. If A is a particular case of B, and B is a particular case of A, then A = B. 
Indeed, according to the condition, (A or x) = B, (B or y) = A. Consequently, on the strength 
of Corollary 1.1, (A or B) = B = A, QED. 
    Corollary 1.5. Each proposition is equal to the join of all of its particular cases. 
 
    1.1.3. The Existence Theorem for a Certain (a True) Proposition 
    Theorem 1.1. In a given totality, there always exists such a proposition � that, for any 
proposition A, 
 
    (� or A ) = �.                                                                                              (1) 
 
This proposition is called true or certain. Indeed, let us form the join � of all the 
propositions of the totality. Then, in accord with the definition of a join, � will satisfy 
condition (1). The formula of a true proposition means that the correctness either of the true, 
or of some other proposition, is the same as the correctness of the former. 
    Corollary 1.6. All true propositions are equivalent. 
 
    1.1.4. The Existence Theorem for an Impossible (for a False) Proposition 
    Theorem 1.2. In a given totality there exists a proposition O called false or impossible 
satisfying the condition that, for each A, 
 
    (A or O) = A.                                                                                                (2) 
 
Thus, to state the existence of a false proposition or of A is tantamount to stating the 
existence of the latter. 
    Corollary 1.7. All false propositions are equivalent. Indeed, if O and O1 are two false 
propositions, then (O or O1) = O = O1.  



    Corollary 1.8. A true proposition cannot be equivalent to a false proposition. Indeed, if � 
= O, then, for each A, (A or O) = (A or �) = A = ( = O, which would have meant that all the 
propositions of a totality were equivalent. 
 
    1.1.5. Combining Propositions 
    If two propositions, A and B, are given, then there always exists a proposition x satisfying 
the condition{s} 
 
    (x or A) = A, (x or B) = B.                                                                            (3) 
 
Indeed, the impossible proposition O in any case obeys (3). 
    Proposions A and B are called incompatible if O is the only proposition satisfying this 
condition, and compatible otherwise. Any proposition x obeying (3) can be called a 
particular compatible case of propositions A and B. 
    The join H of all the particular compatible cases of A and B, – that is, of all the 
propositions x satisfying condition (3), – is called the combination of A and B. It is expressed 
by the symbol H = (A and B) and is formally determined by the conditions (H or A) = A, (H 
or B) = B with (x or H) = H if (x or A) = A, (x or B) = B. 
    Corollary 1.9. The operation (of combining) expressed by the symbol and is commutative: 
(A and B) = (B and A). 
    Corollary 1.10. The same operation is associative: [A and (B and C)] =   
[(A and B) and C]. Indeed, proposition z satisfying the conditions 
 
    (z or A) = A, (z or B) = B, (z or C) = C 
 
means that 
 
    [z or (A and B)] = (A and B), (z or C) = C. 
 
Therefore, the join H of all such propositions will be H = [(A and B) and C] and exactly in 
the same way we convince ourselves that H = [A and (B and C)], QED. 
    Corollary 1.11. If (A or B) = A, then (A and B) = B and vice versa. Indeed, if (A or B) = A, 
then the conditions (z or A) = A, (z or B) = B are equivalent to the second of these and 
therefore (A and B) = B. Conversely, (A and B) = B means that the equality (z or B) = B 
always leads to (z or A) = A and, in particular, to (B or A) = A. 
    Corollary 1.12. (A and O) = O, A and �) = A. 
    Corollary 1.13.The operation expressed by the symbol and satisfies the principle of 
tautology: (A and A) = A. 
             
    1.1.6. The Restrictive Principle (Or Axiom) 
   Axiom 1.5. Each particular case (A or B) is a join of some particular cases A and B. 
    Theorem 1.3. The First Theorem of Distributivity: 
  
    [A and (B or C)] = [(A and B) or (A and C)]. 
 
Indeed, from the equalities 
 
    [(A and B) or A] = A, [(A and C) or A] = A 
 
we conclude that 
 



    {[(A and B) or (A and C)] or A} = A. 
 
    Exactly in the same way 
 
    {[(A and B) or (A and C)] or (B or C)} = (B or C) 
 
follows from 
 
    [(A and B) or B] = B, [(A and C) or C] = C. 
 
Thus, [(A and B) or (A and C)] is a compatible particular case of propositions A and (B or C). 
    It is still necessary to prove that, conversely, if 
 
    (z or A) = A, [z or (B or C)] = (B or C)  
     
then 
 
    {z or [(A and B) or (A and C)]} = [(A and B) or (A and C)]. 
 
To this end, we note that on the strength of the restrictive principle z = (x or y)  
 
where x and y are particular cases of B and C, respectively. Then, (x or A) = A,  (x or B) = B, 
hence     
 
    [x or (A and B)] = (A and B). 
 
    In the same way 
 
    [y or (A and C)] = (A and C). 
 
Consequently,  
 
    {(x or y) or [(A and B) or (A and C)} = [(A and B) or (A and C)]; 
 
that is, 
 
    {z or [(A and B) or (A and C)]} = [(A and B) or (A and C)], QED. 
     
    Theorem 1.4. The Second Theorem of Distributivity: 
 
    [A or (B and C)] = [(A or B) and (A or C)]. 
 
Indeed,  
 
    [(A or B) and (A or C)] = {[(A or B and A] or [(A or B ) and C]} = 
    {A or [(A or B) and C]} = {A or [(A and C) or ( B and C)]} = 
    [A or (B and C)], QED. 
 
    1.1.7. Duality of the Operations of Combining and Joining 
    The theorems above along with the associative and commutative principles relative to the 
operations or and and exhaust the rules of calculation with these symbols. 



    It is important to indicate that all the rules concerning the combination of propositions 
(having to do with the symbol and) are necessary conclusions from the rules about the 
joining of the propositions (involving the symbol or). And very remarkable is the duality that 
exists here: The rules regarding the symbols “or” and “and” are absolutely identical so that 
all the formulas persist when the symbols are interchanged if{only}the impossible and the 
true propositions, O and �, at the same time also replace each other. 
    Indeed, suffice it to observe all the above to note that the sole difference between the two 
sets of rules is that (A and �) = A, (A and O) = O, whereas (A or �) = � and (A or O) = A. 
 
    1.1.8. The Principle (Axiom 1.6) of Uniqueness 
    To complete our system, I introduce one more principle (the principle of uniqueness as I 
shall call it) underpinning the notion of negation. It can be stated thus: If proposition � is 
compatible with all the propositions of a totality (excepting O), it is true: � = �. 
    Definition of negation: The join A  of all propositions incompatible with A is called the 
negation of A. 

    Corollary 1.14. Ω = O. 

    Corollary 1.15. O  = (. 
    Corollary 1.16. If x  = O, then x = �. Indeed, all the propositions (excepting  O) are 
compatible with x and, consequently, on the strength of the principle of uniqueness, x = �. 
    Corollary 1.17. If x  = � then x = O. Indeed, since � is the join of the propositions 
incompatible with x, it itself possesses the same property because of the restrictive principle 
and therefore x = O. 
    Any set of propositions whose join is � is called solely possible. 

    Theorem 1.5. Propositions A and A are solely possible and incompatible; that is, (A or 
A ) = �, (A and A ) = O. 

    Indeed, any proposition is either a particular case of A  or compatible with A; therefore, 
because of the principle of uniqueness1, (A or A ) = �. On the other hand, since A  is the join 

of propositions incompatible with A, (A and A ) = O.  

    Theorem 1.6. A negation of proposition A  is equivalent with A: neg( A ) = A. 
    It is sufficient to prove that A = A1 always follows from  
 
    (A or B) = (A1 or B), (A and B) = (A1 and B). 
 
Indeed, however,  
 
    A1 = [A1 and (B or A1)] = [A1 and (B or A)] = 
[(A1 and B) or ( A1 and A)] = [(A and B) or (A1 and A)] = 
    [A and (B or A1)] = [A and (B or A)] = A. 
 
    Definition. If (A or B) = B,  
then the join C of all the propositions which are particular cases of B and  incompatible with 

A is called the complement of A to B. Thus, C = (B and A  ). Conversely, A is a complement 
of C to B. Indeed, (A or C) = B, (A and C) = O. Suppose that A1 is a complement of C to B, 
then we would also have (A1 or C) = B, (A1 and C) = O and A = A1. Therefore, A = (B and 

C ). 
    Corollary 1.18. Neg (A and B) = ( A  or B ). Indeed,  
 

    {[(A and B) or A ] or B } = [(� and B) or B ] = �, 



    [(A and B) and ( A  or B )] = [A and B and A ) or (A and B and B ) = O. 
 
    1.1.9. Solving Symbolic Equations 
    The principles explicated above allow us to solve, or to convince us in the insolubility of 
relations between propositions connected by symbols or and and. It is easy to see that any 
expression including propositions x and x  is reducible, on the strength of the rules stated 
above, to [A or (a and x) or (b and x )]. 
    I call a symbolic equation in one unknown, x, a statement that two expressions, at least one 
of which depends on this x, are equivalent. Thus, any {such} equation is reducible to 
 
    [A or (a and x) or (b and x )] = [A) or (a) and x) or (b) and x )].                  (4) 
 
This equation is in general equivalent to two different equations which should be satisfied at 
the same time: 
 
    {[A or (a and x) or (b and x )]  

    or [ A'  and Neg (a) and x) and (b) and x )]} = �                                         (5) 
 
and 
 
    {[A or (a and x) or (b and x )]  

    or [ A � and Neg (a) and x) and Neg (b) and x )]}= �.                               (6) 
Indeed, equation (5) expresses the fact that the right side of (4) is a particular case of its left 
side, whereas equation (6) reflects the converse statement. By means of{one of the} 
theorem{s}of distributivity, equation (5) is transformed into 
 

    <[A or ( A ) and a ′  and b))] or {[a or ( A ) and a ′ )] and x} or 

    {[b or ( A ) and b)) and x }> = �                                                             (5bis) 
 
so that each of the equations (5) and (6) will be reduced to 
 
    [B or (C and x) or (D and x )] = �                                                              (7) 
 
which means that 
 
    [(B or C or D) and (B or x or D) and (B or C or x)] = � 
 
and 
 
    (B or C or D) = �, (B or D or x) = �, (B or C or x ) = �.                 (8�; 8�; 9) 
 
    Equality (8�) is a necessary and sufficient condition 2 for the solvability of equation (7). 
Indeed, the equality (8�) means that 
 

    [x or ( B  and D )] = x.                                                                               (10) 
 
In the same way the equality (9) leads to 
 
    [x or (B or C)] = (B or C),                                                                          (11) 
 



but for the simultaneous realization of (10) and (11) it is necessary and sufficient that 
 

    [( B  and D ) or (B or C)] = (B or C) 
 
or 
 

    [ D  or (B or C)] = (B or C).                                                                       (12) 
 
which is equivalent to (8�). 
    If condition (12) or its equivalent (8�) holds, then the equations (10) and (11) mean that x is 

a particular case of (B or C) which includes ( B  and D ); or, otherwise, they mean that 
 

    x = {( B  and D ) or [(B or C) and �]},                                                      (13) 
 
with � being an arbitrary proposition, is the general solution of equation (7). In particular, 
condition (8�) is satisfied if (B or D) = �; then, the equation (7) becomes   
 
    [B or (C and x) or x ] = � 
 
whose solution is x = [(B or C) and �]. 
    Equation (7) will be an identity if and only if (B or D) = �, (B or C) = �. On the contrary, 

this equation will admit only one solution only if ( B  and D ) = (B or C), and, therefore, only 
if B = O and C = D . We thus obtain 
    Corollary 1.19. The equation 
 

    [(C and x) or (C  and x )] = � 
 
has x = C as its only solution. 
    I shall not dwell further on the application of the above rules of the symbolic calculus, cf. 
Schröder (1890 – 1895). It is more important for us to pass on to the proof of their 
independence and the lack of contradictions between them. 
 
    1.2. Consistency and Independence of the Axioms 

    1.2.1. A System of Numbers Corresponding to a Totality of Propositions 
    I do not aim at justifying arithmetic; on the contrary, for me, an integer and its main 
properties are simple notions lacking contradictions. For establishing the consistency of the 
proposed system of definitions and axioms it will therefore be sufficient to construct a system 
of numbers satisfying all the axioms; and, for proving independence, I shall construct 
systems of numbers obeying some axioms but violating the other ones. 
    To this end let us suppose that our symbols A, B, … {now} denote some integers and that 
the sign of equivalence ( = ) means equality; then, the join (A or B) is the greatest (from 
among the numbers considered) common divisor of the numbers A and B. It follows from the 
properties of the g.c.d. that the associative and commutative principles as well as the 
principle of tautology are obeyed here. Nothing prevents us from choosing our numbers in 
such a manner that the common divisor of any two of them is always included there; for 
example, we can choose 1, 2 and 3. Thus the constructive principle will also hold. On the 
contrary, it will be violated had we chosen the system 2, 3 and 4; for restoring the 
constructive principle it would have been necessary to adduce here the number 1. The 
existence of a true proposition, i.e., of the common divisor of all the given numbers, follows, 
as we saw, from this principle 3. But the existence of a false proposition imposes a new 



restriction on our system of numbers because a multiple of all the given numbers should 
correspond to it. Therefore, the system 1, 2, 3 lacks a number representing a false 
proposition, and for the axiom of its existence to hold we ought to adduce here either the 
number 6 or any of its multiples. 
 
    1.2.2. Independence of the Restrictive Principle 
    The least number from among the multiples of the numbers A and B belonging to a given 
system of numbers corresponds to the combination (A and B) of two propositions, A and B. 
Since the false proposition, that is a multiple of all the given numbers, exists, this 
combination always exists in a given system and satisfies, as it was established, the 
commutative and the associative principles. However, in order to prove the theorems of 
distributivity I introduced one more axiom, called the restrictive principle: If  � is a 
particular case of (A or B), it must be a join of some particular case of  A with some 
particular case of B. For our system of numbers the same principle states that If � is a 
multiple of the g.c.d. of A and  B, it is the g.c.d. of some two multiples of A and B.  
    The system of numbers 
 

     
nk

n

kk
ppp ...21

21                                                                                                                                            (14) 

 

where pi are some primes and ki are all the non-negative integers not exceeding some given 
numbers ci ,satisfies this condition. On the contrary, if we choose, for example, a system 
 
    1, p1, p2, …, pn, p1 p2 … pn, n * 3                                                            (15) 
 
obeying all the previous conditions excepting the last one, the restrictive principle will not 
hold because the g.c.d. of p1 and p2 is 1 but p3 is not the g.c.d. of such numbers as x1p1 and 
x2p2 belonging to our system. 
 
    1.2.3. The Principle of Uniqueness and Perfect Totalities    
    It remains finally to consider the principle of uniqueness by whose means we established 
the concept of negation. This principle expresses the fact that 1 is the only number having, 
together with any {other} number, a least multiple differing from the general multiple of all 
the numbers. The necessary and sufficient condition for it to be realized along with all the 
previous principles consists in choosing, in §1.2.2, all ci = 1. Indeed, the least multiple of the 

numbers N = n

nppp
ααα  ...21

21  and L = nk

n

kk
ppp  ...21

21  will be a number of the same kind with 

exponents hi equal to the greatest of �i and ki The principle of uniqueness means that all �i = 
0 if  
 
    �(ci – hi) > 0 follows from �(ci – ki) > 0. 
 
The principle will therefore hold if all the ci = 1, but will not be satisfied if ci > 1 for at least 
one i 4. 
    It is necessary to note that the restrictive principle is also independent of the principle of 
uniqueness. This is shown by the example (15) where the latter obviously persists whereas 
the former, as we proved, is violated. 
    And so, the axioms, which we assumed consecutively, are independent and do not 
contradict each other because the system of propositions subordinated to them corresponds 
to a system of integers 
 
    1, p1, p2, …, pk,, p1 p2, …, p1 p2 p3, …, p1 p2 … pk 



 
devoid of quadratic divisors and representing all the possible products of primes p1, p2, …, 
pk. 
    We shall call a totality of propositions satisfying all our axioms perfect, and we shall 
hence consider only such totalities. 
    Note. My proof that the introduced axioms are independent, i.e., that they cannot be 
consecutively derived from the other ones {from those previously formulated}, should hardly 
cause any objections in principle. On the contrary, the issue of the consistency of the axioms 
demands explanation. If, for example, we choose the system of numbers 
 
     1, 2, 3, 5, 6, 10, 15, 30 
 
and express in words all the relations of divisibility between them, then, as it is possible to 
check directly, we obtain a series of statements not contradicting one another (we do not 
arrive at equalities of unequal numbers). Here, the meaning of the words “least multiple” and 
“greatest divisor”, as well as of those general considerations from which our statements 
followed, are irrelevant for us. It is only important that we have here a definite system of 
objects whose interrelations satisfy all the axioms. For us, the use of numbers is therefore 
only a convenient and obvious method for realizing the system of symbols obeying all the 
axioms. For convincing ourselves in the existence of systems with an arbitrary great number 
of propositions we only need the concept of counting as a biunique correspondence between 
elements of two totalities and the principle of mathematical induction. 
    The independence of axioms 1.2 – 1.4 of §1.1.2 should also be indicated. Without 
dwelling on this issue which is of no consequence for the sequel, I restrict my remarks to the 
following. For a finite totality the principle of tautology 1.4 occupies a special place because 
it is necessary that any operation performed a finite number of times on any given symbol 
should return us to the same symbol. It is therefore always possible to replace the symbol or 
by (or)n, – that is, by a repetition of this operation n times, – so that this principle will hold. 
    At the same time, this remark allows us to construct easily a system of numbers for which 
the principle (d) is not satisfied. Indeed, let us choose the numbers 
 
    1, 2, – 2, 3, – 3, 6. 
 
Let the operation or for positive numbers preserve its previous meaning; otherwise, however, 
suppose that it leads to their greatest divisor taken with sign ( + ) if both numbers are 
negative and with sign ( – ) if their signs are different. Then, since the number – 1 is lacking 
in our totality, let us replace it by 1. This leads to the violation of the principle of tautology 
because (– 2 or – 2) = 2 but all the other principles persist without contradictions. A number 
of theorems will naturally be lost here, and, in particular, the uniqueness of the negation of 
any proposition will not follow from the principle of uniqueness. 
 
    1.3. The Structure and the Transformation of Finite Perfect Totalities of Propositions 

    1.3.1. Elementary Propositions 
    Any proposition of a totality differing from O and having no other particular cases 
excepting itself and O is called elementary. 
    Corollary 1.20. Any proposition of a perfect totality has as its particular case at least one 
elementary proposition. Indeed, if A ' O is not an elementary proposition, it has a particular 
case B ' O differing from A; if B is not an elementary proposition, it has a particular case C, 
etc. Since the number of the propositions is finite, we thus ought to arrive finally at an 
elementary proposition.  



    Corollary 1.21. If a perfect totality has two different elementary propositions, they are 
incompatible. 
    Theorem 1.7. Any proposition excepting O is a join of elementary propositions. Indeed, if 
� is an elementary proposition and a particular case of some proposition A, then A = (� or A�) 
where A� is the supplement of � to A. If A� is an elementary proposition, the theorem holds 
for A; otherwise, A� has an elementary proposition � and A = (� or � or A� �) where A� � is the 
supplement of � to A�. When continuing in the same manner, we will finally arrive at the last 
elementary proposition of A so that A = (� or � or … or 	) where �, �, …, 	 are elementary 
propositions. 
    Corollary 1.22. If a totality has n elementary propositions, the general number of non-
equivalent propositions is 2n. Indeed, if A contains at least one elementary proposition not 
included in B, then A ' B. Consequently, the number of different propositions excluding O is 
equal to the sum of the appropriate binomial coefficients, or to 2n – 1. And, with O now 
added 5, the total number of propositions will be 2n.  
    Theorem 1.8. There exist perfect totalities with any number n of elementary propositions. 
Indeed, if we have the impossible proposition O and n incompatible propositions a1, a2, …, 
an,, we may consider all their possible joins 2, 3, … at a time as propositions. All the axioms 
will then hold; in particular, the negation of each of the propositions will be the join of the 
other given propositions.   
    Note. A direct introduction of elementary propositions could have simplified the 
justification of the theory of finite perfect totalities; such a manner of exposition should be 
nevertheless rejected when bearing in mind infinite totalities (below). 
 
    1.3.2. Decomposition and Connection of Perfect Totalities     
    When isolating some k incompatible and solely possible propositions B1, B2, …, Bk and all 
their joins, whose number (including O and �) is 2k, from a given perfect totality H, we form 
a new perfect totality G calling it a part of H. The propositions Bi will be the elementary 
propositions of G.  
    Let us choose some other series of incompatible and solely possible propositions C1, C2, 
…, Cl  and compose out of them a new totality G�. The totalities G and G) are called 
connected if there exists at least one pair of propositions Bi and Cj incompatible one with 
another: (Bi and Cj) = O. And, if (Bi and Cj) � O for any values of i and j, these totalities are 
unconnected or separate. 
    If no propositions are included in H, excepting those which are obtained when the 
propositions of G and G) are combined, this totality is called the connection of the two other 
totalities. In the same way H can be decomposed into 3, 4, etc parts and it will then be called 
their connection. 
    Note that a totality H can be decomposed into separate (unconnected) parts if and only if 
the number n of its elementary propositions is a composite  rather than a prime. Indeed, if k 
elementary propositions Bi from totality G are always compatible with any of the l 
elementary propositions Cj from G), then  (Bi and Cj) will constitute kl elementary 
propositions of the connection of G and G).   
    If, for example, as when throwing a die, we have six elementary propositions A1, A2, …, 
A6, we can form two separate parts: a totality G with elementary propositions (A1 or A2), (A3 
or A4), (A5 or A6) and totality G� with elementary propositions (A1 or A3 or A5) and (A2 or A4 
or A6). If we compile a totality G+ consisting of propositions (A1 or A2 or A3) and (A4 or A5 or 
A6) instead of G), then G and G� will be connected with their connection being not H but only 
its part with elementary propositions (A1 or A2), A3, A4, (A5 or A6). 
    It is always possible to form a perfect totality of propositions H out of two such totalities G 
and G� with elementary propositions being all the combinations (Bi and Cj) of the elementary 
propositions Bi from G with the elementary propositions Cj from G�. Some of the 



propositions (Bi and Cj) can be assumed equivalent to O, then G and G� will be connected; it 
is only necessary that at least one of the combinations (Bi and Cj) including a definite 
proposition Bi will not be O, and that the same will also apply to one combination including a 
definite Cj because 
 
    [(Bi and C1) or (Bi and C2) or … or (Bi and Cl)] = Bi. 
 
    Suppose that, for example, G and G� are composed of three elementary propositions each, 
B1, B2 and B3 and C1, C2 and C3 respectively, and that among the combinations of these 
propositions (B1 and C1) = O and (B2 and C2) = O. Then the unification [soedinenie] H of G and 
G� will consist of the seven others (3·3 – 2) elementary propositions differing from O. 
Denoting them by  
  
    A1 = (B1 and C2), A2 = (B1 and C3), A3 = (B2 and C1), A4 = (B2 and C3), 
    A5 = (B3 and C1), A6 = (B3 and C2), A7 = (B3 and C3), 
 
we see that  
 
    B1 = (A1 or A2), B2 = (A3 or A4), B3 = (A5 or A6 or A7) 
 
are the elements of G and that 
 
    C1 = (A3 or A5), C2 = (A1 or A6), C3 = (A2 or A4 or A7) 
 
constitute G. 
 
    1.3.3. The Transformation of Perfect Totalities. Realization of a Proposition 
    Theorem 1.9. A given perfect totality can be transformed into another perfect totality of 
propositions by introducing the condition that a definite proposition  A not equivalent to O is 
�: A = �. Such a proposition is called the realization of proposition A (or the occurrence of 
event A). 

    Indeed, if A = �, A  as well as all its particular cases are equivalent to  O.  Therefore, two 
propositions, B and C, having previously been mutually supplementary to A, become mutual 
negations and the obtained totality is therefore perfect. This transformation would have only 
been impossible if A = O because then all propositions become equivalent to one and the 
same proposition, O = �, which contradicts the assumption made in the very beginning. This 
transformation is obviously irreversible because a totality cannot be deprived of the true 
proposition. 
    Theorem 1.10. Each transformation of a totality of propositions consisting of introducing 
the condition A = B is just a realization of some proposition C. It is possible if and only if A 
and B are not mutual negations.  
    Indeed, for A = B it is necessary and sufficient (§1.1.9, Corollary 1.19) that 
 

    C = [(A and B) or ( A  and B )] = �, QED. 
 
    Remark. If A and B are incompatible, then 
 

    C = ( A  and B ) = �; that is A  = B  = � and therefore A = B = O. 
                   
    It should be noted that there exists an essential difference between a unification of two 
totalities and the transformation called realization. A unification of (connected or 



unconnected) totalities does not introduce any changes into the substance of the given 
propositions. On the contrary, a realization of a proposition changes its substance; namely, it 
introduces a new condition of equivalence. 
    For connected totalities their connection, expressed by conditions of the type (Bi and Ck) = 
O, should not result in a change of the substance of any of the given propositions Bi; and for 
each k the condition above is impossible. However, the establishment of that condition can 
also be considered as a transformation of the totality obtained as a unification of unconnected 
totalities. Thus, when totalities are united, one or another connection between them leads to 
complicated and differing in their substance totalities having the same initial components. 
 
    Chapter 2. The Probabilities of the Propositions of Finite Totalities 

    2.1. Axioms and Main Theorems of the Theory of Probability 

    2.1.1. Axioms 
    As we saw, equivalent propositions can be expressed by one and the same symbol or 
numerical coefficient. We thus obtained a peculiar calculus of propositions that might find 
application in pure logic. The main new assumption of probability theory is the thesis that 
one and the same numerical coefficient called mathematical probability can sometimes be 
also assigned to non-equivalent propositions. This coefficient should not change when we 
connect another totality to the given one 6. The probabilities of the propositions of a given 
totality can only vary when the totality is transformed (§1.3) by the realization of some 
proposition. We will express the statement that the probability of proposition A is equal to 
that of proposition B (Prob A = Prob B), or that A and B are equally possible, by a short 
formula A ~ B. Consequently, A ~ B and A ~ C lead to B ~ C. 
    If A = B then, all the more, A ~ B. Therefore, in particular, all true propositions have one 
and the same probability (certainty) and all the impossible propositions also have one and 
the same probability (impossibility). 
    A totality of propositions where a definite mathematical probability is assigned to each of 
them is called arithmetized. If the numerical coefficient which is the mathematical 
probability of A is not equal to another numerical coefficient, – to the probability of B, – then 
one of them is larger than the other one and for the sake of brevity we will express this by the 
inequalities A > B or B > A. The following axioms are the only rules which should be obeyed 
when arithmetizing a finite totality of propositions. 
    Axiom 2.1 (on the certain proposition). If A � � then � > A. 
    Corollary 2.1. � > O. 
    Axiom 2.2 (on incompatible propositions). a) If A ~ A1, B ~ B1, and, in addition, (A and B) 
= (A1 and B1) = O, then (A or B) ~ (A1 or B1). 
    b) If, however, A ~ A1, B > B1, then (A or B) > (A1 or B1). 

    Corollary 2.2. If A ' O, then A > O. Indeed, ( A  or A) = �, ( A  or O) = A , but � > A , 
therefore A > O.    

    Corollary 2.3. If A is a particular case of B and ( A  and B) � O, then B > A. Indeed,  
 

    B = [A or ( A  and B)], A = (A or O), 
 

and, since ( A  and B) > O, B > A. 
 
    2.1.2. Independence and Consistency of the Axioms 
    These axioms obviously do not follow from the previously established preliminary axioms 
because nothing could gave prevented us from assuming, for example, that, in spite of Axiom 
2.1, all propositions are equally possible; or, on the contrary, from stating that, in spite of 
Axiom 2.2, only one pair of non-equivalent propositions are equally possible so that, given     



A ~ A1 and B = B1, we will have (A or B) > or < (A1 or B). 
    Let us show that Axiom 2.1 is not a corollary of both parts of Axiom 2.2 either. To this 
end we choose some totality formed by means of three elementary propositions a, b and c; 
suppose that their probabilities are 1, – 1 and – 2 respectively and assume finally that the 
impossible proposition has probability 0. We shall obtain quite definite values for the 
probability of each proposition of the totality if, adhering to Axiom 2.2, we assume in 
particular that Prob (A or B) = Prob A + Prob B when (A or B) = O. It will occur that (a or b) 
~ O, c ~ �, Prob � = Prob c = – 2, (a or c) ~ b, Prob (a or c )  =  Prob b = – 1, Prob (b or c) = 
– 3. It is obvious that neither can the first part of Axiom 2.2 be a corollary of Axiom 2.1 and 
of the second part of Axiom 2.2 because it is impossible to obtain an equality out of a finite 
number of inequalities. 
    Neither is the second part of Axiom 2.2 a corollary of its first part and of Axiom 2.1. 
Indeed, let us choose some perfect totality consisting of n elementary propositions A1, A2, …, 
An and agree to consider them equally possible. Then all their joins taken two at a time, and, 
in general, all their joins formed out of k elementary propositions, will also be equally 
possible. This conclusion follows only from Axiom 2.2a. Assuming that Axiom 2.1 is also 
valid, we ought to add that, if k ' l, a join of k propositions cannot be equipossible with the 
join of l propositions. Any function f(k) satisfying the condition{s} f(k) � f(l) if the integers k 
and l are not equal and f(n) > f(k) if k = n – 1, …, 1, 0 can be the value of the probability of 
the join of k propositions. Without contradicting our assumptions we may presume, for 
example, that f(1) < f(2) < … < f(n – 1) < f(0) < f(n). But then Axiom 2.2b will not hold 
because on its strength we should have obtained   
 
    (A1 or A2) < (A1 or O) = A1 

 

since A2 < O because f(1) < f(0) whereas f(2) > f(1), i.e. (A1 or A2) > A1.  
    On the contrary, if we assume that f(0) < f(1) < f(2) < … < f(n), then both Axioms 2.1, 
2.2a, and 2.2b will be fulfilled. We conclude that our new axioms are not only independent 
one from another, but also consistent with each other. They lead to the following main 
theorem of the theory of probability. 
 
    2.1.3. The Main Theorem  
    Theorem 2.1. If propositions A and B are joins of some m (m1) propositions chosen out of 
some n (n1) incompatible, solely and equally possible propositions, then A ~ B when m/n = 
m1/n1.  
    Indeed, let m n = m1/n1 = µ/� where the last-written fraction is irreducible. Then 
 
    m = kµ, n = k�, m1 = k1µ, n1 = k1� 
 
where k and k1 are integers. Denote by 
 
    c1, c2, …, cm, …, cn 

 

incompatible, solely and equally possible propositions the first m of which have A as their 
join. Supposing also that 
 
    d1 = (c1 or c2 or … or ck), d2 = (ck + 1 or … or c2k) etc, 
 
we compile � incompatible solely and equally possible propositions (Axiom 2.2a) d1, d2, …, 
d� the first µ of which have A as their join. In the same way, denoting by �1, �2, …, �n 
incompatible, solely and equally possible propositions, m1 of which have B as their join, we 



compile � incompatible, solely and equally possible propositions �1, �2, …, ��, µ of which 
have B as their join. But it is obvious that di ~ ,k because, when assuming for example that d1 
> �1, we would have obtained that always di < �i and, in accord with Axiom 2.2b, � > � 
which is impossible. But then, d1 ~ �1, d2 ~ �2 etc, hence 
 
    (d1 or d2 or … or dµ) ~ (�1 or �2 or … or �µ); 
 
that is, A ~ B, QED. 
     
    2.1.4. Definition of Mathematical Probability 
    The coefficient, which we called the mathematical probability of A, is thus quite 
determined by the fraction m/n where n is the number of solely and equally possible 
incompatible propositions m of which have A as their join. Consequently, this coefficient is a 
function of m/n which we denote by �(m/n). On the basis of the above, � should be 
increasing and this necessary condition is at the same time sufficient for satisfying all the 
assumed axioms if only the function  �(m/n) can be fixed once and forever for all the 
totalities that might be added to the given one. Since such a function can be chosen 
arbitrarily, we assume its simplest form: �(m n) = m/n so that m/n is called the mathematical 
probability of A. 
However, in accord with the main axioms we could have just as well chosen  m2/n2, m/(n – 
m), etc. The assumption of one or another verbal definition of probability would have 
obviously influenced the conclusions of probability theory just as little as a change of a unit 
of measure influences the inferences of geometry or mechanics. Only the form but not the 
substance of the theorems would have changed; we would have explicated the theory of 
probability in a new terminology rather than obtained a new theory. The agreement that I am 
introducing here is therefore of a purely technical nature 7 as contrasted with the case of the 
main axioms assumed above and characterizing the essence of the notion of probability: their 
violation would have, on the contrary, utterly changed the substance of probability theory. 
    Note. Together with Borel (1914, p. 58) we might have called the fraction  m/(n – m), – the 
ratio of the number of the favorable cases to the number of unfavorable cases; or, the 
expression (m/n )/[(n – m)/n], – the ratio of the probability of a proposition to that of its 
negation, – the relative probability of the proposition. 
    Remark. When adding a new totality to the given one, we must, and we can always 
distribute, in accord with the axioms, the values of the probabilities of the newly introduced 
propositions in such a manner that the given propositions will still have the same probability 
{probabilities} as they had in the original totality. Indeed, suppose that the elementary 
propositions A1, A2, …, An in the given totality are equally possible; consequently, after 
choosing the function �(m/n) all the propositions of the totality acquire quite definite values. 
Add the second totality formed of elementary propositions B1, B2, …, Bk and let us agree to 
consider that, for example, all the combinations (Ai and Bj) in the united totality are also 
equally possible. If the function � persists all the propositions of the united totality will 
obtain definite probabilities and any join of the type (A1 or A2 or … or Am) previously having 
probability �(m/n) and regarded as a join  
 
    [(A1 and B1) or (A1 and B2) or … or (Am and Bk)] 
 
must now have probability �(km/kn) equal to its previous value, �(m/n). And all the 
propositions Bj will also be equally possible. 
    We may thus agree to consider any incompatible and solely possible propositions 
 
    A1, A2, …, Ak                                                                                                                    (16)  



 
included in a given totality as equally possible. After this, those and only those propositions 
which are joins of (16), or, otherwise, which are included into a totality G as its elementary 
propositions, obtain definite probabilities. Then another group of solely possible and 
incompatible propositions B1, B2, …, Bl can also be considered as equally possible if the 
totality G� composed of them is not connected with G, etc. 
    Indeed, no proposition � excepting � is a join of the elementary propositions of G and G) 
at the same time. If, however, � and � are two incompatible with each other propositions of 
G, and �� and �� are similar propositions of G�, then, on the strength of the definition of 
probability, the agreement that � ~ ��, � ~ �� will lead to (� or �) ~ (�� or ��) and � ~ ��, and � 
> �� will imply (� or �) > (�� or ��) so that our axioms will not be violated. 
    As to the combinations and joins of compatible propositions, their probabilities are not 
quite determined and a new agreement is necessary (see below) for determining them. In any 
case, I have indicated above the possibility of such an agreement. 
 
    2.1.5. The Addition Theorem  
    The Axiom 2.2a can be formulated otherwise: If p is the probability of A, and p1, the 
probability of B, the probability of (A or B) for A and B incompatible one with another is a 
function f(p; p1). The type of f depends on the choice of the function �(m/n). It is not difficult 
to derive a general connection between them, but after the above statements it is quite 
sufficient to restrict our attention to the case of �(m/n) = m/n which leads, as we shall see, to  
 
    f(p; p1) = p + p1.                                                                                        (17) 
 
    Conversely, if we fix the function f, which on the strength of the axioms should necessarily 
be increasing, symmetric and satisfying the equation 
 
    f[p; f(p1; p2)] = f[p1; f(p1; p2)], 
 
we will obtain the appropriate �; in particular, from (17) it is possible to derive �(m/n) = 
(m/n)H where H is an arbitrary positive number. 
    Theorem 2.2. If two incompatible propositions A and B have probabilities p and p1 
respectively, then the proposition (A or B) has probability (p + p1).  
    This theorem is usually proved (Markov 1913, pp. 11 and 172) for incompatible joins of 
solely and equally possible incompatible propositions A and B, i.e., when a direct application 
of the definition of probability makes it hardly necessary. In actual fact, the theorem is 
important exactly when it cannot be justified. For the sake of completeness of the proof we 
only need to cite Axiom 2.2 once more: to refer to its first part if both numbers p and p1 are 
rational, and to its second part if they are irrational 8. 
    Indeed, let us assume at first that p and p1 are rational so that p = m/n and  
p1 = m1/n1. When adding some totality to the initial one, unconnected with it and containing 
nn1 equally possible elementary propositions, proposition A), which is a join of some mn1 of 
these, will have the same probability mn1/nn1 = m/n = p as A whereas B), which is a join of 
some other 9 m1n elementary propositions, will have the same probability m1n/n1n = m1/n1 = 
p1 as B. In this case, (A) or B)) will be a join of (m1n + n1m) out of nn1 elementary 
propositions and therefore, in accord with the definition of probability,  
 
    (m1n + n1m)/nn1 = m1/n1 + m/n = p1 + p 
 
will be the probability of (A) or B)), and, on the strength of Axiom 2.2a, it will also be the 
probability of (A or B), QED. 



    Suppose now that p and p1 (or only one of them) are (is) irrational. Then p is the limit of 
rational numbers 	1 < 	2 < … < 	n < … and µ1 > µ2 > … > µn > …, and p1, the limit of 
rational numbers �1 < �2 < … < �n < … and �1 > �2 > … > �n > …  
    Denote some proposition having probability 	n by An, and, by Bn,, an incompatible 
proposition 10 having probability �n. Then, because of Axiom 2.2b, we have (An or Bn) < (A 
or B), that is, 	n = �n < Prob (A or B). Just as above, we denote the propositions having 
probabilities µn and �n by A)n and B)n respectively. In accord with the same axiom we will 
obtain Prob (A or B) < µn + �n, and, on the strength of the generally known theorem on 
limits, Prob (A or B) = p + p1, QED. 
 
    2.1.6. A Corollary  
    Corollary 2.4. It follows that a necessary and sufficient condition for numbers p1, p2, …, to 
be, respectively, probabilities of propositions A1, A2, … of a given finite totality is that the 
probability of a join of two or several incompatible propositions is equal to the sum of their 
probabilities; that the certain proposition has probability 1 (and, consequently, that the 
impossible proposition has probability 0); and that all the other propositions have  
probabilities contained between 0 and 1 (0 < p < 1). 
    In particular, it follows that if two totalities, G and G�, are unconnected, the probabilities 
assigned to the propositions of G are not logically connected with the probabilities of the 
propositions of G�. In other words, the arithmetization of one totality does not depend on the 
arithmetization of the other one. On the contrary, if G and G� are connected, we cannot assign 
quite arbitrary probabilities to the propositions of G� after establishing the probabilities of the 
propositions of G. 
    The probabilities of some propositions of a totality are not always given, but it is then only 
necessary to leave room for choosing the yet indeterminate probabilities in such a manner 
that the abovementioned main condition be held 11. 
 
    2.2. Combination and Realization of Propositions 

    2.2.1. Combination of Propositions 
    The probability of (A and B) obviously cannot at all be a definite function of the 
probabilities of A and B. Suffice it to note that, if A and B are incompatible, then (A and B) ~ 
O; on the contrary, if A = B, then (A and B) ~ A. The only general statement that we may 

formulate here is that Prob (A and B) + Prob (A and B ) = Prob A and that, specifically, Prob 
(A and B) 
 Prob A. 
     We may always assume that Prob (A and B) = 	pp1 where p and p1 represent the 
probabilities of A and B respectively and 	 is called the coefficient of compatibility of A and 
B In particular, 	 = 0 if these propositions are incompatible. 
    Suppose that we have an arithmetized totality composed of elementary propositions  A1, 
A2, …, An whose probabilities p1, p2, …, pn satisfy the condition p1 + p2 + … + pn = 1. 

Adding to it the totality 0, C, C , and � where Prob C = p, Prob C  = q, p + q = 1, we 
arithmetize the united totality by assuming that Prob (A1 and C) = 	1p1p, Prob (A2 and C) = 
	2p2p, …, Prob (An and C) = 	npnp where 0 
 	i 
 1/p and �	ipi = 1. Then 
 
    Prob (Ai and C ) = pi – 	ipip = pi(1 – 	ip) 
 

so that, denoting the coefficient of compatibility of Ai and C  by µ i, we have 
 
    	ip + µ iq = 1. 
 



For unconnected totalities we would have gotten 	i, µ i > 0. The case of independent totalities 
deserves special attention. 
 
    2.2.2. Independent Propositions 
    Proposition A is called independent of B if the coefficient of compatibility of A and B is 

equal to the same coefficient of A and B . 
    Theorem 2.3. If proposition A is independent of B, then proposition B is independent of A 
and the coefficient of compatibility of A and B is unity. 
    Indeed, if 
 

    Prob (A and B) = 	p1p, Prob (A and B ) = 	p1q, p + q = 1, 
 
then 
 

    Prob (A and B) + Prob (A and B ) = 	p1 = p1 

 

so that 	 = 1. But then 
 

    Prob ( A  and B) = p – p1p = q1p 
 
which means that B is independent of A. 
    Corollary 2.5. If propositions A and A1 are incompatible one with another, and both 
independent of B, then (A or A1) is also independent of B. In general, if the coefficients of 
compatibility of A and B, and A1 and B are both equal to 	, then the same coefficient of (A or 
A1) and B is also 	. If all the elementary propositions of totality H are independent of those of 
totality H1, then each proposition of H is always independent of each of the propositions of 
H1. Such two totalities are called independent of one another. Obviously, only unconnected 
totalities can be, but nevertheless not always are independent. 
    Without dwelling on the further development of these considerations, we shall only briefly 
indicate how the independence of n propositions A1, A2, …, An having probabilities p1, p2, …, 
pn respectively is defined. These are called pairwise independent if the combination (Ai and 
Ak) has probability pipk; they are called independent by threes if each combination (Ai and Ak 
and Al) has probability pipkpl   etc. If the given propositions are independent pairwise, by 
threes, …, and all together, they are called (absolutely) independent. Consequently, the 
number of conditions needed for absolute independence of n propositions is equal to the sum 
of the appropriate binomial coefficients, i.e., to 2n – n – 1, and it can be shown that none of 
them is a corollary of the other ones 12. For example, if three propositions are pairwise 
independent it does not follow that they are absolutely independent.  
     
    2.2.3. Realization of Propositions 
    The above shows that the calculation of the probabilities of combinations of propositions 
does not demand any new assumptions. All the most important chapters of probability theory 
(the Bernoulli theorem and all of its generalizations known as the law of large numbers) 
therefore follow exclusively from the axioms introduced by us. However, it is often more 
convenient for practice to apply another notion rather than the coefficient of compatibility, – 
namely, the probability of a proposition under the condition that another one had happened. It 
is essentially necessary only for constructing the chapter on the probability of hypotheses. 
Accordingly, we introduce a new assumption that supplements the above (§1.3.3) definition 
of transforming a totality called there the realization of a proposition.  



    Axiom 2.3 of realization. When proposition A of a given totality H is realized, any 
proposition �, having previously been a particular case of A, acquires in the transformed 
totality a probability that depends only on the probabilities of A and � in the given totality H. 
    Thus, by definition, the probability �A of the proposition � after A was realized is 
 
    �A = f(Prob �; Prob A).                                                                              (18) 
 
The definition of the realization of proposition A, as provided in §1.3.3, determined only the 
logical structure of the transformed totality; and, since this does not completely determine the 
probabilities of propositions, our new assumption 13 cannot be a corollary of the previous 
ones. 
    Let us now show that, if only the function f in formula (18) is 14 
 
    �A = Prob �/Prob A,                                                                                   (19) 
 
the axiom of realization does not contradict those assumed previously. Indeed, since the 
structure of the propositions remaining in the transformed totality is the same as it was in the 
initial one, 
 
    f(Prob � + Prob �; Prob A) = f(Prob �; Prob A) + f(Prob �; Prob A ). 
 
However, as is well known 15, for this relation to hold it is necessary that 
 
    f(Prob �; Prob A) = (Prob �) F(Prob A). 
 
    On the other hand, AA = 1 in accord with the condition; therefore,  
 
    (Prob A)F(Prob A) = 1 
 
and (19) holds. At the same time we see that the function �A determined by us implies that all 
the propositions of the transformed totality acquire probabilities satisfying the condition of 
arithmetization (§2.1.6) if only the probabilities of the propositions in the initial totality obey 
the same condition. We see therefore that this function does not contradict the main axioms. 
 
    2.2.4. The Multiplication Theorem  
    Theorem 2.4. The probability of (A and B) is equal to the probability of A multiplied by 
the probability of B given that A has occurred. 
    Indeed, after A is realized, the proposition (A and B) is equivalent to  
(� and B) = B and 
 
    Prob (A and B) = (A and B)A = BA = Prob (A and B)/Prob A. 
 
Consequently, Prob (A and B) = (Prob A) BA, QED. 
    Note. The multiplication theorem implies, specifically, that if � is a particular case of A, 
its probability only depends on the probability of A and on the probability of � after A has 
occurred. Or, in an equivalent form: If � and - are particular cases of A and B respectively, 
then their probabilities are equal to each other if A and B are equally probable and the 
probability of � after A has occurred is equal to the probability of � after B has occurred. 
    This statement can replace the axiom of realization because the multiplication theorem can 
be derived therefrom similarly to the above. The introduction of the notion of probability of a 



proposition given that a second one has occurred allows us to offer another definition of 
independence. 
    If the probability of B after A has occurred is equal to its initial probability, then B is 
independent of A. 
    Corollary 2.6. If B is independent of A, then A is independent of B and  
Prob (A and B) = Prob A�Prob B.  
 
    2.2.5. The Bayes Theorem  
    Theorem 2.5. The probability of A after B has occurred is 
 
    AB = (Prob A)�BA/Prob B. 
 
Indeed, 
 
    AB = Prob (A and B)/Prob B = (Prob A) BA/Prob B. 
 
The axiom of realization (§2.2.3) is the sole basis of the Bayes theorem and its corollaries 
whose derivation presents no difficulties in principle. 
 
    Chapter 3. Infinite Totalities of Propositions 

    3.1. Extension of the Preliminary Axioms onto Infinite Totalities 

    3.1.1. Perfect Totalities 
    The main condition that we ought to introduce here is that the rules of the symbolic 
calculus established for finite totalities (§1.1) must persist should we consider the 
propositions of a finite totality as belonging to some infinite totality. A totality (finite or 
otherwise) of propositions to which all these rules are applicable is called perfect. However, 
some of the premises, which were previously corollaries of the other ones, become here, for 
infinite totalities, new independent axioms. 
Indeed, the existence of a true proposition, which was the corollary of axioms (a) – (d) of 
§1.1.2, is such a new assumption. Let us consider the totality of proper fractions p/2n written 
down in the binary number system (0.101; 0.011; etc). We will understand the operation or 
as the compilation of a new fraction out of two given ones in such a manner that each of its 
digits equals the largest from among the two appropriate digits of the given fractions; thus, 
(0.101 or 0.011) = 0.111. This totality will not contain a number corresponding to the true 
proposition that should have been represented by the infinite fraction 0.111… = 1. We can, 
however, add 1 to our fractions so as to realize the axiom of the true proposition. And, by 
joining 0, we will also obtain the impossible proposition. 
    The second necessary new assumption (a corollary of the previous premises for finite 
totalities) is that the combination of two propositions (A and B) does exist. Finally, the third 
and last additional assumption is the extension of the restrictive principle onto infinite joins 
of propositions. 
    In the example concerning the binary fractions (with 0 and 1 being included) the 
combination of two propositions existed and was represented by a fraction having as each of 
its digits the least one from among the two appropriate digits of the given fractions. At the 
same time, the restrictive principle is also applicable here to any pair of propositions so that 
all the properties of combinations including the theorems of distributivity persist. In addition, 
the principle of uniqueness also holds in our example, but the totality considered will not be 
perfect. Indeed, in accord with the definition above (§1.1.8), a negation of any proposition A 
is the join of all propositions incompatible with it. But there will be an infinite set of such 
propositions and we ought to begin by generalizing the definition of join as given in §1.1.1.   



    A join H = (A or B or C or …) of an infinite set of propositions A, B, C, … is a proposition 
H satisfying the conditions 16 
    1) If y is a particular case of proposition A, or B, or C, …, then it is a particular case of H;  
    2) If each of the propositions A, B, C, … is a particular case of M, then H is also its 
particular case. 
    In accord with this definition, the commutative and the associative principles are extended 
onto infinite joins as also is the principle of tautology. But whether the restrictive principle 
can be extended remains an open question. In the example above, this extension is not 
realized. Indeed, a join of any infinite totality of various propositions [in the example 
considered. – Editor of Russian reprint] (for example, the join of 0.01; 0.001; 0.0001; etc) is 
a true proposition whereas the proposition 0.1 is not a join of the particular cases of these 
fractions because none of the latter has any other such cases excepting O and itself. Owing to 
the violation of the generalized restrictive principle, Corollary 1.17 does not hold: If x  = � 
then x = O because an infinite join of propositions incompatible with x can be compatible 
with it.  
    And so, for an infinite totality to become perfect, the last assumption, the generalization of 
the restrictive principle, should be added. 
    The join � = (A or B or C or …) of an infinite totality of propositions does not contain any 
particular cases other than the joins of the particular cases of  A, B, C, … 
 
    3.1.2. Combination of Propositions and the Negation 
    Corollary 1.18 (§1.1.8) establishes the connection between combination and negation of 
propositions and makes it possible to determine a combination on the strength of the formula 
 

    (A and B) = Neg ( A  or B ).                                                                       (20) 
 
The additional assumption that a combination of two propositions exists can therefore be 
replaced by the following statement: If A is a proposition of a totality there also exists a join 

of all propositions incompatible 17 with A which is indeed called A  or the negation of A. On 
the strength of the generalized restrictive principle, A and A  are incompatible; and, because 
of the principle of uniqueness, (A or A ) = �. In addition, A = A. Indeed, if (� or A) = A then 

(� and A ) = O so that (� or Neg A ) = Neg A , hence (A or Neg A ) = Neg A . On the other 
hand, if (� or A) = A then (� and A ) = O but � is a particular case of � = (A or A ), and on 
the strength of the restrictive principle it is a join of particular cases of A and A  and is 
therefore a particular case of A. 
    I shall now prove that the proposition 
 

    z = (Neg[ A  or B ])                                                                                 (21) 
 

corresponds to the definition of §1.1.5. To this end I begin by noting that (C  or D) = C 

follows from (C and D) = D because a proposition incompatible with D, i.e., belonging to D , 

is also incompatible with C and therefore also belongs to C . And so, we have to show, first, 
that z is a particular case of A and of B, and, second, that each compatible particular case of A 

and B is a particular case of z. Indeed, A  is a particular case of ( A  or B ), therefore (21) is, 
on the strength of what was just proved, a particular case of A; by the same reasoning, z is a 
particular case of B. 



    On the other hand, let x be a particular case of A and B, then A  and B  are particular cases 

of x  so that ( A  or B ) is a particular case of x . Consequently, x is a particular case of (21), 
QED. 
    Issuing from formula (20) we also derive the definition of a combination of an infinite set 
of propositions 
 

    (A and B and C and …) = (Neg[ A  or B  or C  or …]).                            (22)  
 
Associativity and commutativity thus extend onto infinite combinations. 
    Let us prove that the theorems of distributivity can also be thus extended. At first, we shall 
show that 
 
    [h and (A or B or …)] = [(h and A) or (h and B) or …].                            (23) 
 
Indeed,  
 

    [A or B or C or …] = [(h and A) or ( h  and A) or (h and B) or …] = 

    {[(h and A) or (h and B) or …] or [( h  and A) or ( h  and B) or …]}, 
 
therefore 
 
    [h and (A or B or C or …)] = {h and [(h and A) or (h and B) or …]} or   

    {h and [( h  and A) or …]} = [(h and A) or (h and B) or …], QED. 
 
    Note. It was assumed here that both parts of equality (23) make sense. However, we can 
convince ourselves that, if (A or B or …) exists, the second part of (23) also exists. Indeed,  
 
    z  = [h and (A or B or …)] 
 
has as a particular case each of the combinations (h and A), (h and B), etc, therefore   
 
   [(h and A) or (h and B) or …] 
 
has meaning and will be equal to z once we show that any proposition M differing from z and 
having as a particular case{as particular cases} (h and A ), (h and B), etc, includes z. Suppose 
that z is not a particular case of M, then it would have included z1 = (z and M) with the same 
particular cases ( h  and A) etc. so that (z and 1z ) � O would have been incompatible with any 
of the propositions (h and A), (h and B) etc. whereas each particular case of z should be 
compatible with h and at least with one of the propositions A, B, … etc which contradicts the 
supposition made. 

    Assuming that h  = h1, 1A = A1, B  = B1 etc. and considering the negations of both parts of 
(23), we obtain the second theorem of distributivity 
 
    [h1 or (A1 and B1 and …)] = [(h1 or A1) and (h1 or B1) and …].          (23 bis) 
 
    3.1.3. The Generalized Constructive Principle 
    Our assumptions do not at all imply the existence of an infinite join of any chosen 
propositions. That such a join of propositions of a given totality exists, i.e., that the 
generalized constructive principle holds, is not necessary for a perfect totality 18. Once we 



assume the general principle, the existence of the true proposition and of a combination will 
in particular follow.  
    We can provide an example of a perfect totality, in which the generalized constructive 
principle is satisfied, by supplementing the just considered system of finite binary fractions 
by the totality of all infinite fractions, provided that the fractions having 1 recurring will not 
be considered as an equivalent of those finite fractions, to which they must be equal as being 
the limits of sums of infinite geometric progressions. So as to avoid this contradiction with 
the generally accepted arithmetical assumptions, it is sufficient to consider our fractions as 
being written out not in the binary, but in some other, for example decimal system. 
    We obtain an example of a perfect totality with a violated generalized constructive 
principle by considering in addition to finite fractions only those infinite fractions whose 
period is 1. Indeed, as in the previous case, all the necessary conditions for a perfect totality 
are here fulfilled whereas some joins, as for example the join of all the fractions only having 
1 on their even places, do not make sense; any fraction of the type of 0.01111 …; 0.010111 
…; 0.0101011 … should have had this join as its particular case whereas the infinite fraction 
0.01 (01) … is not included in our totality. 
    Remark. When considering, in addition to 0.111 …, only finite fractions, we could have 
stated that this infinite fraction corresponding to the true proposition is a join of any infinite 
set of propositions. However, to avoid misunderstandings which can occur since we should 
always have only to do with perfect totalities, we will include the assumption of the 
restrictive principle in the very notion of join, so that a join not satisfying this principle 
should be considered senseless. It is necessary to remember, in particular, that the 
generalized constructive principle postulates the existence of exactly those joins which are 
characteristic of perfect totalities, – that is, it implies the generalized restrictive principle. 
Formula (22) shows that the existence of a combination of any infinite set of propositions 
follows from the generalized constructive principle. 
 
    3.1.4. Classification of Infinite Perfect Totalities 
    In §1.3 I have shown that all finite perfect totalities have one and the same structure: they 
are formed by means of elementary propositions. On the contrary, the existence of such 
propositions is not at all necessary for infinite perfect totalities and is therefore never a 
necessary condition for the applicability of all the rules of logical calculus established above. 
Consequently, we may separate perfect totalities into four heads. 
    1. The first type for which     
       a) Not each proposition is a join of elementary propositions. 
       b) The generalized constructive principle does not hold. 
    2. The second type for which 
       a) Not each proposition is a join of elementary propositions. 
       b) The generalized constructive principle holds. 
    3. The third type for which 
       a) Each proposition is a join of elementary propositions. 
       b) The generalized constructive principle does not hold. 
    4. The fourth type for which 
       a) Each proposition is a join of elementary propositions. 
       b) The generalized constructive principle holds. 
    The examples of perfect totalities considered above belonged to the third and the fourth 
types for which the principle of the existence of elementary propositions was valid: the 
fractions containing only one unity corresponded to elementary propositions. Let us now 
provide examples of totalities of the first two types.  
    Consider the totality of all the pure periodic fractions formed of zeros and unities 19. 
Assigning the same meaning to the operation or as before, we convince ourselves that the 



totality is perfect, but that the join of an infinite set of differing fractions will either be true 
(0.111 …) or senseless. The generalized constructive principle is thus violated, and, in 
addition, no fraction here considered is an elementary proposition; taking a double period and 
replacing one unity by a zero, we obtain a particular case of the chosen fraction. 
Consequently, the compiled totality belongs to the first type. 
    For constructing a totality of the second type, we return to the totality of all the fractions 
which corresponds to the fourth type, but instead of each fraction  x we choose a function f(x) 
determined by the condition that f(x) = 0 if x only has a finite number of unities, and is thus 
represented by a finite fraction; that  f(x) = 0.111 … if x only has a finite number of zeros; 
and, finally, that f(x) = x for other values of x. Let f(x) represent each proposition and [f(x) or 
f(x1)] = f(y ) where y has in each place the largest digit out of the corresponding digits of  f(x) 
and f(x1). Then our totality will be perfect and the equality 
 
    [f(x) or f(x1) or … or f(xn) or …] = f(y) 
 
will always have sense 20, i.e., the generalized constructive principle holds. There will be no 
elementary propositions here because a fraction having an infinite set of unities can always 
be decomposed into two similar fractions. We have therefore constructed a totality of the 
second type.  
    Note. A unification of totalities of a certain type is a totality of the same type. On the 
contrary, when realizing some propositions, the type of the totality can change (below). 
 
    3.1.5. Totalities of the Second and the Fourth Types. The Cantor Theorem 

    When decomposing some perfect totality into simple finite totalities O, A, A , �; O, B, B , 
�; etc in all possible ways, the combinations (A and B …)  will always make sense for 
totalities of the second and fourth types. Consequently, they will represent either an 
impossible or an elementary proposition. Let �, �, �, etc be all the elementary propositions, 
and A, some non-elementary proposition. Then, if �1, �1, �1, … are all the elementary 

propositions included in A, and A1 = (�1 or �1 or �1 or …), then A2 = (A and A 1) will have no 
elementary propositions. 
    Assume that all propositions A2 are equivalent to O, then our totality will belong to the 
fourth type. If however all the A1 = O, the totality will be devoid of elementary propositions 
and will be called a simple totality of the second type. Thus, any proposition of a most 
general totality of the second type is a join of a proposition of a simple totality of that type 
and a proposition of a totality of the fourth type. 

    Denoting the joins of all A1 and all A2 by �1 and �2 respectively, we note that Ω 1 = �2. 
We conclude that, when realizing �2, that is, when assuming that �2 = �, we transform each 
totality of the second type into a simple totality of the same type; on the contrary, when 
assuming that �1 = �, we transform our totality into a totality of the fourth type.  
    Theorem 2.6. The following Cantor theorem is applicable to the totalities of the second 
and the fourth types: The cardinal number of a totality of a second or fourth type is larger 
than that of the totality of its elementary propositions. 
    This follows from the fact that, when compiling all possible joins of elementary 
propositions, we obtain distinct propositions if only they differ in at least one elementary 
proposition.  
    Corollary 3.1. Totalities of the fourth type are finite or have cardinal number not less than 
that of continuum. 
    Corollary 3.2. A countable totality of the second type either has no elementary 
propositions at all or has a finite number of them. 
    Now, after proving that perfect totalities of all four types exist, it remains to show that 
their arithmetization in accord with the principles put forward in Chapt. 2 is possible. Thus, 



specifically, when establishing the probabilities of the propositions of an infinite totality, we 
cannot assign the value 1 to the probability of a non-certain proposition A because, when 

taking a finite part of our totality (O, A, A , �), we would have encountered a contradiction. I 
am emphasizing this obvious point, because, owing to the insufficiently clear statement of 
the principles of probability theory, many mathematicians apparently reconcile themselves to 
that contradiction.  
 
    3.2. Arithmetization of Infinite Totalities 

    3.2.1. Arithmetization of Totalities of the First Type 
    The most important and distinctive specimen of a perfect totality of the first type, to which 
we may restrict our attention, can be obtained thus. Let us consider a countable totality of 

finite totalities (O, A, A , �), (O, A1, A 1, �), (O, A2, A 2, �) etc unconnected one with 
another and add them consecutively together. The totality H of the propositions here 
considered is composed of the propositions included in some of the finite totalities thus 
obtained. 
    The totality H is countable, perfect, and belongs to the first type. In addition to finite joins, 
it has only those infinite joins (�1 or �2 or …) which possess a certain property: only a 
restricted number of their elements is not a particular case of the previous ones; that is, the 
totality has only those infinite joins which are directly reducible to finite joins. 
    An unrestrictedly repeated experiment with throwing a coin provides a concrete example 
of totality H. Any proposition concerning a finite number of throws has a definite sense, but 
those not included into any finite totality 21 are meaningless. 
    It is now clear that the probabilities of all the propositions of the totality H are defined 
consecutively on the strength of the agreements and theorems established for finite totalities 
without encountering contradictions or making any new assumptions. Probabilities of 
senseless propositions should not even be mentioned; instead, it might often be interesting to 
calculate the limits of probabilities of some variable and sensible propositions as the number 
of trials increases unboundedly. 
    Thus, the probability that heads will occur not less than 10 times in k throws tends to its 
limit, unity, as k increases unboundedly. This, however, does not at all mean that we must 
assign a sense to the proposition that this will indeed occur when the number of trials is 
infinite: it is possible that we will then be unable to establish whether that proposition was 
realized or not. In the same way, provided that the probability of heads is 1/2, the probability 
that the ratio of heads to tails will differ from unity as little as desired tends to 1 after a 
sufficiently large number of throws.              
   Keeping to the same viewpoint that may be called finitary 22, we can also justify without 
introducing any special assumptions the so-called geometric probabilities. We note at once 
that, from the logical side, the finitary point of view, which only considers totalities of the 
first type, is quite admissible. However, it becomes somewhat artificial when applied to 
geometry because {then} the isolation of a special category of propositions making sense is 
conjecturable and not sufficiently substantiated by intuitive geometric reasoning. 
 
    3.2.2. Geometric Probabilities 
    In geometry, the main problem concerning the calculation of probabilities, to which all the 
other problems are reducible, consists in determining the probability that a point M situated 
on segment AB lies on some of its part PQ. To solve this problem, we may act in the 
following way. Supposing, for the sake of simplifying the writing, that AB = 1, and that point 
A coincides with the origin O, we choose the abovementioned pattern of a totality of the first 
type and agree to form a binary fraction with a unity on its first, second, … place 

corresponding to propositions A, A1, …, and with a zero on places corresponding to A , A 1, 
…  



    In this case, all the finite or infinite binary fractions with definite digits being in one or 
several places will correspond to each proposition of our perfect totality H of the first type. 
For example, all the fractions beginning with 0.01, i.e., all the numbers x satisfying the 

condition 0.01 < x < 0.1, correspond to the proposition ( A  and A1). The symbols < and > can 
be replaced by 
 and � respectively since the propositions x = a, where a is a given finite or 
infinite fraction, ought to be considered as senseless because they correspond to a 
combination of an infinite set of propositions. 
    It follows that if P and Q are two points of the segment (0; 1), whose abscissas are 
expressed by finite binary fractions a and b (a < b), the probability of the inequalities 
 
    a < x < b,                                                                                                   (24) 
 
i.e., of x belonging to segment PQ, is obtained by a direct application of the addition and 
multiplication theorems for the probabilities of propositions A, A1, A2, … It is not difficult to 
see that, for absolutely arbitrary probabilities chosen (they should only correspond to the 
main assumptions), we come to the expression F(b) – F(a) for the probability of (24). Here, 
F(x) is an arbitrary non-decreasing function only defined for finite binary values of x and 
such that   
 
    F(b) – F(0) 
 1, and, for b = 1, F(1) – F(0) = 1. 
 
In particular, if the propositions A, A1, … are independent one of another and the probability  
of each of them is equal to 1/2, we arrive at the usually adopted type of the function, F(x) = x. 
    As stated above, from the finitary point of view the proposition x = a is senseless. 
Nevertheless, we may consider the limits of the probability of the inequalities  
 
    a < x < a + h or a – h < x < a as h � 0. 
 
These are, as h . 0, 
 
    lim [F(a + h ) – F(a)], lim [F(a) – F(a – h)] 
 
and they are known to exist; specifically, for a continuous function they are equal to zero. 
    Similarly, when keeping to the finitary viewpoint, we have no right to mention the 
proposition � < x < � if � and � are not finite binary fractions. Instead, we must consider the 
limit of the probability of the inequalities 
 
    an < x < bn                                                                                                (25) 
 
where an and bn are finite fractions having � and � respectively as their limits. 
    If F(x) is a continuous function, the limit of such probabilities will not depend on whether 
� or � are larger or smaller than an and bn respectively; it will be equal to   
F(�) – F(�). And in the general case we may, in accord with the usual notation, suppose that 
     
    F(� + 0) = limF(bn), bn > �, and F(� – 0) = limF(bn), bn < �. 
 
The inequalities (25) thus have probabilities whose limit is F(� ± 0) – F(� ± 0)  
depending on whether an and bn tend to their limits, � and �, from the right or from the left.  
    By applying the well-known theorems of the theory of limits, it becomes possible, in most 
cases, to deal with the limits of probabilities in the same way as with probabilities 



themselves. For example, if segments (�; �) and (�1; �1) have no common part, the 
probability that either of the inequalities  
 
    � < x < �, �1 < x < �1 
 

is valid, provided that they both make sense, is equal to the sum of the probabilities of each 
of them. If, however, they both, or one of them, ought to be considered senseless, it will be 
necessary to say, that the limit of the probability that one of the inequalities 
 
    an < x < bn, an) < x < bn) 
 
holds, is equal to the sum of the limits of the probabilities of each of them. Here, an, bn, an), 
bn) have �, �, �1, �1 as their limits respectively.  
    It is now sufficiently clear that if the limit of the probabilities of some of the propositions 
is zero, it does not mean that the limiting proposition also exists, i.e., that it makes sense 
under the given formulation; and, if it does make sense, it is impossible. A similar statement 
concerns the limit of probabilities equal to 1. 
    Note. Instead of binary fractions it would have been possible to consider, absolutely in the 
same way, decimal or other fractions. In each case a definite sense is only assigned to 
propositions establishing that definite digits occupy definite places. Inequalities making 
sense in one system therefore occur senseless in another and vice versa. 
 
    3.2.3. Arithmetization of Totalities of the Second Type 
    When studying the same countable totality of propositions H, that we obtained above by 

adding together the totalities (O, A, A , �), (O, A1, A 1, � ), etc, we may agree to regard any 
infinite combination (A and A1 and …) as impossible; or, which is the same, to consider any 
infinite join 23 of the type (A or A1 or A2 …) as true. We will thus form a simple perfect 
totality of the second type (devoid of elementary propositions but obeying the generalized 
constructive principle). 
    Let us study geometric probabilities from this new viewpoint which is logically as 
admissible as the finitary approach. By means of the same system of binary fractions we 
conclude that each definite equality x = a should be considered impossible, i.e. as such that 
could never be precisely realized 24 or established; the signs 
 and < are thus equivalent.  
    It should be noted that the statement that x is some number contained between 0 and 1 
does not at all mean that it can be determined absolutely precisely, and this explains the 
apparently paradoxical statement that a true proposition is allegedly a join of an uncountable 
set of impossible propositions. However, we ought to study in more detail the probabilities of 
geometric propositions belonging to perfect totalities of the second type, and to supplement 
appropriately the principles of the calculus of probability when generalizing them onto 
infinite totalities. 
 
    3.2.4. The Generalization of the Addition Theorem 
    Until now, when calculating the probabilities of the propositions of infinite totalities, both 
of the first and second type, we have made use of the fact that each of the propositions 
considered belonged also to some finite totality; hence, when applying the principles of 
probability theory of finite totalities, it was possible to calculate the probabilities sought. 
Owing to that circumstance, our calculations do not depend on whether we admit that the 
Axiom 2.2 (§2.1) is generalized onto joins of an infinite set or incompatible propositions; or, 
which is the same, on whether the addition theorem is generalized onto infinite joins. 
    Indeed, since that theorem is valid for a finite number of propositions, we can only 
conclude that, if A is a join of a countable totality of incompatible propositions a1, a2, … with 



probabilities p1, p2, … respectively, the probability P of proposition A is higher than, or equal 
to the sum of the series 
 
    p1 + p2 + … + pn + … 
 
which, consequently, should be convergent. 
    The issue about the extension or non-extension of the addition theorem cannot at all 
present itself for totalities of the first type, because there, in accord with the essence of the 
matter, an infinite join only makes sense if it is reducible to a finite join. The problem differs 
for totalities of the second type. When introducing the same monotone increasing function 
F(z) as above, and considering the proposition � < x < �, we see that here it makes sense for 
any  � and � and that its probability w only obeys two conditions, 
 
    w % F(� + 0) – F(� – 0), w * F(� – 0 ) – F(� + 0). 
 
If at least one of the points � and � is a point of discontinuity of the function F, the equality 
sign cannot take place in both conditions. Then, supposing that 
 
    w > F(� – 0) – F(� + 0), 
 
the generalized addition theorem will not apply to the proposition that x belongs to segment 
(�; �) considered as the limit of the sum of the segments (a1; b1), (a1; a2), (b1; b2), (a2; a3), 
(b2; b3) etc, included into (�, �). If, however, 
 
    w < F(� + 0) – F(� – 0), 
 
the addition theorem will not be valid with respect to the negation of that proposition. In both 
cases it is possible to consider the true proposition – 
 < x < + 
 as an infinite join of such 
propositions the sum of whose probabilities has a limit smaller than unity. 
    Note. Since all points cannot be points of discontinuity for a monotone function F, there 
will always also exist such infinite joins, to whom the generalized addition theorem is 
applicable. Hence the assumption or the violation of that theorem is equivalent to the 
extension or non-extension of Axiom 2.2 onto infinite joins. For such joins, the violation of 
the addition theorem or of Axiom 2.2 implies an infraction 25 of the multiplication theorem 
for infinite combinations as well as of some properties of expectations. This fact would have 
presented considerable inconveniences; even when assigning a definite sense to limiting 
propositions (as for example to such as x = a, or  “event A will occur at least once when the 
trials are repeated unboundedly”), we are usually more interested in the probabilities of 
variable propositions for which the proposition under consideration is a limit, and we 
therefore desire that the probability of the latter be in turn the limit of those probabilities 26. 
This continuity of the dependence between the propositions and their probabilities leads to 
the need for extending Axiom 2.2, and, along with it, of the addition and the multiplication 
theorems onto an infinite set of propositions.  
    And so, the generalization of Axiom 2.2 is the only new assumption being added to the 
previous ones, and we thus obtain the main general principle of probability theory of infinite 
or finite totalities. 
    A necessary and sufficient condition for p1, p2, … to be the probabilities of propositions 
A1, A2, … respectively of a given infinite perfect totality, is that the probability of any 
proposition contained there, and being a join of a finite number or infinite set of its 
propositions, will be equal to the sum (to the limit of the sum) of the probabilities of these 
latter; that the true proposition will have probability 1 (and, consequently, that the 



impossible proposition, probability 0); and that the other propositions will have probabilities 
contained between 0 and 1 (0 < p < 1). 
    As to the notion of probability of a proposition given that another one has occurred, and 
the coefficient of compatibility of propositions, I have nothing essentially to add to what was 
said in §2.5. 
 
    3.2.5. Investigation of the function F(z) 
    The assumption that the totality H is a simple totality of the second type; that is, that 
infinite combinations such as (A and A1 and …) are impossible because of the generalized 
addition theorem, means that the limit of the probability of inequalities 
 
    a – h < x < a + h as h . 0                                                                        (26) 
 
is zero; consequently, the function F(z) is continuous. Conversely, if it is continuous, the 
totality of propositions  
 
    a < x < b (0 
 a % b 
 1), 
 
and of all of their possible joins, is a totality of the second type, i.e., a totality devoid of 
elementary propositions. 
    A still stronger restriction is usually imposed on F(z): it is supposed to be differentiable, so 
that 

    F(z) = �
z

0

f(x) dx .                                                                                       (27) 

This restriction is connected with the following property: 
    Theorem 3.1. If (1/2 + �n) and (1/2 – �n) are the probabilities for the n-th digit of a binary 
fraction to be 1 and 0 respectively, the necessary and sufficient condition for (27), where f(x) 
is bounded, continuous at x ' k/2n with 
 
    {f[(k/2n) + 0] – f[(k/2n) – 0]} � 0 as n increases,                                     (28) 
 
is that the series ��n should be absolutely convergent 27.      
    Indeed, this convergence is equivalent to the uniform convergence of all the possible 
products 
 

    ∏
∞

=1i

(1 ± 2�i).                                                                                            (29) 

 
The same product multiplied by coefficient 1/2 and extending over [1; n] is equal to   
 
    F[(k + 1)/2n] – F(k/2n) 
  
and represents the probability of inequalities 
 
    k/2n < x < (k + 1)/2n.                                                                                 (30) 
 
Consequently, the convergence of the products (29) implies the existence of a finite positive 
limit 
 
    lim 2n{F[(k + 1)/2n] – F(k/2n)} = f(x)                                                        (31) 



 
where x is determined by the inequalities (30) as n increases unboundedly. Since the product 
(29) is uniformly convergent, the function f(x) is continuous at x ' k/2n; in addition, the 
quantity (28) that differs generally from 0 can be made arbitrarily small at sufficiently large 
values of n (and an odd k). Therefore, f(x) is integrable (in the Riemann sense).  
    The equality (31) can be represented as 
 
    F[(k + 1)/2n] – F(k/2n) = [f(x) + �k]�                                                    (31 bis) 
 
where � = 1/2n and �k tends uniformly to 0 as n increases. Consequently,  
 
    F[(k + 1)/2n] = �[f (x) – �k]�, k � 0. 
 
It follows that 

    F(x) = �
x

0

f(w) dw,                                                                                      (32) 

or F)(x) = f(x) at the points of continuity of f(x), – that is, at x ' k/2n; at the other points the 
derivative of F(x) on the right is f(x + 0), and its derivative on the left is f(x – 0). 
    Conversely, equality (32) leads to (31) for those values of x for which f(x) is continuous; 
therefore, all the products (29) converge, QED. A similar theorem can be proved in the same 
way for other number systems as well, hence the 
    Corollary 3.3. A necessary and sufficient condition for the function F(x) to have a 
continuous derivative everywhere 28 is that, for two number systems (e.g., for the binary and 
tertiary systems), the probability that the n-th digit acquires one of its h possible values is 
equal to [1/h + �n

(h)], and all the products 

    ∏
∞

=1n

[1 + h�n
(h)] 

converge. 
    Note. The proved theorem 29 shows that all the various laws of distribution of probability 
determined by the arbitrary function f(x) differ one from another only in the values of the 
probabilities of the first binary (or, which is the same, decimal) digits, whereas the 
subsequent digits at least tend to become equally possible. Thus, no definite laws governing 
the sequences of the digits of the fractions considered, as, for example, the law of periodicity, 
can be realized whatever is the function f(x). The arithmetization of a geometric totality by 
means of any continuous function f(x) excludes the possibility of definite equalities x = a; 
conversely, if such equalities can be realized in accord with the nature of a given problem, 
the possibility of the existence of a continuous function f(x), or even of a continuous F(x), is 
excluded. 
    Definition. We call a function F(x) continuous in the narrow sense if 
 
    �|F(�n) – F(�n)| 
 
always tends to zero together with �|�n – �n|. 
    In particular, it is obvious that the existence of a finite derivative 30 is sufficient for F(x) to 
be continuous in the narrow sense. A necessary condition for this is that the probabilities of 
the various digits in all the places of an infinite fraction have a lower limit differing from 
zero (that is, an upper limit differing from 1). 
    Indeed, had not this lower limit been different from zero, there would have existed a 
combination (A� and A� and …) of an infinite number of digits with probability differing 
from zero. The sum of the intervals corresponding to the given digits on the �-th, the �-th, …, 



the n-th places, whose total length is equal to 1/2n + 1, and thus tends to 0 together with n, 
would have differed from zero and the function F(z), contrary to the demand stated, would 
not have been continuous in the narrow sense. 
    Without dwelling in more detail on the investigation of the connection between the 
properties of continuous functions F(x) with the probabilities of the various binary (or 
decimal) digits of the number x, I pass on to considering discontinuous functions.           
 
    3.2.6. Arithmetization of Totalities of the Fourth Type by Discontinuous Functions 
    We saw that F(z) is an arbitrary monotone function obeying the condition F(1) – F(0) = 1. 
It is known from the theory of functions that, if F has points of discontinuity, i.e., such points 
a where 
 
    F(a + 0) – F(a – 0) > 0, 
 
their totality is countable. 
    I showed that the left side of this inequality is the limit of the probability of the inequalities 
(26). Since the proposition x = a is the combination of all the propositions (26), it will, on the 
strength of the generalized addition (multiplication) theorem, have probability  
 
    ho = F(a  + 0) – F(a – 0). 
 
    Let us isolate all the countable totality of the points of discontinuity, a1, a2, …, an, … 
Denote 
 
    hn  = F(an + 0) – F(an  – 0), 
 
and compile such a function F1(z), for which the same equality will hold and the sum of its 
variations at all the other points will be zero. Then the function 
 
    F2(x) = F(x) – F1(x) 
 
will be continuous 31.  
    First suppose that 
 
    F2(x) = 0, i.e., that �hn = 1, 1 
 n < 
. 
 
Here, we have only a finite or a countable totality of elementary propositions  x = a1, x = a2, 
… and of all of their possible joins, – that is, a totality of the fourth type. Any proposition 
 
    a < x < b                                                                                                    (33) 
 
has probability equal to the sum of the probabilities of all the elementary propositions x = an 
satisfying the inequalities (33). It is self-evident that the symbols < and 
 are now equivalent 
only if they are applied to values differing from {those at} the points of discontinuity.  
    This case most essentially differs from the instance of a continuous F(x). Here, generally, 
the consecutive digits are not only not independent, but, after a finite number of them is 
given, all the infinite set of the other ones is determined with probability approaching 
certainty. Indeed, the probability of any value is represented by a convergent infinite product 
whose consecutive multipliers are all rapidly tending to unity. We see thus that some 
arithmetization of geometric totalities changes them into totalities of either the second or the 
fourth type. If both F1(x) and F2(x) differ from zero, we have a mixed or general case of a 



totality of the second type (§3.1.5), which is easily reduced to a totality of the fourth type, 
and a simple totality of the second type. 
    In Chapter 4 I shall return to the considerations that guide us when arithmetizing totalities. 
Here, it is appropriate to note that difficulties and contradictions appear, because, when 
establishing a certain arithmetizing function F(x), we keep at the same time to intuitive 
notions incompatible with it. For example, recognizing that F(x) is continuous, we find it 
difficult to imagine that the possibility of a definite proposition x = a is incompatible with 
our assumption; and that, when admitting that possibility, we ought to make a a point of 
discontinuity of F(x). But it is hardly needed to say that such contradictions between intuitive 
and logical conclusions are rather usual in mathematics, and that they cannot be resolved by 
some compromise such as “not any proposition of an infinite totality having probability zero 
is impossible”. Thus, in the theory of functions, we are not embarrassed by the contradiction 
between our intuitive notion of a curve and the existence of continuous functions lacking a 
derivative; and it will certainly never occur to anybody to assume, that a continuous function 
is absolutely arbitrary, and to consider, at the same time, a tangent at some point of the curve 
depicting that function. 
    Having any absolutely arbitrary totality of the fourth type of any cardinal number as a 
totality of all the points of a segment, and of all of their possible joins, we will always 
preserve, after its arithmetization, only a countable totality of elementary propositions, and 
we will be obliged to consider the other elementary propositions impossible. Indeed, there 
cannot be more than one elementary proposition with probability higher than 1/2; or more 
than two of them having probabilities exceeding 1/3 etc. 
    The choice of the elementary propositions which should be considered possible, is in many 
cases an unsolvable problem. Indeed, who, for example, will be able to indicate that 
countable totality of the points of a segment, which anybody at all had already indicated or 
chosen, or will indicate or choose (as, for example, 1/2, or 1/�2, or ln2, etc)? Nevertheless, it 
is obvious that this totality is countable 32 whereas all the other numbers ought to be 
considered impossible, because they never were, and never will be actually realized, and, 
consequently, cannot be realized. This inability is proper; in accord with the demands of 
experience, practice in most cases compels us to abandon the attempts to arithmetize 
totalities of the fourth type, and to replace them by those of the second type, naturally 
without violating the principles of the theory. 
    Here is the usual reasoning: When having two equal {congruent} finite segments, the 
probabilities that a definite number is contained in either of them are equal. However, this 
consideration is not quite rigorous. The less is the length of the intervals, the more 
considerable is the inaccuracy of that assumption which cannot be absolutely admitted since 
it would have led us to an arithmetizing function F(z) = z, incompatible, as I showed above, 
with the realization of definite equalities x = a. On the contrary, when considering our 
arithmetization as only approximate; when assuming that the probabilities are not equal but 
differing one from another less than by some very small but not exactly known number �, we 
should remember that our arithmetization is relatively the less satisfactory the smaller are the 
segments (so that, in particular, the probability of the equality x = a is not always equal to 
zero). We have thus solved the paradox consisting in that, for the arithmetizing function F(z) 
exactly equal to z, all the totality of the never realizable 33 (impossible) numbers with 
measure 1 would have probability 1 (equal to certainty).   
    When arithmetizing a totality of the fourth type, the issue of determining the probabilities 
of the so-called non-measurable totalities of points should also be indicated. For us, this 
problem does not present difficulties, because, after choosing the arithmetizing function, – 
that is, after selecting the countable totality of elementary propositions, – any totality of 
points, whether measurable or not, acquires a probability on the strength of the generalized 



addition theorem depending on the points which are included in it and are corresponding to 
the elementary propositions.  
    As to the totalities of the second type considered above, they include, because of their very 
structure, only such joins 34, that are reducible to finite or countable joins, so that we do not 
have to mention non-measurable totalities; consequently, all the propositions of the totalities, 
both of the fourth and the second type, acquire quite definite probabilities once the 
arithmetizing function F(z) is chosen. 
 
    3.2.7. Arithmetization of Totalities of the Third Type 
    On the basis of what was said about totalities of the fourth type, we already know that after 
arithmetization only a countable totality of possible elementary propositions can be left in the 
considered totality. The difference between arithmetized totalities of the third and the fourth 
types only consists in that there exist infinite joins making sense in the fourth, but not in the 
third type; we do not therefore mention here probabilities of such joins. All the other joins 
will have the same probabilities in both totalities. 
    Summarizing all that was said about the arithmetization of infinite totalities, we see that, to 
whichever type they belong, this procedure is entirely determined by the function F(x) 35, on 
whose choice the very type of the totality also depends because a point of discontinuity of 
F(z) corresponds to each elementary proposition, and vice versa. If we admit the generalized 
constructive principle, we obtain, depending on the nature of F(z), totalities of the second and 
the fourth types. If, however, we hesitate to attach sense to some infinite joins (and 
combinations), our totalities should be attributed to the first or the third type. 
 
    3.2.8. Arithmetizaton of the Totality of Integers          
    Integers and their finite joins provide an example of a totality of the third type. If we link 
to them all the possible infinite joins, we obtain a totality of the fourth type with a countable 
totality of elementary propositions. Its arithmetization is usually achieved on the basis of the 
assumption that all numbers are equally possible. This premise however is obviously 
inadmissible because it would have implied that the probability of each number is zero, i.e., 
that no number could have been realized, and, in addition, the generalized addition theorem 
would have been violated because the sum of the probabilities of a countable totality of 
propositions with probability 0 would have been unity.  
    The difficulty of selecting a law of probability for the numbers depending, in each 
concrete case, on the statement of the problem at hand, cannot justify the choice of a law, 
even if it is simple, contradicting the main principles of the theory of probability. We may 
consider such a limit of probabilities of some propositions, that corresponds to a gradually 
increasing restricted totality of numbers, under the assumption that in such totalities the 
numbers are equally possible, but that limit is not the probability of a definite proposition of 
our infinite totality. 
    Another inadmissible assumption, connected with the one just mentioned, is made as often 
as that latter, viz., that the probability for the number N, when divided by a prime number a 
to provide a remainder �, does not depend on the remainder left after dividing N by a prime 
number b. Indeed, let �o = 0, �1 = 1 be the two possible remainders after dividing N by two; 
�o = 0, �1 = 1 and �2 = 2, the remainders after dividing it by three; etc. Then, according to the 
assumption, the probabilities of all the infinite combinations (� and � and …) are equal, but 
most of these combinations are impossible, because, when dividing N by a greater number, 
all the remainders obtained become equal to N, so that, for example, the combination (0, 1, 0, 
1, …) of the remainders is impossible. And it would follow that also impossible are those 
combinations which correspond to integers. 
    It is also possible to attach another meaning to all the combinations if we connect each of 
them with the series 



 
    x = �/2 + �/(2�3) + … + 	/(2�3�… pn) + … 
 
where pn is the n-th prime and 	 < pn. Then any combinations of the remainders correspond 
to all the values of x contained between 0 and 1 36. The values of x corresponding to integers 
(according to the condition, this is the only possible case) are characterized by periodicity 
indicated above and are obviously countable, whereas its other values are uncountable. It 
would therefore be absolutely wrong, when assuming that all the numerical values 37     	 < pn 
are equally possible, to consider as certain that x belongs to the first, to the countable totality, 
and that its pertaining to the second one is impossible. 
    It is thus necessary to admit, that the use of the term probability in the theory of numbers 
(for example, “the probability that a number is a prime is zero”) is in most cases unlawful; 
there, the sense of that term does not correspond to the meaning attached to it in the theory of 
probability. 
 
    4. Supplement. Some General Remarks on the Theory of Probability As Being a 

Method of Scientific Investigation 

    4.1. The Possibility of Different Arithmetizations of a Given Totality of Propositions 
    In the previous{main}chapters, I attempted to establish the formal logical foundation of 
probability theory as a mathematical discipline. For us, propositions were until now only 
abstract symbols without any concrete substance having been attached to them. We have only 
determined definite rules for performing operations on them and on the appropriate 
numerical coefficients which we called probabilities. We proved that these rules did not 
contradict one another and allowed under certain conditions to derive by mathematical 
calculations the probabilities of propositions given the probabilities of some other 
propositions.  
    However, only the logical structure of a totality of propositions, which at least for finite 
totalities is usually understood in each concrete case without any difficulty, does not suffice 
for arithmetizing totalities; some additional conditions are still needed for calculating all the 
probabilities by means of the principles of probability theory. Indeed, if we throw a die and 
restrict our attention on two possible outcomes, on the occurrence and non-occurrence of a 

six, we have a simple pattern O, A, A , �. We obtain the same pattern when throwing a coin, 
and, also, when again considering the throws of a die and regarding the cases of an even (2, 
4, 6) or an odd (1, 3, 5) number of points as differing from each other. In the latter 

experiment we have the same scheme  O, B, B , � although A is a particular case of B. It is 
not difficult to conclude now that the same arithmetization (for example, the assumption that 
all the elementary propositions are equally possible) of all the logically identical totalities 
would have led to an unavoidable contradiction.  
    And so, not all the conditions needed for the arithmetization of a totality follow from its 
formal logical structure; only the real meaning that we attach to probability provides 
additional information for preliminary agreements which are arbitrary from the mathematical 
viewpoint. On the other hand, our calculations are practically and philosophically interesting 
only because the coefficients derived by us correspond to some realities. {Thus, a certain 
coefficient}(the mathematical probability) should provide the highest possible precision 
concerning the degree of expectation of some event on the basis of available data; in other 
words, of the measure of predetermination of the event given some objective information. If 
we state that the mathematical probabilities of events A and B are equal (i.e., that the events 
are equally possible), it means that the totality of the available objective data is such that any 
reasonable person must expect them both to an absolutely the same extent. 
 
    4.2. The Origin and the Meaning of the Axioms of the Theory of Probability 



    For the time being, we leave aside the issue of whether there exists such objective 
information that any person will agree that they predetermine the events A and B to the same 
extent, so that they should be equally expected, should be considered equally possible. 
However, even when denying the availability of such information for each case, each person 
who attempts to understand to what extent he may count on the occurrence of some event, 
the following axioms of §2.1 will be compulsory. 
    1. We ought to reckon on a certain event more than on an uncertain event. 
    2. If we expect A and A1 to the same extent; if, further, the same is true with respect to B 
and B1; if A is incompatible with B, and A1 incompatible with B1, – then we should equally 
expect (A or B) and (A1 or B1). On the contrary, if we expect B rather than B1, then we expect 
(A or B) more than (A1 or B1). 
    The Axiom of realization 2.3 (§2.2.3) will become just as obvious, if, when stating it, we 
attach the abovementioned sense to the notion of probability: If � and � are particular cases 
of A and B respectively, we should, when counting on A as much as on B, equally expect the 
occurrence of � and �; and, if A occurs, we should expect � to the same extent as � provided 
that B occurs. 
    Depending on whether our assumptions of the equal probability of the considered events 
are objective or subjective, the conclusions, following from our objectively compulsory (for a 
normal state of mind) axioms and theorems, will acquire an objective or a more or less 
subjective meaning. 
    We ought to show now that the assumptions about an equal possibility of two phenomena 
can be as objective as the premise of the equality of any two concrete quantities whatsoever; 
and to reveal thus the scientific importance of the theory of probability. 
 
    4.3. Equipossibility 
    To this end, let us consider an example. A homogeneous sphere is placed on a cylinder of 
revolution with horizontal elements in such a manner that its center {of gravity}is on the 
same vertical line with the point of contact. Had the experiment been realized ideally, the 
sphere would have been in equilibrium. However, it follows both from mechanics and 
experience that this equilibrium is unstable. An unyielding to measurement deviation from 
the conditions of an ideal experiment is sufficient for the sphere to roll to one or to the other 
side. If the practitioner will realize this experiment with all the possible precision by taking 
all measures for the deviation of the cylinder to one side not to outweigh its deviation to the 
other side, the outcome would have remained unknown to him. It is naturally possible that 
another experimentalist with more precise instruments can foresee the result; but then he 
should again modify the experiment for arriving at the same pattern of unstable equilibrium, 
and the new outcome would be just as unknown to him as it was to his predecessor. 
    When preparing the second experiment identical with the first one as much as possible, our 
practitioner will have the same grounds for expecting a similar result. Had the experiment 
been stable with its outcome not being influenced by such differences in its arrangement, 
which are not allowed for, we might have foreseen that the results in both cases would be the 
same. However, owing to the mechanical instability of the realized layout, we restrict our 
statement by concluding that a definite outcome of the second experiment (the movement of 
the sphere to the right) has the same probability as in the first one. 
    In general, if the difference between the causes leading to the occurrence of events  A  and  
B  is so negligible as not to be detected or measured, these events are recognized as equally 
probable. 
    Once this definition is admitted, it also directly leads to the previously assumed axioms. 
However, our axiomatic construction of the theory of probability is not connected with 
accepting or disregarding it. An absolute equality of probabilities naturally represents only a 
mathematical abstraction, just as the equality{congruence}of segments does; for establishing 



that the fall of a given die on any of its faces has one and the same probability, we may only 
use those objective, but not absolutely precise methods of measurement, which are usually 
applied in geometry and physics. 
    Just as it happens when applying any mathematical theory, when precise equalities have to 
be replaced by approximate equalities, it is therefore essential to study how will the theorems 
of the theory of probability change if the probabilities mentioned there acquire slight 
arbitrary variations. Extremely important in this respect is, for example the Poisson theorem, 
without which the Bernoulli theorem would have been devoid of practical interest. 
 
    4.4. Probability and Certainty 
    On the strength of the considerations above, mathematical probability represents a 
numerical coefficient, a measure of expectation of the occurrence of an event given some 
concrete data. It thus characterizes the objective connection between the observed 
information and the expected event. In particular, the dependence between the given data and 
a future event can be such that the data imply its certainty; that they are its cause, and its 
probability is 1. It should be borne in mind that certainty, just as probability, is always 
theoretical; it is always possible that an incomplete correspondence between reality and our 
theoretical pattern disrupts or modifies the expected act of the cause. 
    By definition, unconditionally certain can only be a result of an agreement or a logical 
conclusion, whereas any prevision of a future fact is always based on induction, – that is, in 
the final analysis, on a direct or oblique assumption that an event invariably occurring under 
given conditions will happen again under similar circumstances. By applying the principles 
of the theory of probability, it can be shown that such a prevision has probability very close 
to unity, i.e., to certainty. The other statements of the theory, having the same degree of 
probability, should therefore be considered as practically certain, bearing however in mind 
that the mistake, caused by the incomplete correspondence between the preliminary 
assumptions and reality, has no less chances of undermining the correctness of any 
proposition than the fact that its probability does not entirely coincide with certainty. 
    The study of many experiments, each of which is represented by some unstable pattern of 
the type indicated above, where the conditions to be allowed for compel us to assign definite 
probabilities to their outcomes, leads us, on the basis of calculations belonging to probability 
theory, to statements known as the law of large numbers, which have approximately the same 
high probability as our inductive inferences. When employing that law, as when applying 
inductive laws of nature, we ought to consider the possibility that the concrete conditions of 
our experiment do not quite correspond to the theoretical layout. A definite result of the 
experiment in both cases has therefore only a high probability rather than an absolute 
certainty. A mistake, i.e., a non-occurrence of our prevision, is not impossible, it is only 
highly improbable. But it is the feature of the law of large numbers that an occurrence of an 
unbelievable fact is not an unconditional indicator of the incorrectness of our theoretical 
assumptions: the law tolerates exceptions. A detailed study, of how should we regard an 
admitted hypothesis if the previsions based on it are often wrong, is beyond the boundaries of 
this paper. The theory of the probability of hypotheses, to which this issue belongs, is entirely 
founded on the axiom of realization 38. Restricting our attention to general considerations, we 
may only note that a prior estimate of the probability of some arrangements is usually very 
arbitrary, so that only those conclusions, made in the context of that chapter of probability 
theory, are of special interest which are more or less independent of such estimates. 
    In itself, an occurrence of an unbelievable fact does not refute an hypothesis and only 
represents new information that can change its probability; there exists no pattern under 
which all the occurring phenomena have considerable probabilities 39. Our only demand on 
the accepted hypothesis is that a greater part of the occurred facts should have possessed a 
high degree of probability with only a comparatively few of them having been unlikely. The 



vagueness of this remark corresponds to the essence of the matter: the impossibility of 
allowing for the entire unbounded totality of causes influencing an isolated concrete 
phenomenon excludes infallibility in previsions. Instead of the certain, representing a 
theoretical abstraction, we have to be satisfied with the probable (the practically certain), and 
we only ought to try that this substitute will result in mistakes as rarely as possible.   
    It is clear now, that the application of the theory of probability contains a portion of 
subjectivity, but only a portion, to a certain degree inherent in any method of cognition that 
interprets facts and connects them by definite abstract interrelations. These relations, which 
in our theory are characterized by a coefficient, – by the mathematical probability, – are able 
to interpret reality more or less precisely; and the conclusions implied by the application of 
probability theory must then possess an appropriate degree of accuracy. Indeed, the few 
axioms underpinning this mathematical theory represent a necessary feature of the concept of 
probability as a measure of expectation, independent of the objective meaning of the relevant 
data. 
 
    4.5. Infinite Totalities 
    When considering some experiment admitting of a finite number of outcomes and stating 
that result A is possible, we mean that, bearing in mind all the experiments corresponding to 
the same theoretical pattern, we believe that in some of them A really takes place. Had we the 
possibility of glancing over all the previous and the future experiments covered by that 
layout, and concluding that A had{and will}never happen(ed), we would have been 
compelled to say that, once the arrangement of these experiments is correct, A is impossible. 
The usual inductive inferences are reached in the same way: if A had not occurred in a large 
number of experiments, we conclude that it is impossible. 
    A similar remark is also applicable to infinite totalities. If a totality of logically possible 
incompatible outcomes is uncountable, as for example the number of points of the segment 
[0; 1], i.e., the totality of the values of x satisfying the inequalities 0 < x < 1, it can occur that 
actually possible here is only a countable totality of outcomes, and any arithmetization of 
the{initial} totality, in accord with the theoretical principles established in Chapt. 3, should 
consider all the actually (or mentally) never happening outcomes as impossible. The totality 
of the realizable results is unknown to us. And we have still less prior grounds for believing, 
in accord with what was said about the objective indications of equipossibility, that it is 
equally probable that the number mentally chosen by someone is 1/2, or that it is a result of 
calculation impossible by means of contemporary analysis 40. 
    It is therefore necessary to distinguish between arbitrary undefinable numbers and those 
definable by some means. It should be noted however, that, only if these means are indicated, 
we obtain a definite totality of definable numbers (for example, of algebraic numbers), and 
we may only state that there should exist numbers which will never be defined. But the very 
boundary between these two categories of numbers cannot be precisely pointed out. 
    Choosing an arbitrary number written down as an infinite decimal fraction, and asking 
ourselves what is, for example, the probability that 0 will not occur there at all, we ought to 
answer it depending on the category to which that number belongs. Assume that the 
probability for each digit to be in each place is 41 1/10 because we may assume that there is 
no objectively revealable cause for one digit to have preference over another one in any 
possible case. Under these conditions the probability that 0 does not occur will be 
 
    lim (9/10)n = 0 as n � 
. 
 
However, our assumption obviously concerns only absolutely arbitrary undefinable numbers, 
whose composition does not obey any law, so that only some finite number of digits can be 
indicated in each number. Such numbers cannot ever be completely defined because 



infinitely many digits only depending on chance is still always left, and no experiment can 
establish that 0 will not yet occur. On the contrary, its occurrence is compatible with any 
observed result, i.e., it is certain (in accordance with the principle of uniqueness). The matter 
is different if we believe that the composition of our fraction obeys some law. If we precisely 
indicate that law, – for example, if we choose proper rational fractions whose denominators 
have no multipliers excepting  twos and fives, – then we should first of all investigate 
whether there exists a direct causal connection between the law and the occurrence of the 
zero; here, arithmetic teaches us that the non-occurrence of 0 is impossible. However, had we 
chosen fractions of the type  
 
    (10n – 2)/(10n – 1), 
 
then, on the contrary, the occurrence of 0 would have been impossible. If no direct causal 
connection is seen, we should nevertheless remember that our law connects the sequence of 
digits in a certain way so that their total independence and equiprobability cannot be 
admitted. The less definite is the law, the more difficult it is to indicate a priori the exact 
value of the probability of each digit being in a definite place; in such cases, it is more 
correct to calculate the probabilities a posteriori, and, although it ought to be thought that 
mostly the value of that probability will be very close to 1/10, it is really possible that for a 
diverse totality of numbers a supernormal variance testifying to the lack of constant 
probability will be revealed in some cases 42. 
    The study of totalities (always countable) of some categories of definable numbers is of 
little practical interest. On the contrary, experimental science usually has to do with infinite 
totalities of the second, and partly of the first type lacking elementary propositions, – that is, 
with totalities of undefined numbers because no experiment can precisely establish non-
integral numbers. An experiment can only determine a few decimal places of an unknown 
number not admitting experimental determination. Accordingly, we should choose a 
continuous arithmetizing function; bearing in mind the considerations of §3.2.5, it is almost 
always possible to assume that 
 

    F(z) = � f(z)dz 

 
where f(z) is some non-negative continuous function whose value{s}is{are} determined a 
priori by the conditions of the experiment, or a posteriori by the results of its numerous 
repetitions. 
     We also encounter infinite totalities when applying the law of large numbers to some 
experiment repeated without restriction. In most cases the number of the experiments is 
supposed to be finite although very large. The law therefore provides its inherent practical, 
but not logical certainty, and, as noted above, admits exceptions. However, had we created a 
pattern realizing the limiting case of an infinite number of repetitions for interpreting some 
phenomenon, we could have arrived at conclusions possessing logical certainty. For example, 
admitting the possibility of a gradual speeding-up of the experiment with throwing a coin, or 
of another one where the probability of the event is 1/2, so that the first experiment lasts 1 
min, the second one, 1/2 min, the third one, 1/4 min, etc, then the total number of experiments 
lasting 2 min would have been infinite. 
    Assuming that there exists some stable mechanical device consecutively recording the 
ratio of the number of the occurrences of the event to the number of the experiments 
(although the recording of the result of each separate experiment then becomes impossible), 
we will notice that until the end of the second minute this ratio is somewhat varying. 
However, after that the pointer of the dial of our device will occupy quite a definite position 
corresponding as much as it is possible for our device to the number 1/2. This conclusion is 



theoretically certain and its non-occurrence can take place only because of an incomplete 
accordance between the actual conditions and our theoretical pattern. Thus, when forming a 
definite infinite binary fraction, for example, 8/15 = 0.10001 …, where the limit of the 
relative number of the units is 1/4, we must state that its composition is incompatible with the 
assumption that the occurrence of 1 and 0 on each place is equally probable. 
    And it is generally impossible to indicate a method of forming an infinite binary fraction, 
where the sequence of unities and zeros would have obeyed an infinite number of conditions 
implied by the laws of large numbers. Infinite series composed absolutely arbitrarily, 
randomly (so that each number is arbitrary in itself) essentially differ from series compiled in 
accord with a definite mathematical law no matter how arbitrary it is. A confusion of these 
two notions, caused by the fact that such differentiation does not exist between random and 
regular finite series, is one of the main sources of paradoxes to which the theory of 
probability of infinite totalities is leading. 
 
    Notes 

    1. (§1.1.8). Conversely, the principle of uniqueness follows if we suppose that (A or A ) = 
�; that is, when assuming that a proposition and its negation are solely possible. Indeed, if � 
is compatible with any proposition (excepting O), then α  = O, hence (� or O) = � and � = 
�. 
    2. (§1.1.9). When applying it to the given equation (4), we find that conditions 
 

    {(A or a or b) or [ A � and ( a ′or b ′ )]} = �, 

    {(A) or a� or b�) or [ A  and ( a or b )]} = � 
 
are necessary and sufficient for its solvability. 
    3. (§1.2.1). It could have been proved that, also conversely, the assumption that a true 
proposition exists, leads to the constructive principle. Thus, for a finite totality {of 
propositions}, this principle and the axiom of the existence of a true proposition are 
equivalent. {Not axiom but Theorem 1.1.} 
    4. (§1.2.3). For example, the principle of uniqueness is not valid for the system 1, 2, 3, 4, 
6, 12. The proposition corresponding to the number 2 would have been compatible with all 
the propositions and its negation would therefore be only the false proposition. This last-
mentioned would therefore possess the most important property of a true proposition without 
however being true. 
    5. (§1.3.1). So as not to exclude the false proposition, it is possible to agree that it is a join 
of zero elementary propositions, – that it does not contain any of them. 
    6. (§2.1.1). The theory of probability considers only perfect totalities of propositions. 
    7. (§2.1.4). Had we called the fraction m/(n – m) probability, the ratio of the number of the 
occurrences of an event to the total number of trials should have been replaced, in the 
Bernoulli theorem for example, by the ratio of the former to the number of the non-
occurrences. The statement of the addition theorem would have also been appropriately 
changed: the probability of (A or B) would have been equal not to the sum of the 
probabilities, (p + p1), but to 
 
    (p + p1 + 2pp1)/(1 – pp1). 
 
    8. (§2.1.5).{Below, the author specifies his incomplete distinction.} 

    9. (§2.1.5) If p + p1 > 1, we would have to choose A � instead of B� and would have thus 
convinced ourselves in the inadmissibility of such an assumption. 



    10. (§2.1.5). Such two propositions could not be chosen only if 	n + 	�n > 1. Replacing then 

proposition Bn by A n, we would have determined, when applying Axiom 2.2, that the 
proposition (A or B) has probability higher than unity, – that is, higher than � has, which 
contradicts Axiom 2.1. Consequently, in this case p and p1 cannot be the probabilities of 
incompatible propositions. 
    11. (§2.1.6). Note that Axioms 2.1 and 2.2b taken together are equivalent to the following 
single axiom: Inequality A > B means that there exists (or can be added) such a proposition 
B1 being a particular case of A that B1 ~ B. 
    12. (§2.2.2). Issuing from the notion of realization of one or several propositions, Markov 
(1913, p. 19) provides another definition: 
 
    We call several events E1, E2, …, En independent one of another if the probability of none 
of them depends on the existence or non-existence of the other ones, so that no indication 
that some of these events exist or do not exist changes the probabilities of the other events. 
 
    It is not difficult to satisfy ourselves that the two definitions are equivalent, but it ought to 
be noted that some conditions in the latter necessarily follow from the other ones. This is 
obvious because the number of these conditions is here n(2n–1 – 1), or [(n – 2)2n–1 + 1] greater 
than in the former definition. These redundant conditions are therefore corollaries of the 
other ones. For n = 2 the independence of B of A is a corollary of the independence of A of B. 
Note that in many cases (for example, in the {Bienaymé –} Chebyshev inequality), it is 
essential to break up the notion of independence, and the pairwise dependence or 
independence plays an especially important part. 
    13. (§2.2.3). A similar axiom only concerning totalities with equally possible elementary 
propositions is found in Markov (1913, p. 8). Let us explain our axiom by an example. If any 
permutation of a complete deck of playing cards taken two at a time has the same probability 
1/(52�51), then, in accord with the addition theorem, the probability that the first or the 
second drawn card is the knave of hearts is 51/(52�51) = 1/52; upon discovering that the first 
card was the queen of hearts, all the permutations containing that queen remain equally 
possible only because of the axiom of realization, and the probability for the second card to 
be the knave of hearts becomes equal to  1/51. Had we only assumed that at each single 
drawing the possibility of the occurrence of each card was one and the same, this axiom 
would have been insufficient for recognizing that all the permutations taken two at a time 
were equally possible. This fact becomes natural once we note that it is easy to indicate an 
experiment where these permutations are not equally possible. 
    14. (§2.2.3). {Literal translation.} 
    15. (§2.2.3). At first, issuing from the functional equation f(x + y) = f(x) + f(y), we obtain, 
for any integer n,  
 
    f(n x) = n f(x).                                                                                               (*) 
 
Then, assuming that nx = my, where m is also an integer, we get nf(x) = mf(y), hence f(nx/m) 
= n/mf(x). Since f(x) is finite (|f(x)| 
 1 for 0 
 x 
 1), we infer from (*) that it tends to zero 
with x so that it is continuous and the equality f(tx) = tf(x), proven for any rational t, is then 
valid for any t. Consequently,  
f(t) = tf(1). 
    16. (§3.1.1). It is obvious that, once join H exists, it is unique. Indeed, if H1 also satisfies 
the first condition, then (A or H1) = H1, (B or H1) = H1, etc, so that (H or H1) = H1. But since 
H1 also obeys the second condition, (H or H1) = H and H = H1.  
    17. (§3.1.2). The previous definition of incompatibility of two propositions can persist. 



    18. (§3.1.3). The generalized constructive principle (along with the restrictive principle) is 
realized in the pattern of §1.2 if only we extend this latter onto an infinite set of primes and 
of all of their products devoid of quadratic factors. Unity will still correspond to the true 
proposition, and 0, which we shall define as a multiple of all integers, to the impossible 
proposition. However, a compiled system where also the combination of two propositions 
(the least multiple) always exists, will not be perfect because there the principle of 
uniqueness is violated: any pair of propositions (excepting O) is here compatible, therefore O 
will be the negation of any proposition. Nevertheless, the theorems of distributivity persist. 
    19. (§3.1.4). We may even suppose that they are written down in the binary number 
system. They will then be rational numbers of the type a/(2n – 1). 
    20. (§3.1.4). In each place y has the largest digit out of the corresponding digits of f(x), 
f(x1), …, f(xn), … so that, if x, x1, … are finite fractions, f(x) = f(x1) = … = 0 and f(y) = 0. 
    21. (§3.2.1). For example, “The number of heads, when the experiment is repeated 
indefinitely, is equal to the number of tails”, or “There will be no less than 10 heads”. 
    22. (§3.2.1).{The author’s term was finitistic.} 
    23. (§3.2.3). As to all the infinite joins of the type (A� or A� or … ), they can represent new 
propositions; otherwise, they will all be true as being compatible with any proposition of the 
totality. 
    24 (§3.2.3). In §1.3 I explained that an impossible proposition is characterized by the fact 
that it cannot become true or certain, – that it cannot be realized. 
    25. (§3.2.4). The generalization of the multiplication theorem is a corollary of the 
generalized addition theorem. Indeed,  
 

    Prob (A and B and … and L and …) = 1 – Prob ( A  or B  or … or L  or …)  
    =1 – limProb ( A  or B  or … or L  or … ) = limProb (A and B and … and L and …). 
 
    26. (§3.2.4). If, for example, event A has probability 1/2 at the first trial, 1/4 at the second 
one, 1/8 at the third one, etc, then, irrespective of these values of the probabilities, we might 
have stated that the occurrence of the event at least once is certain because this is compatible 
with any result of a finite number of trials. However, the limit of the probability that A will 
occur in k trials will be, as k increases unboundedly, 
 
    1/2 + (1/2) (1/4) + (1/2) (3/4) (1/8) + (1/2) (3/4) (7/8) (1/16 ) + … < 3/4 < 1. 
 
Here, the violation of the addition theorem leads to obscuring the fact that the realization of 
the proposition A in some finite experiment becomes ever less probable with time. 
    27. (§3.2.5). If the subsequent digits are not independent of the previous ones, this 
condition should be replaced by a uniform convergence of all the different products �(1 + 
2�n). 
    28. (§3.2.5). Note that for the existence of a finite derivative of F(x) at a given point x it is 
sufficient that, uniformly with respect to 	,  
 
    (1/	) lim{[F(x + &h) – F(x)]/[F(x + h) – F(x)]} = 1 as h � 0. 
 
Indeed, for an arbitrarily small � it is possible to choose such a small � that 
 
    [F(x + 	h) – F(x)]/[F(x + h) – F(x)] = 	(1 + ��) 
 
where |��| < � as soon as |	h| < �, |h| < $. By choosing some definite value of h in this manner, 
we will obtain  
 



    F(x + h) – F(x) = Mh, therefore F(x + 	h) – F(x) = M	h(1 + ��), 
 
hence 
 
    [F(x + 	h) – F(x)]/	h = M(1 + ��). 
 
However, since � can be chosen no matter how small, the left side here differs from M, which 
does not depend on 	 if 	h � 0, as little as desired, QED. In most cases, when applying the 
theory of probability, this condition is obviously fulfilled. It can be shown that the condition 
stated above is also necessary for the existence of a finite derivative (differing from 0). 
    29. (§3.2.5).{Apparently, Theorem 3.1.} 
    30. (§3.2.5). For continuity in the narrow sense, it is sufficient that the Lipschitz condition 
be satisfied for the whole interval excepting a restricted number of points where the function 
can simply be continuous. 
    31. (§3.2.6). Let �(x) = 0 at x < 0 and = 1 at x > 0. Then F1(x) can be represented as an 
absolutely convergent series 
 
    F1(x) = �hn�(x – an), 1 
 n 
 
. 
 
    32. (§3.2.6). It would have been finite for a world restricted in time. 
    33. (§3.2.6). The totality of the realizable numbers is countable, so that, even being 
everywhere dense, it has measure 0. 
    34. (§3.2.6) It is of course possible to choose an arbitrary totality of points S and to define 
a proposition A as a combination of all the propositions, i.e., of the sums of the segments 
which include those points. Then A will correspond to the outer measure of totality S which 
always exists. But the inner measure of that totality, if S is non-measurable, can lead to 
another proposition B � A. These propositions will always have definite probabilities whereas 
the totality S does not represent a proposition. 
    35. (§3.2.7). In more complicated cases, by one or several such functions of several 
variables. 
    36. (§3.2.8). In particular, 
 
    1 = 1/2 + 2/(2�3) + … + (pn – 1)/(2�3 … pn) + …  
 
    37. (§3.2.8). On the strength of the above, this assumption leading to the arithmetizing 
function F(z) = z, always excludes the possibility of any precise equality x = a, and, in 
particular, of any integer. 
    38. (§4.4). {Note that the author had not mentioned the then originating mathematical 
statistics.} 
    39. (§4.4). We may consider, for example, as practically certain that a first-class chess 
player paying full attention to his game will beat a novice who had just learned the rules of 
chess. Nevertheless, it is not absolutely impossible, that all the moves made by this beginner 
by chance, satisfy the demands of the art of the game and led him to victory. A combination 
of isolated unlikely facts of this kind can indeed happen. And such a result (especially 
repeated twice or thrice) would have placed us in a very difficult situation concerning the 
expected outcome of the next game. Can we be sure that our novice had indeed nothing to do 
with chess, as all those knowing him are stating; can we deny the possibility of such an 
unprecedented and unknown until now talents, that were revealed so brilliantly at the very 
first game? But, although we cannot completely answer these questions, the games that took 
place represent a specimen of the wittiest chess maneuvers whose study will reveal the 
profound expediency of the separate moves. Therefore, no matter how we would be inclined 



to uphold our prior confidence in that the novice could not have played deliberately, we 
would still be compelled to admit that the connection between his moves was advisable and 
appropriate. 
    A similar remark is applicable to the hypothesis on the regularity of the phenomena of 
nature. As much as we would like to believe in miracles, we will inevitably have to admit the 
regularities in order to explain the data available. However, it is impossible to dissuade 
anyone from believing in the existence of wonders taking place beyond the domain of precise 
observation; and the laws, until now considered as indisputable, will perhaps turn out to be 
freaks of chance. 
    40. (§4.5). For example, before the theory of logarithms was discovered, that it had been 
ln2. 
    41. (§4.5). That is, F(z) = z. 
    42. (§4.5). {The author apparently had in mind the Lexian theory of dispersion. See the 
description of the appropriate work of Markov and Chuprov in Sheynin (1996, §14).}  
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4. S.N. Bernstein. On the Fisherian “Confidence” Probabilities 
Bernstein, S.N. �������� 	�
������ (Coll. Works), vol. 4. N.p., 1964, pp. 386 – 393  

 
    1. This paper aims at making public and at somewhat extending my main remarks 
formulated after the reports of Romanovsky and Kolmogorov at the conference on 
mathematical statistics in November 1940 1. So as better to ascertain the principles of the 
matter, I shall try to write as elementary as possible and will consider a case in which the 



“confidence” probability is based on one observation. However, all my conclusions are 
applicable to more complicated cases as well.  
    Suppose that one observation of a random variable x is made providing x = x1 and that x 
obeys a continuous law of distribution depending on one parameter a, so that 

    P(t0 < x – a < t1) = �
1

0

t

t

f(t)dt, f(t) = (1/ π2 ) exp (– t2/2) (say).                   (1) 

    According to the classical theory, after securing the observation x1 it only makes sense to 
say that the probability that an unknown parameter obeys the inequalities  
 
    t0 < x – a < t1                                                                                               (2) 
 
if, even before the observation, a could have been considered as a stochastic variable. In 
particular, if p(a) is the prior density of a, the prior density of x is 

    P(x) = �
∞

∞−

p(a) f(x – a) da.                                                                           (3) 

    Therefore, on the strength of the Bayes theorem, the probability of the inequalities (2) is 
equal to 

    �(x1; t0; t1) = 
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p(x1 – t) f(t)dt.                   (4) 

Thus, this is the probability of inequalities (2) for any interval (x1 – t1; x1 – t0) considered by 
us. Regrettably, our information about the function p(a) is usually very incomplete, and, 
consequently, formula (4) only provides an approximate value of � and the precision of this 
approximation depends on the measure of the precision of our knowledge about the function 
p(a).  
 
    2. This inconvenience, that lies at the heart of the matter, became the reason why the 
British statisticians led by Fisher decided to abandon the Bayes formula and to introduce 
some new notion, or more precisely, some new term, confidence. They consider some pair of 
values, t0; t1 such that 

    �
1

0

t

t

f(t)dt = 1 – �(t0; t1)                                                                                  (i) 

is very close to unity: differs from unity (for example, �(t0; t1) = 0.05); these values therefore 
possess the property according to which the probability of (1) differs from unity by a given 
small variable �(t0; t1); and, after observation provided x = x1, the interval (x1 – t1; x1 – t0) is 
called the confidence region of magnitude a corresponding to confidence 1 – �(t0; t1). 
    It would have been possible to agree with the introduction of the new term, confidence, if 
only new contents, differing from, and even fundamentally contradicting the previous ones 
adopted when defining it, were not read into the word. Indeed, Fisher and his followers 
believe that, once x took value x1, the magnitude (i) is the confidence probability of a being 
situated in the interval (x1 – t1; x1 – t0). However, since t0 and t1 can in essence take any 
values, the confidence probability satisfies all the axioms characterizing the classical concept 
of probability, and all the theorems of probability theory are applicable to it. It follows that 
for some choice of the function p(a) in (4), the confidence probability must coincide with 
�(x1; t0; t1) so that we would have obtained  



    �
1

0

t

t

f(t)dt = 
)(

1

1xP �
1

0

t

t

p(x1 – t) f(t)dt                                                        (4bis) 

for any values of x1, t0 and t1. Then, for any values of t1 and x1; we would have arrived at  
 
     f(t1) = [1/P(x1)] p(x1 – t1) f(t1) 
 
so that p(a) = P(x) should be constant over all the real axis which is impossible (a uniform 
distribution over all this axis is impossible). In addition, it is not difficult to see that the 
equality (4) leads to the same contradiction if we only assume its validity for one x1 for a 
given t0 and any t1 > t0.  
    It is not necessary to prove that, if the confidence region (x1 – t1; x1 – t0) becomes a part of 
a region where a certainly cannot be situated, then �(x1; t0; t1) = 0. For example, if it is 
known that |a| < 3, then no sensible statistician will apply confidence probability 

    �
−

2

2

f(t)dt 

for the interval – 2 < 5 – a < 2 if by chance the observation yields x1 = 5. 
 
    3. The equality (4) can be approximately correct under some more or less definite 
assumptions regarding the prior probability p(a) and meaning, in essence, that the confidence 
region is a part of a sufficiently large region where p(a) is more or less constant. More 
exactly, the following proposition takes place: 
    A limit theorem. If, for any positive magnitudes � < 1 and L, it is possible to indicate such 
a n0 that, for all the integer n > n0, 
 
    [pn(x�)/pn(x�)] < 1 + � 
 
when |x�| ≤  L, | x�| ≤  L, and, in general, if 
 
     [pn(a)/pn(x�)] < c for any a and c ≥  1 + � is a constant not depending on n, 
 
then, as n � 
, 

    �(x1; t0; t1) = 
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for any x1, t0 and t1. The convergence to the limit is uniform if the confidence interval (x1 – 
t1; x1 – t0) is situated within an arbitrary finite region.  
    Indeed, for any observed x1 we can, given an arbitrary small � > 0, choose such a large 
number L, that  

    �
+

−

Lx

Lx

1

1

f(t)dt > 1 – � 

and, in addition, L > |x1 – t0|, L > |x1 – t1|. Then, when determining n0 in accord with the 
conditions of the theorem, we have, for n > n0, 

    pn(x�) �
1

0

t

t

f(t)dt < �
1

0

t

t

p(x1 – t) f(t)dt < (1 + �) pn(x�) �
1

0

t

t

f(t)dt,   
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1

p(x1 – t) f(t)dt < (1 + �) pn(x�) �
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−
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1

1

f(t)dt 

where pn(x�) ist he least value of pn(x) when |x| ≤  L. Consequently, 

    pn(x�)(1 –�) < �
∞

∞−

p(x1 – t) f(t)dt < pn(x�)(1 –�2 + �c) < pn(x�)(1 + �c), 

hence 

    
cε+1

1
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1

0

t

t

f(t)dt < �(x1; t0; t1) < 
ε

ε

−

+

1

1
�
1

0

t

t

f(t)dt,                                           (5) 

QED. 
 
    4. It is doubtless that, in general, we have no special reasons to hope that the conditions of 
the theorem are fulfilled in practice. Therefore, the theory of probability definitely declares 
that a conclusion based on one observation is, generally, unreliable; however, if we assume 
that a = Ex, then the limit theorem will be applicable for determining a�n after n 
observations x1, x2, …, xn. Indeed, it follows from the theorem that, after observing [(x1+ x2+ 
…+ xn)/ �n] = X1 and having a sufficiently large n, the probability of the inequalities  
 
    t0 < X1 – a�n < t1                                                                                         (6) 
 
will differ arbitrarily little from the their confidence probability 2, i.e., from  

    �
1

0

t

t

fn(t)dt, 

under only one assumption that p(a) is continuous in the vicinity of a = X1 and [p(a)/p(X1)] < 

 for all a � X1. 
    Thus, the theory of probability applies confidence understood as a limiting probability 
without making use of this term and offers absolutely precise indications about when it is 
admissible. In particular, since the law of large numbers in its wide sense is the only 
foundation for studying stochastic phenomena, the fundamental superiority of the confidence 
determination of a from inequalities (6) when issuing from n observations (instead of one) 
consists not so much in that a �n smaller region corresponds to the same confidence as in that 
this region is more reliable for any X1 since, as n increases, the confidence probability tends 
to the actual posterior probability.  
 
    5. The application of the Fisherian confidence probability to a definite region (x1 – t1; x1 – 
t0) is practically admissible from the classical viewpoint also when we may be sure that the 
true probability of inequalities (2) cannot be considerably lower than the confidence 
probability; that is, when  
 

    �(x1; t0; t1) ≥  
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                                                                        (7) 

 
where � is not large. 
    For this to be valid, it is sufficient that p(b) ≤  (1 + �)p(a) if a is any point within the 
confidence region, x1 – t1; < a < x1 – t0, whereas b is any point outside it: b < x1 – t1 or b > x1 
– t0. Indeed, in this case  
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where � is some point within the interval (x1 – t1; x1 – t0) and � is some point outside it. 
Therefore, in accord with the adopted condition, p(�) ≤  (1 + �)p(�) and 
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hence (7).For example, if �(t0; t1) = 1/20, � = 1, then 
 
    �(x1; t0; t1) > 1 – 2/21 > 1 – 1/10. 
 
    6. Excepting the indicated or similar cases, the application of confidence probability for 
estimating the probability of inequalities (2) after determining a definite value x = x1 can 
sometimes lead to blunders. However, it is obviously true that when �(t0; t1) = 0 we will 
have, for any assumptions about p(a), 

    �(x1; t0; t1) = �
1

0

t

t

f(t)dt = 1  

so that we should believe that the smaller is �(t0; t1) the less probable is a considerable 
difference between �(x1; t0; t1) and the integral above. The exact meaning of this statement 
becomes evident from the following remark: When integrating the equality 

    P(x1)�(x1; t0; t1) = �
1

0

t

t

p(x1 – t) f(t)dt   

with respect to x1 from – 
 to + 
 we have 
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p(x1 – t) f(t)dt dx1 = �
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f(t)dt                   (8) 

or, in other words, the confidence probability is the expected posterior probability of the 
inequalities (2). 
    It is quite natural to desire, when knowing absolutely nothing about p(a), and, 
consequently, about P(x), to determine the unknown magnitude �(x1; t0; t1) through its 
known expectation. Taking into account that the variance  

    E[�(x1; t0; t1) – �
1

0

t

t

f(t)dt]2 = E�2(x1; t0; t1) – [ �
1

0

t

t

f(t)dt]2  <   

    [1 – �(t0; t1)] – [1 – �(t0; t1)]
2  < �(t0; t1) [1 – �(t0; t1)] < �(t0; t1), 

 
we may conclude, on the strength of the Chebyshev – Markov lemma, that the probability of 
the inequality 



    |�(x1; t0; t1) – �
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t

t

f(t)dt| > z );( 10 ttα                                                            (9) 

is lower than (1/z2) for any z > 1. For example, if (1/z2) = 3
10 );( ttα , we find that  
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f(t)dt| ≤ 3
10 );( ttα ] ≥ 1 – 3

10 );( ttα ,  

i.e., that this probability is arbitrarily close to 1 if �(t0; t1) is sufficiently small. 
    The statistician may therefore, in each particular instance, only apply confidence 0.999 
when it is practically admissible to neglect probability 0.1 (not 0.001). But, in general, when 
knowing nothing about p(a), confidence only acquires real sense in accord with its initial 
definition when applied to a large number of independent observations x1, x2, …, xn. Indeed, 
on the strength of the law of large numbers, the frequency of cases in which a will be situated 
in the appropriate confidence regions, just as the arithmetic mean of �(x1; t0; t1), will be close 
3 to confidence. However, if a remained invariable, then, as we saw above, its determination 
through x , the arithmetic mean of xi, will not only be �n times more precise than the same 
confidence probability; it will already be very close to the individual probability of a being 
situated in a given interval ( x  – t1�n; x  – t0�n): for a sufficiently large n the regulating 
action of the law of large numbers already leads to practically identical values for the 
posterior probability at any assumptions about the prior probability p(a), – excepting 
suppositions intentionally invented contrary to any common sense.  
 
    7. To prevent any misunderstandings that can arise in practice when putting too much trust 
in confidence probability, let us consider the following example. A large number of boxes A1, 
A2, …, Ai, … contain {several} objects {each} whose {total} values x1, x2, …, xi, … obey the 

Gaussian law (1/ π2 )exp [– (x – ai)
2/2] with variance 1 and location parameter ai. Because 

of technical or economic considerations, the value x1i of only one object is checked in each 
box. Assuming that t1 – t0 = 2, we obtain for each ai a confidence region (x1i – 2; x1i + 2) 
corresponding to confidence probability 

    (1/ π2 ) �
−

2

2

exp (– t2/2) dt � 0.95.  

    The salesman fastens confidence tags on each box saying that | ai – x1i| < 2 believing, as 
Fisher does, that it is unnecessary to warn the buyer that the inscription is only based on one 
observation, he only honestly declares that the guarantee is not true for 5% of the boxes. 
    If the buyer intends to buy any box, then its contents will not justify the tag in only one 
case out of 20. However, if he wants to obtain a box, or several boxes, with a definite value ai 
= a to within ± 2, I would advise him to go to another store where the goods are sorted out 
more cautiously. Indeed, if the buyer required, for example, high-valued objects 
corresponding to the mean ai = a which are comparatively rare (for large values of a the prior 
probability p(a) is low), it is highly probable that, from among the 20 boxes with the 
appropriate tags bought by him, not one, but ten boxed will be worthless. 
    If the technical difficulty or the high cost of sampling are such that only one object can be 
inspected in each box, it would be necessary to know the (prior) density p(a). Then the tags 
ensuring that the errors occur not more often than in 5% of the boxes will correspond to 
intervals (xi ± ti) of unequal lengths, but they will guarantee that whichever definite box the 
buyer chooses, the probability of error will actually be equal to 0.05 with ti being determined 
from the equality 
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 = 0.95. 

    I shall not dwell on the problem of practically determining p(a) given the distribution 
P(x1i) of the x1i’s over all the stock. Theoretically, it is solved by means of the equality  
 
    exp (– t2/2)�a(t) = 

1xθ (t)                                                                            (10) 

 
and 

    
1xθ (t) = �

∞

∞−

P(x)eitxdx, �a(t) = �
∞

∞−

p(a)eitada 

are the characteristic functions of x1i and ai respectively. 
    It is also advantageous to bear in mind equality (10) in order to warn the too zealous 
advocates of Fisher against a rash conclusion that, since for a very large number of 
experiments the frequency of cases in which | x1i – ai| < t tends to the same value      

    (1/ π2 ) �
−

t

t

exp (– t2/2)dt 

independently of whether we consider ai or x1i  as given magnitudes 4, the limiting 
frequencies or probabilities p(ai) and P(x1i) should coincide 5, or at least be symmetrically 
connected.  
    Summing up the above, we see that the abandoning of the Bayes formula by Fisher leads 
to the confusion of the statistical frequency with mathematical probability 6 and to the 
identification of the case in which confidence is very close to the actual posterior probability 
with the instance in which it is only some mean of various posterior probabilities. In the latter 
case, the application of confidence probabilities can therefore lead to the same mistakes that 
are connected with considering general means for involved populations, as for example the 
application of a mean coefficient of mortality or literacy calculated for a given nation 
boasting a hundred million inhabitants to its various groups. 
 
    Notes 

 
    1. It is perhaps not amiss to indicate that, while criticizing here the concept of confidence, I 
would not at all desire to belittle the importance of that part of the investigations done by 
Fisher and other British statisticians which is connected with the problem of constructing 
functions F(x0; x1; …; xp; a1; …; ak) of (p + 1) independent variables x0, x1, …, xp (0 < p ≤  k) 
obeying one and the same law P(x; a1; a2; …; ak) whose laws do not depend on a1, a2, …, ap 
at any given values of ai (i = 1, 2, …, k). {This is hardly understandable.}My objections only 
concern the confidence interpretation of the results. 
    2. See my ������ ��������	��� (Theory of Probability). M. – L., 1946, Suppl. 4. It is 
known that, if E(x – a)2 exists, then, for any given function f(t) = f1(t),  

    lim �
1

0

t

t

fn(t)dt = (1/� π2 ) �
1

0

t

t

exp (– t2/2 �2) dt as n � 
. 

    3. In accord with what was said above, this statement would have been obviously wrong if 
the condition of independence of the xi’s be violated, and only those xi’s which are situated, 
for example, within some given interval would have been considered. 
    4. I hope that the previous pages have explained that this statement is mistaken. 



    5. The distribution ofξ , the arithmetic mean of x1i, x2i, …, xni, when having a sufficiently 

large n, will really tend to p(ai). Indeed, denoting the characteristic function of ξ  by �n(t), 
we obtain, instead of (10), the equality �n(t) = exp (– t2/2n) �a(t) so that �n(t) � �a(t) as n � 

. 
    6.{About 25 years later, Chuprov criticized Pearson and his school for confusing 
theoretical and empirical magnitudes, see my book (1990, in Russian), Chuprov. Göttingen, 
1996, §15.3.}        
 

5. L.N. Bolshev. Commentary on Bernstein’s Paper  

on the Fisherian “Confidence” Probabilities 

In: Bernstein, S.N. �������� 	�
������ (Coll. Works), vol. 4. N.p., 1964, pp. 566 – 569 … 
 

    Bernstein’s paper is the first one published in the Soviet mathematical literature that 
critically analyzed the theory of fiducial inferences developed by one of the founders of the 
modern mathematical statistics, Fisher (1935). The formal (the computational) side of the 
Fisherian theory usually leads to the same results as does the now widely spread theory of 
confidence intervals offered by the American mathematician Neyman (1938). The 
fundamental difference between the concepts of the two scholars lies in the interpretation of 
the obtained results. According to Neyman, the estimated parameter a is treated as an 
unknown constant. A confidence interval [a1(�); a2(�)] is constructed beforehand for its 
experimental (prior) determination with its ends being functions of a random variable � 
subject to observation and obeying a distribution with unknown parameter a. If the 
probability of the simultaneous existence of two inequalities,   
 
    a1(�) < a < a2(�)                                                                                           (1) 
 
does not depend on a, it is called the confidence probability or confidence coefficient 1.  
    In other words, the confidence probability is the prior probability of “covering” the 
unknown true value 2 of the parameter by the confidence interval. This interpretation of the 
confidence probability naturally persists when a is a random variable; indeed, that probability 
is calculated before the experiment and does not therefore depend on the prior distribution of 
the parameter a.  
    According to Fisher, the confidence coefficient is interpreted as the posterior probability 
of the simultaneous existence of the two inequalities        
 
    a1(x) < a < a2(x)                                                                                           (2) 

after it becomes experimentally known that the random variable � had taken the value x. This 
interpretation fails for an unknown constant a: once x becomes known, the boundaries a1(x) 
and a2(x) are not random anymore; the confidence probability can be either zero or unity. In 
attempting to surmount this difficulty in interpreting the confidence coefficient as posterior 
probability, Fisher additionally assumes that each observation � = x provides the so-called 
fiducial distribution of a depending 3, in the general case, on the parameter x. This 
distribution is such that the fiducial probability of the event (2) usually coincides with the 
prior confidence probability of (1) 4.  
    From the viewpoint of the classical theory of probability, the artificial introduction of 
fiducial distributions ought to be considered as an attempt at excluding the influence of the 
unknown prior distribution of a on the posterior probability  
 
    P[a1(x) < a < a2(x) / � = x].                                                                          (3) 
 



    Bernstein showed that the Fisherian interpretation of confidentiality as posterior 
probability contradicts the foundations of probability theory, and, specifically, is at variance 
with the Bayes theorem. This proposition proves that the confidence probability is actually 
the expectation of the posterior probability (3), see Bernstein’s formula (8).  
    The acceptance of the Fisherian concept will consequently imply the replacement of the 
posterior probability by its mean value; for a small number of observations this can lead to 
large mistakes. Thus, as stressed by Kolmogorov & Sarmanov (1962, p. 200, Note 4), it is 
proved, that, having 
 
one or a small number of observations, it is not possible, generally speaking, to preclude the 
role, indicated by the Bayes theorem, of prior information about the value of a.  
 
    Modern textbooks on mathematical statistics interpret the meaning and the practical use of 
the confidence intervals in accord with Neyman whose concept advantageously differs from 
the Fisherian notion by being logically irreproachable. More details are to be found in 
Kolmogorov (1942) and Neyman (1961). 
    Remark 1. The term ������������� ��������	�� (confidence probability) as applied by 
Bernstein is equivalent to the English Fisherian expression fiducial probability. Attempting 
to stress the fundamental distinction between his concept and Fisher’s notion, Neyman 
proposed a new term, confidence probability, which is again translated into Russian in the 
same way. It would have therefore been more natural and precise to say, confidence 
probability according to Fisher, or according to Neyman, respectively. More often, however, 
the attribution to Neyman is left out because it is only in that sense that the theory of 
confidence intervals is explicated in modern Soviet statistical literature. But, when desiring to 
stress that the Fisherian notion is meant, it is said fiducial probability rather than confidence 
probability in accord with Fisher.  
    Remark 2. The concluding section of Bernstein’s paper is devoted to an example showing 
that a wrong interpretation of the confidence coefficient as posterior probability can lead to 
considerably mistaken results. The problem of sorting formulated there can be solved rather 
simply by the Bayes formula provided that the prior distribution of the expectations of ai is 
known. It is still an open question whether this problem can be solved by means of the theory 
of confidence intervals (according to Neyman); it is unknown whether there exists a method 
of sorting ensuring (independently of the prior distribution of ai) the consumer, with a 
sufficiently low risk, the receipt of not less than 95% boxes satisfying his demand that 
    
    |ai – a| < 2.                                                                                                   (4) 
 
    In this connection, it ought to be stressed once more that Bernstein demonstrates not the 
deficiency of the method of confidence intervals, but only the absurdity of the wrong 
interpretation of confidence probability. It is easy to convince ourselves that, in the example 
offered, a reasonable interpretation and application of this method do not lead to nonsense; 
they only testify that, for the procedure of sorting introduced in this example, the problem is 
unsolvable without prior information on the distribution of ai. Indeed, if the customer intends 
to select several boxes for which 
 
    |x1i – a| < h                                                                                                   (5) 
 
(h > 0 and a, determining the method of sorting indicated by the author, are constants given 
beforehand), the distribution functions of the material values x1i of the chosen boxes will be 
represented by the formula 



    P(x1i < x) = F(x; ai) = C(ai) �
−

x

ha

exp [– (u – ai)
2/2]du 

where a – h < x < a + h and [1/C(ai)] is equal to the same integral extended over a – h ≤  x 
≤  a + h. These functions determine the conditional distribution of x1i given (5). 
    Consider random variables F(x1i; ai). It is easy to see that, if ai varies from – 
 to + 
, F 
decreases monotonically from 1 to 0. The difference (1 – F) as a function of ai represents a 
distribution function 5.  
    Let Ai and Bi be random variables determined as solutions of the equations    
     
    F(x1i; Ai) = 0.975, F(x1i; Bi) = 0.025. 
 
It is not difficult to convince ourselves that, for any fixed ai, the probabilities of the events (Ai 
≥  ai) and (Bi ≤  ai) are equal to 0.025. It follows that for any ai 
 
    P(Ai < ai < Bi / ai) = 0.95.                                                                            (6) 
 
This means that (6) persists for any prior distribution of ai.  
    In other words, (Ai; Bi) is a confidence interval for ai with (prior) confidence probability 
0.95. The length of this interval varies and essentially depends on x1i; if x1i tends to (a – h) or 
(a + h), then (Bi – Ai) � 
. Therefore, it is impossible to make any conclusions about 
whether, for the selected boxes, the inequalities (4) hold or do not hold given any h > 0. 
 
    Notes 
 
    1. In the more general case this coefficient is defined as the exact lower bound of the 
probabilities of inequalities (1) over all the admissible values of a. 
    2. {This is a rare example of a statistician applying a term usually restricted to the theory 
of errors.} 
    3. According to Fisher (1935), until the experiment, a is an unknown constant; its fiducial 
distribution, in his own words, is only revealed by sample observations. His approach can 
apparently be justified, if at all, only beyond the conventional theory of probability. {I have 
not found the quoted phrase in exactly the same wording.} 
    4. The difference between the fiducial and the confidence probabilities is only revealed 
when the fiducial distribution of the parameter a represents a convolution of some other 
fiducial distributions (Neyman 1941). 
    5. According to Fisher, this distribution should be called fiducial.  
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Foreword by Translator 

 
    Evgeny Evgenievich Slutsky (1880 – 1948) was an eminent mathematician and 
statistician, see the translation of Kolmogorov (1948) with my Foreword. Kolmogorov (p. 
69) stated that Slutsky “was the first to draw a correct picture of the purely mathematical 
essence of probability theory” and cited the paper here translated (“the present paper”, as I 
shall call it) and a later contribution (Slutsky 1925b). Kolmogorov (1933) referred to both 
these articles but did not mention the former in the text itself; curiously enough, that 
inconsistency persisted even in the second Russian translation of Kolmogorov’s classic 
published during his lifetime (Kolmogorov 1974, pp. 54 and 66). 
    The present paper first appeared in 1922, in Vestnik Statistiki, Kniga (Book) 12, No. 9 – 
12, pp. 13 – 21. Then Slutsky published it in a somewhat modified form (see his Notes 1 and 
2) in 1925, in Sbornik Statei Pamiati Nikolaia Alekseevicha Kablukova [Collected papers in 
Memory of Nikolai Alekseevich Kablukov], vol. 1. Zentralnoe Statisticheskoe Upravlenie, 
Moscow, pp. 254 – 262, and, finally, it was reprinted in the author’s Selected Works. Several 
years after 1922 Slutsky (1925a, p. 27n) remarked that back then he had not known 
Bernstein’s work (1917) which “deserves a most serious study”. 
Bernstein, S.N. (1917), An essay on an axiomatic justification of the theory of probability. 
Translated in this book.  
Kolmogorov, A.N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, 
Berlin. 
Kolmogorov, A.N. (1948). Obituary: Evgeny Evgenievich Slutsky. Translation (2002): Math. 
Scientist 27, 67 – 74. 
Kolmogorov, A.N. (1974). Second Russian translation of Kolmogorov (1933). Nauka, 
Moscow. 
Slutsky, E.E. (1925a), On the law of large numbers. Vestnik Statistiki, No. 7/9, pp. 1 – 55. 
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--- (1925b). Über stochastische Asymptoten und Grenzwerte. Metron 5, No. 3, pp. 3 – 89. 

 
*   *   * 

 
    The calculus of probability is usually explicated as a purely mathematical discipline, and it 
is really such with respect to its main substance when considered irrespective of applications. 
However, the pure mathematical nature of one element that enters the calculus from its very 
beginning is very questionable: any detailed interpretation of that element involves our 
thoughts in a domain of ideas and problems foreign to pure mathematics. Of course, I bear in 
mind none other than the notion of probability itself. As an illustration, let us consider, for 
example, the classical course of Academician Markov. 
    In the Introduction to its second edition (1908), he declares that he will treat the calculus 
of probability as a branch of mathematics, and each attentive reader knows how strictly he 



regards his promises. Markov shows this strictness at once, in the extremely typical of him 
comment on the second line of the very first page. There, he elaborates on the word we: 
 
    The word we is generally used in mathematics and does not impart any special subjectivity 
to the calculus of probability. 
 
Let us however compare this pronouncement with Markov’s definition of equipossibility that 
he offers on p. 2: 
 
    We call two events equally possible if there are no grounds for expecting one of them 
rather than the other one.  
 
He adduces a note saying that, according to his point of view,  
 
    various concepts […] are defined not so much by words, each of which in turn demands a 
definition, as by our attitude to them, which is ascertained gradually. 
 
    It is doubtless, however, that, in the given context, this remark should only be considered 
as a logically hardly rightful way out for the author’s feeling of some dissatisfaction with his 
own definition. That subjective element, whose shadow he diligently attempted to drive out 
by his remark on the first page, appears here once more so as to occupy the central position 
in the structure of the main notion, that must serve as the foundation for all the subsequent 
deliberations. 
    In my opinion, there is a means for countering this difficulty; there exists an absolutely 
drastic measure that many will however be bound to consider as cutting rather than 
untangling the Gordian knot. The legend tells us, that, nevertheless, such an attitude proved 
sufficient for conquering almost the whole world. I shall sketch the idea of my solution. 
    First of all, it is necessary to introduce the main notions defined in the spirit of strict 
formalism by following the classical example of Hilbert’s Grundlagen (1899). Such notions 
as event, trial, the solely possible events, (in)compatible events, etc, ought to be established 
in this way, i.e. with the removal of all the concepts concerning natural sciences (time, cause, 
etc).Let us call the complex of the solely possible and incompatible events A, B, …, H  an 
alternative, and the relation between them, disjunction. Then, instead of introducing the 
notion of equipossibility, we shall proceed as follows. 
    We shall consider such relations, which take place if some number is associated with each 
of these solely possible and incompatible events, under the condition that, if any of them (for 
example, A) is in turn decomposed into an alternative (either  �, or �, or �, …, or �), then the 
sum of those numbers, that occur to be associated with �, �, �, …, �, will be equal to the 
number associated with A. 
    The association just described should be understood as the existence of some one-valued 
but not one-to-one relation R between the events included in the alternative and the numbers. 
In addition, R is the same for all the events and possesses the abovementioned formal 
property, but in essence it remains absolutely arbitrary in the entire domain of the calculus 
considered as a purely mathematical discipline. It can even happen that, in the context of one 
issue, each term of an alternative is connected with some number by relation R , whereas 
each term of another alternative is in turn connected with some number by relation R� not 
identical with R ; the relation R� will take place for a third alternative, and so on. If, in 
addition, a formal connection between the relations R,, R), R+, … is given, purely 
mathematical complications, which the classical calculus of probability had never studied in 
a general setting, will arise. Leaving them aside, I return however to the simplest type.  



    Suppose that an alternative can be decomposed into the solely possible and incompatible 
events with which some fundamental relation R connects numbers equal one to another. I 
shall call such elementary events isovalent , and I shall introduce the notion of valency of an 
event as a proper fraction whose numerator is equal to the number of the elementary events 
corresponding to the given event, and whose denominator is the number of all the solely 
possible elementary and incompatible events included in the given alternative. 
    It is absolutely obvious that this foundation formally quite coincides with the classical 
foundation; hence, all the former’s purely mathematical corollaries will formally be the same. 
The word probability will everywhere be substituted by valency; the formulation of all the 
theorems will, mutatis mutandis, persist{with necessary alterations}; all the proofs will 
remain valid. The only change consists in that the very substance of the calculus will not now 
have any direct bearing on probability.  
    For example, the addition theorem will be formulated thus: If A and B are events 
incompatible one with another, the valency of the event “either A or B”   is equal to the sum 
of their valencies. The multiplication theorem will be: For compatible events A and B, the 
valency of the event “both A and B” is equal to the valency of one of them multiplied by the 
conditional valency of the other one; etc. 
    The purport of any theorem obviously remains purely formal  until we, when somehow 
applying it, associate some material sense with the fundamental relation R; that is, until we 
fix the meaning of those numbers, that in the given case are attached to the terms of the 
alternative. Knowing the sense in which such and such events are isovalent, we will be 
logically justified, on the grounds of our calculus, to state that some other definite events will 
also be isovalent or have such and such valency, again in the same sense. It will now be 
naturally inconsistent to call our science calculus of probability; the term disjunctive calculus 
will apparently do 2. 
    This science will be as formal and as free of all the non-mathematical difficulties as the 
theory of groups. There, we are known to be dealing with some things, but it remains 
indefinite with which exactly. Then, we have to do there with some relation that can pairwise 
conjugate any two things one with another so that the result of this operation will be some 
third thing from the same totality. Under these conditions, the theory of groups develops an 
involved set of theorems, mathematically very elegant and really important for various 
applications. Within the bounds of the theory itself, the material substance of that set remains 
indefinite which leads to formal purity and variety of applications, and is indeed one of the 
theory’s most powerful points. If the group consists of natural numbers, and the main 
operation providing a third thing out of the two given ones is addition, we obtain one 
possible interpretation; if the main operation is multiplication, we arrive at another 
interpretation; then, when compiling a group out of all possible permutations of several 
numbers, we get a still differing interpretation; and if, instead, we consider all possible 
rotations of some regular polyhedron, we have a yet new interpretation, etc. 
    In our case, we also have something similar. The formal notion of valency can have more 
than one single sense, and the meaning of the theorems known to us long since in their 
classical form is in essence also many-valued. Their nature remains however hidden and is 
only dwelt with during disputes, to a considerable extent fruitless, on the notion of 
probability. I shall attempt to sketch several possible interpretations of the calculus of 
alternatives. 
    First of all, we certainly have its classical form. We come to it by replacing isovalency by 
equipossibility and substituting probability for valency. This change may be considered from 
a purely formal, and from a material point of view. When keeping to the former, which is the 
only interesting one for a mathematician, we introduce the concepts purely conventionally. 
Suppose that the possibility of an event can be higher than, or equal to the possibility of 
another event. Presume also that two events, each decomposable into the same number of 



other solely and equally possible incompatible events, are themselves necessarily equally 
possible. Then, irrespective of either a more definite meaning of, or of the conditions for 
equipossibility, we are able to introduce, in the usual way, the notion of probability in its 
purely mathematical aspect. Or, otherwise, when keeping closer to the reasoning above, we 
may say: Suppose that possibility can be expressed numerically and that the possibility of an 
event is equal to the sum of the possibilities of those solely possible and incompatible events 
into which it is decomposable. Then, etc, etc. 
    This deliberation is tantamount to the following. We have a finished formal mathematical 
calculus complete with its notions and axioms. When applying it, we suppose that those 
axioms, that underpin the formal disjunctive calculus, are valid for some chosen concept, – 
for example, as in our case, for possibility. Thus, we presume that possibilities can be 
expressed by numbers; that all the terms of a given alternative are connected with these 
numbers by a one-to-one correspondence; that these latter obey those formal relations which 
we introduced for the numbers connected with the former by valency. From a purely 
mathematical viewpoint, this is apparently quite sufficient for passing on from the calculus of 
alternatives to the calculus of probability. 
    It is obvious however that all this only covers one aspect of the matter, and that here also 
exists another, material, so to say, side lying entirely beyond the bounds of purely 
mathematical ideas and interests. Indeed, for settling the issue of whether all the 
abovementioned notions and axioms categorically rather than conditionally suit the concepts 
possibility and probability, we ought to know what exactly do we mean by these notions. It is 
clear that this problem is of an absolutely special type requiring not a mathematical, but an 
essentially different phenomenological and philosophical approach. I think that for my 
formulation of the issues, the line of demarcation appears with sufficient clearness as though 
all by itself.  
    Let us now go somewhat farther in another direction. I have remarked that the calculus of 
alternatives admits not a single interpretation, but rather a number of them, and this formal 
generality is indeed one of its most important logical advantages over the classical calculus 
of probability. So as to justify this idea, I ought to indicate at least one more of its differing 
interpretations. Let us have a series of trials where each of the events A, B, …, H is repeated 
several times. The numbers of these repetitions, i.e., the actual absolute frequencies of the 
events, are uniquely connected with these because each event has one certain frequency. This 
relation is not biunique, because, inversely, two or more events can have one and the same 
frequency. Then, if some event is decomposable into several solely possible and 
incompatible kinds, the sum of their frequencies is equal to the frequency of the given event. 
Frequency thus satisfies those conditions under which I introduced the concept of valency 
into the calculus of alternatives. 
    We may therefore replace valency by relative frequency and thus obtain a number of 
theorems with respect to the latter without repeating all the deliberations or calculations, but 
jokingly, so to say, by a single substitution of the new term into the previous formal 
statements. Thus, we will have the addition and the multiplication theorems for frequencies, 
absolutely analogous to the known propositions of the calculus of probability. How far-
reaching are such similarities? Obviously, they go as far as the general foundation of 
definitions and axioms do. Had there been no other independent entities except these notions 
and axioms in the disjunctive calculus, or, respectively, the calculus of probability, then the 
calculus of frequencies would have formally covered the entire contents of both the two 
former calculuses. This, however, is not so. The issue of repeated trials and the concept of 
frequency enter the calculus of probability at one of its early stages; in addition, we should 
naturally find out whether, when assuming our second interpretation of the calculus of 
alternatives, the formal conditions that correspond to that stage can be, and are actually 
satisfied. 



    More interesting is a third interpretation. It goes much farther, covers a large and perhaps 
even the entire domain of our calculus provided only that we can agree with a purely 
empirical understanding of probability. Suppose that it makes sense to consider any number 
of trials under some constant conditions. Presume also that there exists a law on whose 
strength the relative number of the occurrences of any of the alternatively possible events 
must tend to some limit as the number of trials increases. This limiting relative 
frequency{These … frequencies}apparently satisfies{satisfy}those conditions, under which I 
introduced the notions of isovalency and valency of events. Hence, as far as the general 
foundation of the axioms reaches, all the theorems of the calculus of valency will possess 
this, as well as the classical interpretation. That the analogy goes very far is unquestionable. 
To say nothing about the almost trivial addition and multiplication theorems, it also covers 
the doctrine of repetition of events including such of its propositions as the Jakob Bernoulli, 
and the{De Moivre –}Laplace theorems. Small wonder that sometimes all civic rights are 
granted to this interpretation. Thus, we find it as a special favorite in the British school. What 
has it to do with the classical interpretation? Does it entirely cover the latter? And, if not, 
where do they diverge? Only in the understanding of the sense of the theorems, or perhaps in 
the extent of mathematical similarity? Until now, there are no definitive answers to any of 
these questions. 
    A rigorous revision of all the fundamentals of the calculus of probability, a creation of a 
rigorous axiomatics and a reduction of the entire structure of this discipline to a more or less 
visible mathematical form, are necessary. This however is only possible on the basis of a 
complete formalization of the calculus with the exclusion from it of all not purely 
mathematical issues. Neither probability, nor the potential limiting frequency possess such a 
formal nature. The calculus of probability should be converted into a disjunctive calculus as 
indicated above, and only then will it enter the system of mathematical sciences as its branch 
and become definitive, a quality which it is still lacking, and enjoy equal logical rights with 
the other branches. 
    My solution is however something more than a simple methodical device for disentangling 
the issues of the logic of the calculus of probability. So as to convince ourselves in this fact, 
suffice it to imagine that nature of logical purity which our calculus will obtain as a result of 
the indicated conversion. This nature is something objective, as are all the borders separating 
the sciences one from another. We reveal them, but we do not create them. Indeed, it needs 
only to compare with each other even those few theorems whose statements in terms of 
probabilities, frequencies and potential limiting frequencies is unquestionable.  
    Let us only imagine three such absolutely parallel series of definitions, axioms and 
theorems explicated independently, and, consequently, roughly speaking, separately from 
each other in three different treatises devoted to three supposedly separate calculuses 
respectively. In each case we will have independent series of ideas, definitions and proofs. 
We ask ourselves, whether the similarity between them is objective or subjective. The answer 
is self-evident. The general pattern and the course of reasoning are the same. Once we 
perceive this, we also observe that the likeness exists irrespective of our subjective 
arbitrariness. 
    It may be objected, that the formalization of the calculus of probability postulated here 
avoids exactly the most essential and the most interesting for theoretical statistics issues. This 
however is no objection. The essence of probabilities, the relations between probability and 
limiting frequency, and between the calculus of probability and the real course of things, – all 
these problems are important and interesting, but they are of another logical system, and, 
moreover, such, whose proper statement is impossible without solving simpler and logically 
more primitive problems. Their definitive and complete solution, as dictated by the entire 
development of mathematical thought, lies exactly in the direction whose defence is the 
subject of my study. We only have to dart a look on the issues, concerning the essence of the 



notion of probability and of its relation to reality, for understanding with full clearness their 
utter distinction from the formal mathematical problems comprising the subject of the 
disjunctive calculus and its axiomatics and logic. Thus, only a logical and phenomenological 
analysis absolutely not of a formal mathematical nature can indicate that probability is a 
category unto itself, completely independent of the notion of limiting frequency. 
    Now I allow myself a remark as a hint of a solely preliminary nature. Suppose that we 
have a number of frequencies which must surely approach some limit as the number of 
repetitions{of trials}increases unboundedly. It does not however follow at all that in some 
initial part of the trials the event could not have been repeated with a frequency sharply 
different from its limiting value. Suppose for example that a sharper deals the cards unfairly; 
that he cheats relatively less as the game goes on; and that in the limit, as the number of 
rounds increases unboundedly, each card will appear with frequency 1/52 as it should have 
happened under fair circumstances 3. Even without knowing anything about the law 
governing the composition of the series of trials, we would nevertheless be sure to discover, 
after observing the actual behavior of the frequencies, that, with probability extremely close 
to certainty, the probability of the event during the first series of the trials diverges from its 
limiting value not less than by such-and-such amount. True, the notion of limiting frequency 
can also be applied to the proportion of right and wrong judgements, but neither here is the 
issue definitively decided: just as in the case above, we may ask the{same}questions about 
the probability of judgement, about the frequency and the probability of that proportion 4.  
    The same is true with respect to the possibility of applying the calculus of probability to 
empirical experience. Not the latter guides us when we establish the calculus’ theorems, but, 
on the contrary, they, and only they, provide us with a prior compulsory clue for regulating it. 
From the calculus of probability we borrow the type of that law, which, following N.A. 
Umov 5, we might have called the law of chaos, of complete disorder. There exist domains of 
phenomena where the chain of causes and effects on the one hand, and the arrangement of 
idiographic information 6 on the other hand, ensure, in conformity with natural laws, the 
regularity of such a sequence: if the occurrence (non-occurrence) of some event is denoted by 
A (by B), then, in the limit, as the number of trials increases unboundedly, A ought to appear 
with the same relative frequency both in the entire series and after any combination of the 
events; equally often after A, and after B; after AA, AB, or BB; after AAB, AAA, ABA, etc, etc. 
    That such domains actually exist is shown by experience, but only when the idea of 
probability guides it and provides the very pattern of the law of chaos and the tests for 
establishing its action in one or another field, and for appraising the judgement which 
establishes it. Hence, in this respect the notion of probability also becomes indispensably 
necessary and logically primary. Is it even possible to justify the natural philosophical 
premises of the law of chaos without applying the notion of probability? I think that this is 
questionable. 
    Now, I have however went out of the boundaries of my main subject although this was 
apparently not quite useless for its elucidation. These concluding remarks will perhaps 
amplify the purely logical arguments by a vivid feeling, caused not by a logically formal 
consideration, but by direct vision and comprehension of the essence of things and issues. 
 
    Notes 
 
    1. After my text had appeared in Vestnik Statistiki, I improved some formulations making 
them more intelligible and introduced a few editorial corrections, but I did not change 
anything in essence. 
    2. After my report was published, Professor Bortkiewicz, in a letter{to me}, kindly 
suggested this term. 



    3.{I have omitted some details in this passage because Slutsky had not explained the 
essence of the game.} 
    4. {Some explanation is lacking.}  
    5.{Russian physicist (1846 – 1915). Slutsky provided no reference.} 
    6.{Idiography, the science of single facts, of history. This notion goes back to the 
philosophers Windelband and Rickert. Also see Sheynin (1996, p. 98).}  
 
    References 

 
Hilbert, D. (1899), Grundlagen der Geometrie. Teubner, Leipzig – Berlin, 1930. 
Markov, A.A. (1900), �	
�	����� ��������	��� (Calculus of Probability). Subsequent 
editions: 1908, 1913 and 1924. German translation of the second edition: 
Wahrscheinlichkeitsrechnung. Teubner, Leipzig – Berlin, 1912. 
Sheynin, O. (1990, in Russian), A.A.Chuprov: Life, Work, Correspondence. Göttingen, 1996. 

 
 

6a. E.E. Slutsky. [Earlier] Autobiograhy 
 
    My grandfather on my father’s side, Makary Mikhailovich Slutsky, served in Kiev in the 
Judicial Department. He began his career already before the Judicial Reform {of 1864} and 
stood out against the civil service estate of those times because of his exceptional honesty. He 
died in poverty, but he had been nevertheless able to secure higher education for my father, 
Evgeny Makarievich, who graduated in 1877 from the Natural-Scientific Department of the 
Physical and Mathematical Faculty at Kiev University.  
    From the side of my mother, Yulia Leopoldovna, I descend from Leopold Bondi, a physician 
of French extraction who, together with others {?}, moved to Russia under circumstances 
unknown to me. A part of his numerous descendants from two marriages established 
themselves as Russians. Thus, his son Mikhail, who joined the Russian Navy, was the father of 
the well-known Pushkin scholar S.M. Bondi. However, some of his children regarded 
themselves as Poles, and became Polish citizens after Poland was established as an 
independent state. 
    Soon after my birth my mother adopted Orthodoxy and, under the influence of my father, 
became an ardent Russian patriot in the best sense of that word and the Polish chauvinism of 
our relatives always served as a certain obstacle to more close relations. For about 30 years 
now, I have no information about these, absolutely alien {to me} representatives of our kin. 
After the death of my grandmother all the contacts between me and my relatives {in Russia} 
with them have been absolutely broken off 1.  
    I was born in 1880 in the village Novoe, former Mologsky District, Yaroslavl Province, 
where my father was a teacher and tutor-guide in the local teacher’s seminary. In 1886, not 
willing to cover up for his Director, who had been embezzling public funds, he lost his job. For 
three years we were living in poverty in Kiev after which my father became the head of a 
Jewish school in Zhitomir. There, he had been working until his resignation in 1899, again 
caused by a clash with his superiors.  
    But then, in 1899, I had just graduated from a classical gymnasium with a gold medal and 
entered the Mathematical department of the Physical and Mathematical Faculty at Kiev 
University. I earned my livelihood by private tutoring. In January 1901, I participated in a 
{student} gathering demanding the return to the University of two of our expelled comrades, 
and we refused to obey our superiors’ order to break up. In accordance with the then current 
by-laws of General Vannovsky 2, I, among 184 students, was forcibly drafted into the Army. 
Student unrest broke out in Moscow and Petersburg and in the same year the government was 
compelled to return us to the University.  



    However, already in the beginning of 1902 I was expelled once more because of {my 
participation in} a demonstration against the Minister Zenger and this time prohibited from 
entering any higher academic institution of the Russian Empire. My maternal grandmother 
whom I mentioned above had helped me to go and study abroad. From 1902 to 1905 I studied 
at the Machine-Building Department at Munich Polytechnical School. I had not graduated from 
there. When, in the fall of 1905, owing to the revolutionary movement in Russia, it became 
possible for me to enroll in a university in Russia, I entered the Law Faculty at Kiev 
University. 
    Munich was a turning point in my development. Circumstances imposed the machine-
building speciality on me; it oppressed me, and, as time went on, I liked it ever less. I was 
forced to analyze my situation and I discovered that my visual memory was very weak. 
Therefore, as I understood, I could not become a good mechanical engineer. And, by the same 
reason, I very badly memorized people by sight and mistook one person for another one even if 
having met them several times so that I was unable to be a political figure either. A further 
analysis of my abilities confirmed this conclusion. I studied mathematics very well and 
everything came to me without great efforts. I was able to rely on the results of my work but I 
was slow to obtain them. A politician, a public speaker, however, needs not only the power of 
thought but  quick and sharp reasoning as well. I diagnosed my successes and failures and thus 
basically determined the course of my life which I decided to devote exclusively to scientific 
work.  
    I became already interested in economics during my first student years in Kiev. In Munich, it 
deepened and consolidated. I seriously studied Ricardo, then Marx and Lenin’s Development of 
Capitalism in Russia, and other authors. Upon entering the Law Faculty, I already had plans 
for working on the application of mathematics to economics.  
    I only graduated from the University in 1911, at the age of 31. The year 1905 – 1906 {the 
revolutionary period} was lost since we, the students, barely studied and boycotted the 
examinations, and one more year was lost as well: I was expelled for that time period because 
of a boyish escapade. At graduation, I earned a gold medal for a composition on the subject 
Theory of Marginal Utility 3. However, having a reputation as a Red Student, I was not left at 
the University and {only} in 1916/1917 successfully held my examinations for becoming 
Master of Political Economy & Statistics at Moscow University. 
    In 1911 occurred an event that determined my scientific fate. When beginning to prepare 
myself for the Master examinations, I had been diligently studying the theory of probability. 
Then, having met Professor (now, academician) A.V. Leontovich and obtaining from him his 
just appeared book on the Pearsonian methods, I became very much interested in them. Since 
his book did not contain any proofs and only explained the use of the formulas, I turned to the 
original memoirs and was carried away by this work. In a year, – that is, in 1912, – my book 
������ ���������� (Theory of Correlation) had appeared. It was the first Russian aid to 
studying the theories of the British statistical school and it received really positive appraisal.                             
    Owing to this book, the Kiev Commercial Institute invited me to join their staff. I worked 
there from January 1913 and until moving to Moscow in the beginning of 1926 as an 
instructor, then Docent, and, from 1920, as an Ordinary Professor. At first I took courses in 
mathematical statistics. Then I abandoned them and turned to economics which I considered 
my main speciality, and in which I had been diligently working for many years preparing 
contributions that remained unfinished. Because, when the capitalist economics {in the Soviet 
Union} had been falling to the ground, and the outlines of a planned socialist economic regime 
began to take shape, the foundation for those problems that interested me as an economist and 
mathematician disappeared. The study of the economic processes under socialism, and 
especially of those taking place during the transitional period, demanded knowledge of another 
kind and other habits of reasoning, other methods as compared with those with which I had 
armed myself. 



    As a result, the issues of mathematical statistics began to interest me, and it seemed to me 
that, once I return to this field and focus all my power there, I would to a larger extent benefit 
my mother country and the cause of the socialist transformation of social relations. After 
accomplishing a few works which resulted from my groping for my own sphere of research, I 
concentrated on generalizing the stochastic methods to the statistical treatment of observations 
not being mutually independent in the sense of the theory of probability.      
    It seemed to me, that, along with theoretical investigations, I ought to study some concrete 
problems so as to check my methods and to find problems for theoretical work in a number of 
research institutes. For me, the methodical approach to problems and the attempts to prevent 
deviations from the formulated goal always were in the forefront. In applications, I consider as 
most fruitful my contributions, although not numerous, in the field of geophysics. 
    I have written this in December 1938, when compiling my biography on the occasion of my 
first entering the Steklov Mathematical Institute at the Academy of Sciences of the Soviet 
Union. I described in sufficient detail the story of my life and internal development up to the 
beginning of my work at Moscow State University and later events are sufficiently well 
outlined in my completed form. I shall only add, that, while working at the University, my 
main activity had been not teaching but work at the Mathematical Research Institute there. 
When the Government resolved that that institution should concentrate on pedagogic work 
({monitoring} postgraduate studies) with research being mainly focussed at the Steklov 
Institute, my transfer to the latter became a natural consequence of that reorganization.  
 
    Notes 
 
    1. {It had been extremely dangerous to maintain ties with foreigners, and even with relatives 
living abroad, hence this lengthy explanation. A related point is that Slutsky passed over in 
silence his work at the Conjuncture Institute, an institution totally compromised by the savage 
persecution of its staff.} 
    2. {Vannovsky as well as Bogolepov mentioned in the same connection by Chetverikov in 
his essay on Slutsky (also translated here) are entered in the third edition of  ������ 
�����	��� ������������, vols 4 and 3 respectively, whose English edition is called Great 
Soviet Encyclopedia. It is not easy, nor is it important, to specify which of them was actually 
responsible for expelling the students.} 
    3. {This unpublished composition is kept at the Vernadsky Library, Ukrainian Academy of 
Sciences.} 
 

6b. E.E. Slutsky. [Later] Autobiography 

 
    I was born on 7(19) April 1880 in the village Novoe of the former Mologsky District, 
Yaroslavl Province, to a family of an instructor of a teacher’s seminary. After graduating in 
1899 from a classical gymnasium in Zhitomir with a gold medal, I entered the Mathematical 
Department of the Physical and Mathematical Faculty at Kiev University. I was several times 
expelled for participating in the student movement and therefore only graduated in 1911, from 
the Law Faculty. Was awarded a gold medal for my composition on political economy, but, 
owing to my reputation of a Red Student, I was not left at the University for preparing myself 
for professorship. I passed my examinations in 1917 at Moscow University and became Master 
of Political Economy and Statistics. 
    I wrote my student composition for which I was awarded a gold medal from the viewpoint 
of a mathematician studying political economy and I continued working in this direction for 
many years. However, my intended {summary?} work remained unfinished since I lost interest 
in its essence (mathematical justification of economics) after the very subject of study (an 
economic system based on private property and competition) disappeared in our country with 



the revolution. My main findings were published in three contributions ([6; 21; 24] in the 
appended list {not available}). The first of these was only noticed 20 years later and it 
generated a series of Anglo-American works adjoining and furthering its results.  
   I became interested in mathematical statistics, and, more precisely, in its then new direction 
headed by Karl Pearson, in 1911, at the same time as in economics. The result of my studies 
was my book ������ ���������� (Theory of Correlation), 1912, the first systematic 
explication of the new theories in our country. It was greatly honored: Chuprov published a 
commendable review of it and academician Markov entered it in a very short bibliography to 
his �	
�	����� ��������	��� (Calculus of Probability). The period during which I had been 
mostly engaged in political economy had lasted to ca. 1921 – 1922 and only after that I 
definitively passed on to mathematical statistics and theory of probability. 
    The first work [8] of this new period in which I was able to say something new was devoted 
to stochastic limits and asymptotes (1925). Issuing from it, I arrived at the notion of a random 
process which was later destined to play a large role. I obtained new results, which, as I 
thought, could have been applied for studying many phenomena in nature. Other contributions 
[22; 31; 32; 37], apart from those published in the C.r. Acad. Sci. Paris (for example, on the 
law of the sine limit), covering the years 1926 – 1934 also belong to this cycle. One of these 
[22] 1 includes a certain concept of a physical process generating random processes and 
recently served as a point of departure for the Scandinavian {Norwegian} mathematician 
Frisch and for Kolmogorov. Another one [37], in which I developed a vast mathematical 
apparatus for statistically studying empirical random processes, is waiting to be continued. 
Indeed, great mathematical difficulties are connected with such investigations. They demand 
calculations on a large scale which can only be accomplished by means of mechanical aids the 
time for whose creation is apparently not yet ripe.  
    However, an attempt should have been made, and it had embraced the next period of my 
work approximately covering the years 1930 – 1935 and thus partly overlapping the previous 
period. At that time, I had been working in various research institutions connected with 
meteorology and, in general, with geophysics, although I had already begun such work when 
being employed at the Central Statistical Directorate.  
    I consider this period as a definitive loss in the following sense. I aimed at developing and 
checking methods of studying random empirical processes among geophysical phenomena. 
This problem demanded several years of work during which the tools for the investigation, so 
to say, could have been created and examined by issuing from concrete studies. It is natural 
that many of the necessary months-long preparatory attempts could not have been practically 
useful by themselves. Understandably, in research institutes oriented towards practice the 
general conditions for such work became unfavorable. The projects were often suppressed after 
much work had been done but long before their conclusion. Only a small part of the 
accomplishment during those years ripened for publication. I have no heart for grumbling since 
the great goal of industrializing our country should have affected scientific work by demanding 
concrete findings necessary at once. However, I was apparently unable to show that my 
expected results would be sufficiently important in a rather near future. The aim that I 
formulated was thus postponed until some later years. 
    The next period of my work coincides {began} with my entering the research collective of 
the Mathematical Institute at Moscow State University and then {and was continued}, when 
mathematical research was reorganized, with my transfer to the Steklov Mathematical Institute 
under the Academy of Sciences of the Soviet Union. In the new surroundings, my plans, that 
consumed the previous years and were sketchily reported above, could have certainly met with 
full understanding. However, their realization demanded means exceeding any practical 
possibilities. I had therefore moved to purely mathematical investigations of random processes 
[43; 44]; very soon, however, an absolutely new for me problem of compiling tables of 



mathematical functions, necessary for the theory of probability when being applied in statistics, 
wholly absorbed my attention and activity.  
    Such tables do exist; in England, their compilation accompanied the entire life of Karl 
Pearson who during three decades published a number of monumental productions. Fisher’s 
tables showed what can be attained on a lesser scale by far less work. Nevertheless, a number 
of problems in this field remained unsolved. The preparation of Soviet mathematical-statistical 
tables became topical and all other problems had to be sacrificed. The year 1940 – 1941 was 
successful. I was able to find a new solution of the problem of tabulating the incomplete 
gamma-function providing a more complete and, in principle, the definitive type of its tables. 
The use of American technology made it possible to accomplish the calculations during that 
time almost completely but the war made it impossible to carry them through. 
    I described all the most important events. Teaching had not played an essential part in my 
scientific life. I had been working for a long time, at first as a beginning instructor, then as 
professor at a higher academic institution having a purely practical economic bias, at the Kiev 
Commercial Institute, which under Soviet power was transformed into the Kiev Institute for 
National Economy. I had been teaching there from 1912 to 1926. The listeners’ knowledge of 
mathematics was insufficient which demanded the preparation of elementary courses. I do not 
consider myself an especially bad teacher, but I had been more motivated while working as 
professor of theoretical economy since my scientific constructions conformed to the needs of 
my listeners. During a later period of my life the scientific degree of Doctor of Sciences, 
Physics & Mathematics, was conferred on me as an acknowledgment of the totality of my 
contributions and I was entrusted with the chair of theory of probability and mathematical 
statistics at Moscow State University. However, soon afterwards I convinced myself that that 
stage of life came to me too late, that I shall not experience the good fortune of having pupils. 
My transfer to the Steklov Mathematical Institute also created external conditions favorable for 
my total concentration on research, on the main business of my scientific life. 
    A chain of events, which followed the war tempest, took me to Uzbekistan. But it is too soon 
to write the pertinent chapter of my biography. I shall only say that I am really happy to have 
the possibility of continuing my work which is expected to last much more than a year and on 
which much efforts was already expended, – of continuing it also under absolutely new 
conditions on the hospitable land of Uzbekistan.     
 
    Note 
 

    1. Its new version [42] was prepared on the request of Econometrica. 
 

 

7. N.S.Chetverikov. The Life and Scientific Work of Slutsky 
In author’s �����	��
�	��� �		��������� 

(Statistical Investigations. Coll. Papers). Moscow, 1975, pp. 261 – 281 
 

Foreword by Translator 
 

    Evgeny Evgenievich Slutsky (1880 – 1948) was an outstanding economist, statistician and 
mathematician. Kolmogorov (1948, p. 69) stated that, in 1922 – 1925, he was “the first to 
draw a correct picture of the purely mathematical essence of probability theory” and that (p. 
70) “the modern theory of stationary processes … originated from Slutsky’s works” of 1927 
– 1937 “coupled” with Khinchin’s finding of 1934. Earlier Kolmogorov (1933) referred to 
Slutsky’s papers [9] and [13] but did not mention the former in the text itself; curiously 
enough, the same happened even in the second Russian translation of 1974 of his classic.  



      Nevertheless, Slutsky is not sufficiently known in the West. In 1995,Von Plato, when 
studying modern probability, certainly mentioned him, but did not describe at all his 
achievements; see however Seneta (2001). 
    My contributions (1993; 1996) contain archival materials concerning Slutsky; my article 
(1999a; b) is devoted to him and also includes such materials and the latter is fuller in this 
respect.  
    The essay below complements other pertinent sources, notably Kolmogorov (1948). 
Regrettably, however, two negative circumstances should be mentioned. First, Chetverikov 
quoted/referred to unpublished sources without saying anything about their whereabouts. 
Second, Chetverikov’s mastery of mathematics was not sufficient, – he himself said so 
before adducing a long passage from Smirnov (1948), – and I had to omit some of his 
descriptions. 
    As compared with the initial version of this essay, the second one lacks a few sentences; I 
have inserted them in square brackets. Then, being able to see the texts of Slutsky’s 
autobiographies, I note that Chetverikov quoted them somewhat freely (although without at 
all corrupting the meaning of the pertinent passages). 
    A special point concerns terminology. Slutsky’s term “pseudo-periodic function” also 
applied by Smirnov, see above, and retained in the English translation of Slutsky’s paper 
[17], is now understood in another sense, see Enc. of mathematics, vols 1 – 10, 1988 – 1994. 
Chetverikov, moreover, applied a similar term, quasi-periodic function, in the same context. 
It is now understood differently and, in addition, does not coincide with “pseudo-periodic 
function” (Ibidem). Note that Seneta (2001) applies the adjective spurious rather than 
pseudo. Unlike Chetverikov and Kolmogorov, he also mentions Slutsky’s discovery [13] 
that, if a sequence of random variables {�i} tends in probability to a random variable �, then 
f(�i), where f is a continuous function, tends in probability to f(�). 

 

*   *   * 
    [The sources for this paper were Slutsky’s biography written by his wife (manuscript); 
Kolmogorov (1948) and Smirnov (1948); Slutsky’s autobiographies the first of which he 
presented when joining the Steklov Mathematical Institute in 1939, and the second one which 
he compiled for submitting it to the Uzbek Academy of Sciences on 3 December 1942; 
Slutsky’s note [27]; his letters to his wife and to me; and my personal recollections.] 
    An historical perspective and a long temporal distance are needed for narrating the life and 
the work of such a profound researcher as Evgeny Evgenievich Slutsky (7(19) March 1880 – 
10 March 1948). Time, however, is measured by events rather than years; in this case, first 
and foremost, by the development of scientific ideas. 
    Only a little more than ten years have passed since E.E. had died, but the seeds of new 
ideas sown by him have germinated and even ripened for the first harvest, – I bear in mind 
the rapid development of the theory of random functions.{To repeat,}however, a 
comprehensive estimation of his total rich and diverse heritage will only become possible in 
the future. 
    The description of Slutsky’s life presents many difficulties occasioned both by 
complications and contradictions of his lifetime and the complexity of his spiritual make-up: 
a mathematician, sociologist, painter and poet were combined in his person. In essence, his 
life may be divided into three stages: the periods of seeking his own way; of passion for 
economic issues; and the most fruitful stage of investigations in the theory of probability and 
theoretical statistics. The fourth period, when he went away into pure mathematics 1, had just 
begun and was cut short by his death. 
    E.E. grew up in the family of a teacher and educator of the Novinsk teachers’ seminary 
(former Yaroslav province). His father was unable to get along with the Director who had not 
been averse to embezzlement of state property, and, after passing through prolonged ordeals, 



his family settled in Zhitomir. There E.E. had learned in a gymnasium which later on he was 
unable to recall without repugnance. His natural endowments enabled him to graduate with a 
gold medal. His exceptional mathematical abilities and the peculiar features of his thinking 
had been revealed already in school. Having been very quick to grasp the main idea of 
analytic geometry, he successfully mastered its elements all by himself and without any 
textbooks. 
    After graduating in 1899, he entered the physical and mathematical faculty of Kiev 
University. There, he was carried away by the political wave of the student movement, and 
already in 1901, for participating in an unauthorized gathering (skhodka), he was expelled, 
together with 183 students, and drafted under compulsion into the Army on the order of 
Bogolepov, the Minister of People’s Education. Because of vigorous public protests coupled 
with disturbances at all higher academic institutions, that order was soon disaffirmed. 
Nevertheless, already next year, for participating in a demonstration against the Minister 
Senger, E.E. was again thrown out of the University, and this time banned from entering any 
other Russian higher institution. 
    Only fragmentary information about Slutsky’s active political work at that time, including 
the performance abroad of tasks ordered by a revolutionary group, is extant, but even so it 
testifies to the resolve and oblivion of self with which he followed his calling as understood 
at the moment. Owing to financial support rendered by his grandmother, E.E. became able to 
enter the machine-building faculty of the Polytechnical High School in Munich. Being cut off 
from practical political activities, he turned to sociology and was naturally enthralled by its 
main field, political economy{economics} He had begun by studying the works of Ricardo, 
then Marx’ Kapital and Lenin’s  Development of Capitalism in Russia, and turned to the 
classics of theoretical economy. Although technical sciences provided some possibilities for 
his inclination to mathematics to reveal itself, he felt a distaste for them. He mostly took 
advantage of the years of forced life abroad for deep studies of economic problems. At the 
end of 1904 E.E. organized in Munich a group for studying political economy and 
successfully supervised its activities. 
    After the revolutionary events of 1905{in Russia}he became able to return to his 
homeland. He abandoned technical sciences and again entered Kiev University, this time 
choosing the law faculty whose curriculum included political economy. His plans 
contemplating long years of studying theoretical economy with a mathematical bias have 
ripened. 
    Slutsky’s mathematical mentality attracted him to the development of those economic 
theories where the application of mathematics promised tempting prospects. However, now 
also his scientific activities and learning went on with interruptions. The years 1905 and 1906 
were almost completely lost {because of revolutionary events?}and in March 1908 he was 
expelled from the University for a year. As E.E. himself admitted, that disciplinary 
punishment followed after a “boyish escapade” resulting from his “impetuous disposition”. 
Nevertheless, in 1911, being already 31 years old, he graduated from the law faculty with a 
gold medal awarded for his diploma thesis “Theory of marginal utility”, a critical 
investigation in the field of political economy 2, but his firmly established reputation of being 
a “red student” prevented his further studies at the university. 
    These were the external events that took place during Slutsky’s first stage of life. They 
should be supplemented by one more development, by his marriage, in November 1906, to 
Yulia Nikolaevna Volodkevich. 
    Before going on to his second stage, let us try to discuss what were the inner motives, the 
vital issues, the inclinations that had been driving E.E. at that time. Those years may be 
called the period when he had been searching his conscience. An indefatigable thinker was 
being born; a person who criticized everything coming from without, who avidly grabbed all 
the novelties on which he could test his own ripening thoughts. He looked for his own real 



path that would completely answer his natural possibilities and inclinations. [He withdrew 
from practical revolutionary activities because he had soon understood that the path of a 
revolutionary was alien for him: in dangerous situations he was unable to orient himself 
quickly enough, he had no visual memory and he lacked many more of what was necessary 
for a member of an underground organization.]  
    E.E. was attracted by creative scientific work and he examined himself in various 
directions, – in technology and economics, in logic and the theory of statistics. In any of 
these domains, however, he only became aware of his real power when becoming able to 
submit his subject of study to quantitative analysis and mathematical thought. In one of his 
letters he wrote: 
 
The point is not that I dream of becoming a Marx or a Kant, of opening up a new epoch in 
science, etc. I want to be myself, to develop my natural abilities and achieve as much as is 
possible for me. Am I not entitled to that? 
 
    He aimed at finding his place in science that would be in keeping with his natural gifts. In 
1904, he wrote: 
 
A man must certainly be working {only} in that field to which his individuality drives him. … 
He must be living only there, where he is able to manifest it more widely, more completely, 
and to create, i.e., to work independently and with loving care. 
 
The word “independently” was not chosen randomly; it illuminated his creative life-work. 
When taking up any issue, he always began by thinking out the initial concepts and 
propositions. He always went on in his own, special manner, and the ideas of other authors 
only interested him insofar as they could serve for criticisms. This originality of thought 
deepened as the years went by and gradually led Slutsky to those boundaries after which not 
only new ways of solving{known}problems are opening up, but new, never before 
contemplated issues leading the mind to yet unexplored spaces, are discovered. 
    The most remarkable feature of Slutsky’s scientific work was the selfless passion with 
which he seeked the truth and which he himself, in a letter to his wife, compared with that of 
a hunter: 
 
    You are telling me of being afraid for my work, afraid of the abundance of my fantasy … Is 
it possible to work without risk? And is it worthwhile to undertake easy tasks possible for 
anyone? I am pleased with my work {published}in Metron exactly because it contains 
fantasy. For two hundred years people have been beating about the bush and no-one ever 
noticed a simple fact, whereas I found there an entire field open for investigation … It is 
impossible to avoid wrong tracks. Discovery is akin to hunting. Sometimes you feel that the 
game is somewhere here; you poke about, look out, cast one thing aside, take up another 
thing, and finally you find something … 
        My present work [17] [of 1925 – 1926 on pseudo-periodic waves created by the 
composition of purely random oscillations – N.C.] is, however, absolutely reliable. I am not 
pursuing a chimera, this is absolutely clear now, but it does not lessen the excitement of the 
hunt. In any case, I found the game, found it after the hunt was over… I am afraid that the 
purely mathematical difficulties are so great as to be unsurmountable for me. But neither is 
this, after all, so bad. 
 
    After graduating from the University, Slutsky plunged into the work of numerous 
scientific societies, and, at the same time, being compelled to earn money and wishing to 
pass on his views, knowledge, and achievements, into teaching. It seemed that he had left 



little time and strength for scientific work, but his creative initiative overcame every obstacle, 
and even during that difficult and troublesome period E.E. was able to publish his first, but 
nevertheless important investigations. Already the list of the scientific societies whose 
member he was, shows how diverse were his interests and how wide was the foundation then 
laid for future investigations. In 1909, still being a student, he was corresponding member of 
the Society of Economists at Kiev Commercial Institute; in 1911, he became full member, in 
1911 – 1913, he was its secretary, and, in 1913 – 1915, member of its council. In 1912 E.E. 
was elected full member of the{Kiev?}Mathematical Society; later on he joined the 
Sociological Society at the Institute for Sociological Investigations in Kiev, and in 1915 
became full member of the A.I. Chuprov 3 Society for Development of Social Sciences at 
Moscow University. 
    Owing to his disreputable political reputation, Slutsky’s pedagogical work at once 
encountered many obstacles. In 1911 he was not allowed to sit for his Master’s examinations 
at Kiev University 4 and in 1912 he was not approved as teacher. The same year his father-in-
law, N.N. Volodkevich, an outstanding educationalist of his time, took him on as teacher of 
political economy and jurisprudence at the{commercial}school established and headed by 
himself, but the Ministry for Commerce and Industry did not approve him as a staff worker. 
Only Slutsky’s trip to Petersburg and his personal ties made it possible for him to remain in 
that school and to be approved, in 1915, in his position. Yulia Nikolaevna taught natural 
sciences at the same school. The apartment of the young married couple was attached to the 
school building and it was there that his life became then “mostly tied to the desk and 
illuminated by the fire of creative life” (from his biography written by his wife). 
    Slutsky first became acquainted with theoretical statistics in 1911 – 1912 having been 
prompted by Leontovich’s book (1909 – 1911). It is impossible to say that that source, whose 
author later became an eminent physiologist and neurohistologist, member of the Ukrainian 
Academy of Sciences, was distinguished by clearness or correct exposition of the compiled 
material. Nevertheless, it was there that the Russian reader had first been able to learn in 
some detail the stochastic ideas of Pearson and his collaborators, and there also a list of the 
pertinent literature was adduced. That was enough for arousing Slutsky’s interest, and we can 
only be surprised at how quickly he was able to acquaint himself with the already then very 
complicated constructions of the English statisticians-biologists by reading the primary 
sources; at how deeply he penetrated the logical principles of correlation theory; and at how, 
by using his critical feelings, he singled out the most essential and, in addition, noticed the 
vulnerable spots in the Pearsonian notions.    
    It is almost a miracle that only a year later there appeared Slutsky’s own book [1] devoted 
to the same issues, explicated with such clearness, such an understanding of both the 
mathematical and logical sides, that even today it is impossible to name a better Russian aid 
for becoming acquainted with the principles of the constructions of the British school of 
mathematical statistics. And less than in two years the Journal of the Royal Statistical Society 
carried Slutsky’s paper [5] on the goodness of fit of the lines of regression criticizing the 
pertinent constructions of the English statisticians. A short review published in 1913 [3] 
shows how deeply E.E. was able even then to grasp such issues as Markov chains{a later 
term}and how ardently he defended Markov’s scientific achievements against the mockery of 
ignoramuses. 
    During those years, economic issues had nevertheless remained in the forefront. Even as a 
student, E.E. decided not to restrict his attention there to purely theoretical constructions and 
contemplated a paper on the eight-hour working day. He buried himself in factory reports, 
established connections with mills, studied manufacturing and working conditions. Issuing 
from the collected data, he distributed the reported severe injuries in accord with the hours of 
the day and established their dependence on the degree of the workers’ tiredness. Earnestly 
examining economic literature, he connected his studies with compilation of popular articles 



on political economy as well as with his extensive teaching activities which he carried out up 
to his move to Moscow in 1926. 
    E.E. remained in Volodkevich’s school until 1918 although school teaching was difficult 
for him. In the spring of 1915 he became instructor at the Kiev Commercial Institute. There, 
he read courses in sampling investigations and mathematical statistics, and, after the 
interruption caused by the World War, both there and at the Ukrainian Cooperative Institute, 
the history of economic and socialist doctrines. In 1917 Slutsky began teaching the discipline 
most congenial to him at the time, – theoretical economy. After the October revolution he 
taught in many newly established academic institutions: an elementary course in political 
economy at the Cooperative Courses for the disabled; introduction to the logic of social 
sciences at People’s University. The Commercial Institute remained, however, his main 
pedagogical place of work, and there he also read courses in theoretical economy and 
political economy (theory of value and distribution).  
    The listing above, even taken in itself, clearly shows that in those years Slutsky 
concentrated on issues of theoretical economy and, more specifically, on those that admitted 
a mathematical approach. After his diploma thesis and a small essay on Petty [4], E.E. 
published an investigation about “equilibrium in consumption” [6] that only much later 
elicited response and due appreciation in the Western literature 5. Less important research 
appeared in Kiev and Moscow respectively [10; 11]. However, two considerable 
contributions to economics [14; 15] were still connected with Kiev. 
    By 1922 Slutsky had already abandoned theoretical economics and afterwards devoted all 
his efforts to statistics. He himself, in his autobiography, explained his decision in the 
following way: 
 
    When the capitalist economics had been falling to the ground, and the outlines of a 
planned socialist economic regime began to take shape, the foundation for those problems, 
that interested me as an economist and mathematician, disappeared 6. 
 
This is a very typical admission: the decisive significance for E.E., when choosing a field for 
scientific work, was the possibility of applying his mathematical talent. His inclination was 
caused not as though by an artisan’s joy of skilfully using his tools, – no, he was irrepressibly 
attracted to abstract thinking, be it mathematics, logic, theory of knowledge or his poetic 
creativity. 
    [2] We already know that E.E. began his investigations in the theory of statistics in 1911 – 
1914, his first contributions having been the book on correlation theory [1] and a paper on 
the lines of regression [5]. In the beginning of September 1912, in Petersburg, where E.E. 
had come to plead for being approved as teacher, he became acquainted, and fruitfully 
discussed scientific and pedagogic issues with A.A. Chuprov, who highly appraised his book 
7. During 1915 – 1916 Slutsky’s name regularly appeared in the Statistichesky Vestnik, a 
periodical issued by the statistical section of the A.I. Chuprov Society at Moscow University. 
There, he published thorough reviews [7] or short notes [8] directed against wrong 
interpretation of the methods of mathematical statistics. 
    In 1922, after an interval of many years, Slutsky returned to the theory of statistics. He 
examined the logical foundation of the theory of probability and the essence of the law of 
large numbers from the viewpoint of the theory of knowledge. In November 1922, at the 
section on theoretical statistics of the Third All-Russian Statistical Conference, he read a 
report of great scientific importance. It touched on the main epistemological issue of the 
theory of probability, was published [9] and then reprinted with insignificant changes. In 
1925 he issued another important paper [12] introducing the new notions of stochastic limit 
and stochastic asymptote, applied them for providing a new interpretation of the Poisson law 
of large numbers and touched on the logical aspect of that issue by critically considering the 



Cournot lemma as formulated by Chuprov 8. Also in 1925, he published a fundamental 
contribution [13] where he defined and investigated the abovementioned notions, applied 
them for deriving necessary conditions for the law of large numbers, which he, in addition, 
generalized onto the multidimensional case. Later on this work became the basis of the 
theory of stochastic functions. 
    By 1926, Slutsky’s life in Kiev became very complicated. He did not master Ukrainian, 
and a compulsory demand of the time, that all the lectures be read in that language, made his 
teaching at Kiev higher academic institutions impossible. After hesitating for a long time, 
and being invited by the Central Statistical Directorate, he decided to move to Moscow. 
However, soon upon his arrival there, he was attracted by some scientific investigations (the 
study of cycles in the economy of capitalist countries) made at the Conjuncture Institute of 
the Ministry of Finance. E.E. became an active participant of this research, and, as usual, 
surrendered himself to it with all his passion. Here also, a great creative success lay ahead for 
him. In March of that year he wrote to his wife: 
 
    I am head over heels in the new  work, am carried away by it. I am almost 
    definitively sure about being lucky to arrive at a rather considerable 
    finding, to discover the secret of how are wavy oscillations originating by a 
    source that, as it seems, had not been until now even suspected. Waves, 
    known in physics, are engendered by forces of elasticity and rotatory 
    movements, but this does not yet explain those wavy movements that are 
    observed in social phenomena. I obtained waves by issuing from random 
    oscillations independent one from another and having no periodicities  
    when combining them in some definite way.  
     
    The study of pseudo-periodic waves originating in series, whose terms are correlatively 
connected with each other, led Slutsky to a new important subject, to the errors of the 
coefficients of correlation between series of that type. In both his investigations, he applied 
the “method of models”, of artificially reproducing series similar to those actually observed 
but formed in accord with some plan and therefore possessing a definite origin. 
    The five years from 1924 to 1928, in spite of all the troubles, anxieties and prolonged 
housing inconveniences caused by his move to Moscow, became a most fruitful period in 
Slutsky’s life. During that time, he achieved three considerable aims: he developed the theory 
of stochastic limit (and asymptote); discovered pseudo-periodic waves; and investigated the 
errors of the coefficient of correlation between series consisting of terms connected with each 
other. 
    In 1928, E.E. participated at the Congress of Mathematicians in Bologna. The trip 
provided great moral satisfaction and was a grand reward deserved by sleepless nights and 
creative enthusiasm. His report on stochastic asymptotes and limits attracted everyone. A 
considerable debate flared up at the Congress between E.E. and the eminent Italian 
mathematician Cantelli concerning the priority to the strong law of large numbers. Slutsky 
[16] had stated that it was due to Borel but Cantelli considered himself its author. 
Castelnuovo, the famous theoretician of probability, and other Italian mathematicians rallied 
together with Cantelli against Slutsky,  declared that Borel’s book, to which E.E. had referred 
to, lacked anything of the sort attributed to him by the Russian mathematician, and demanded 
an immediate explanation from him. E.E. had to repulse numerous attacks launched by the 
Italians and to prove his case. 
    The point was that Slutsky, having been restricted by the narrow boundaries of a paper 
published in the C.r. Acad. Sci. Paris, had not expressed himself quite precisely. He indicated 
that Borel was the first to consider the problem and that Cantelli, Khinchin, Steinhaus and he 
himself studied it later on. However, he should have singled out Cantelli and stressed his 



scientific merit. Borel was indeed the first to consider the strong law, but he did it only in 
passing and connected it with another issue in which he was interested much more. 
Apparently for this reason Borel had not noticed the entire meaning and importance of that 
law, whereas Cantelli was the first to grasp all that and developed the issue, and his was the 
main merit of establishing the strong law of large numbers. E.E. was nevertheless able to 
win. Understandably, he did not at all wish to make use of his victory for offending Cantelli. 
He appreciated the Italian mathematician; here is a passage from his letter to his wife 
(Bologna, 6 September 1928) 9: 
 
    [He is] not a bad man at all, very knowledgeable, wonderfully acquainted with Chebyshev, 
trying to learn everything possible about the Russian school (only one thing I cannot forgive, 
that he does not esteem Chuprov). In truth, he has brought fame to the Russian name in Italy, 
because he doesn’t steal but honestly says: that is from there, that is Russian, and that is 
Russian … Clearly one must let him keep his pride. 
 
    After a prolonged discussion of the aroused discord with Cantelli himself, and a thorough 
check of the primary sources, E.E. submitted an explanation to the Congress, agreed 
beforehand with Cantelli. The explanation confirmed his rightness but at the same time had 
not hurted Cantelli’s self-respect. After it was read out, Cantelli, in a short speech, largely 
concurred with E.E. This episode vividly characterizes Slutsky, – his thorough examination 
of the problems under investigation, an attentive and deep study of other authors, and a 
cordial and tactful attitude to fellow-scientists. He was therefore able not only to win his 
debate with Cantelli, but to convince his opponent as well. 
    In 1930, the Conjuncture Institute ceased to exist, the Central Statistical Directorate was 
fundamentally reorganized, and Slutsky passed over to institutions connected with 
geophysics and meteorology where he hoped to apply his discoveries in the field of pseudo-
periodic waves. However, he did not find conditions conducive to the necessary several years 
of theoretical investigations at the Central Institute for Experimental Hydrology and 
Meteorology. [These lines smack of considerable sadness but they do not at all mean that 
Slutsky surrendered.] In an essay [27] he listed his accomplished and intended works 
important for geophysics. He also explicated his related findings touching on the problem of 
periodicity, and indicated his investigation of periodograms, partly prepared for publication 
[26] Slutsky then listed his notes in the C.r. Acad. Sci. Paris [16; 18; 20 – 23] where he 
developed his notions as published in his previous main work of 1925 [13]. 
    To the beginning of the 1930s belong Slutsky’s investigations on the probable errors of 
means, mean square deviations and coefficients of correlation calculated for interconnected 
stationary series. He linked those magnitudes with the coefficients of the expansion of an 
empirical series into a sum of (Fourier) series of trigonometrical functions and thus opened 
up the way of applying those probable errors in practice. 
    Slutsky himself summarized his latest works in his report at the First All-Union Congress 
of Mathematicians in 1929 but only published (in a supplemented way) seven year later [30]. 
Owing to the great difficulties of calculation demanded by direct investigations of the 
interconnected series, Slutsky developed methods able to serve as an ersatz of sorts and 
called by a generic name “statistical experiment”. Specifically, when we desire to check the 
existence of a connection between two such series, we intentionally compare them in such a 
way which prevents a real connection; after repeating such certainly random comparisons 
many times, we determine how often parallelisms have appeared in the sequences of the 
terms of both series. They, the parallelisms, create an external similarity of connection not 
worse than the coincidences observed by a comparison of the initial series. Slutsky developed 
many versions of that method and applied it to many real geophysical investigations of wavy 
oscillating series. 



    E.E. did not belong to those statisticians-mathematicians for whom pure mathematics 
overshadowed the essence of studied phenomena. He thought that the subject of a 
methodological work should be determined by its material substance. 
  
    It seemed to me that, along with theoretical investigations, I ought to study some concrete 
problems so as to check my methods and to find the problems for theoretical work,  
     
he wrote in his autobiography submitted in 1939. Bearing in mind such aims, he studied the 
series of harvests in Russia over 115 years (compiled by V.G. Mikhailovsky), those of the 
cost of wheat over 369 years (Beveridge), series of economic cycles (Mitchell), etc. Passing 
on from economic to geophysical series, Slutsky then examined the periodicity of sunspots 
checking it against data on polar aurora for about two thousand years (Fritz 

10) and studied 
the peculiar vast information stored as annual rings of the giant sequoia of Arizona (mean 
data for eleven trees covering about two thousand years) 11. 
    And yet fate directed Slutsky to the domain of pure mathematics. In 1934 he passed on to 
the Mathematical Institute of Moscow University and in 1935 abandoned geophysics. In 
1939 he established himself at the Steklov Mathematical Institute of the Soviet Academy of 
Sciences. At the same time, having been awarded by Moscow University the academic status 
of Doctor of Mathematical and Physical Sciences honoris causa on the strength of his 
writings, and entrusted by the chair of mathematical statistics there, Slutsky apparently 
resumed the long ago forsaken teaching. [However, because of the situation that took shape 
at the University in those years,] teaching demanded more strength than he{still}possessed at 
that time. As he himself wrote,  
 
    Having been entrusted with the chair of the theory of probability{!}and mathematical 
statistics at Moscow University, I have convinced myself soon afterwards, that that stage of 
life came too late, and I shall not experience the good fortune of having pupils. 
 
    It seemed that, having consolidated his position at the Mathematical Institute, E.E. will be 
able to extend there his work on the theory of statistics. But his plans were too extensive, 
they demanded the establishment of a large laboratory, and, therefore, large expenses. That 
proved impossible, and Slutsky had to concentrate on investigations in the theory of 
stochastic processes and to plunge ever deeper into pure mathematics. 
    At the end of October 1941, when Moscow was partly evacuated, Slutsky moved with his 
family to Tashkent. A part of his{unpublished}works was lost. And still he [considered the 
year 1940/1941 as lucky and]wrote about that period: 
 
    I was able to find a new solution of the problem of tabulating the incomplete �-function 
providing a more complete, and, in principle, the definitive type of its table. The use of 
American technology allowed to accomplish the calculations almost completely in one year. 
But the war made it impossible to carry them through. 
 
    The work had indeed dragged on, and even after his return to Moscow three more years 
were required for their completion. I cannot fail to mention the selfless help rendered by N.V. 
Levi, a woman employee of the Mathematical Institute, who accomplished that task when 
Slutsky had already begun feeling himself ill. He developed lung cancer, and it was a long 
time before the disease was diagnosed although E.E. himself never got to know its nature. He 
continued to work on the Introduction to the tables where he was explaining the method of 
their compilation, but it was N.V. Smirnov who wrote the definitive text. On 9 March 1948 
Slutsky was still outlining the last strokes of the Introduction, but next day he passed away. 



    [3] Already in Kiev Slutsky had been deeply interested in the cognitive and logical side of 
the problems that he studied, especially concerning his investigations in mathematical 
statistics. His first independent essential writings were indeed devoted to these general issues. 
Later on, he essentially cooled down for them; he either solved them to a required by him 
degree, or his great success in more concrete investigations overshadowed philosophical 
problems. In any case, in the middle of the 1940s, E.E. even with some irritation refused to 
discuss purely logical concepts although he had been unable to disregard the then topical 
criticism levelled by Fisher against the problem of calculating the probabilities of hypotheses 
(of the Bayes theorem). 
    First of all Slutsky took it upon himself to ascertain the relations of the theory of 
probability to statistical methodology. To this aim, he singled out the formal mathematical 
essence of the theory itself by expelling from it all that, introduced by the philosophical 
interpretation of the concept of probability. So as to achieve complete clearness, he proposed 
to abandon the habitual terms and to make use of new ones: disjunctive calculus, valency 
(assigned to events), etc. To assign, as he stated, meant to establish some relation R between 
an event and its valency in accord with only one rule: if event A breaks down into a number 
of alternatives, the sum of all of their valencies must be equal to the valency of A. The 
valency of the joint event AB, that is, of the occurrence of the events A and B, was 
determined just as formally. These relations between valencies were included in the 
axiomatics of the disjunctive calculus, sufficient for developing it as a mathematical 
discipline. Its applications depended on the contents which we might introduce into the term 
valency and which can be probability, frequency, or, as a special notion, limiting frequency. 
To what extent will these interpreted calculuses coincide and cover each other, depends on 
the contents of their axiomatics, which, under differing interpretations, can be distinct one 
from another. However, these distinctions cannot concern the purely mathematical discipline, 
the disjunctive calculus, because its axiomatics is constructed independently of the 
interpretation of the subject of valency [9]. 
    When explaining his understanding of the logic of the law of large numbers, Slutsky 
issued from those considerations, and he also made use of the notions of stochastic asymptote 
and stochastic limit.{Chetverikov describes here Slutsky’s paper [13]: I advise readers to 
look up that contribution itself.} 
    Slutsky also criticized the purely logical Chuprov – Cournot{Cournot – 
Chuprov}construction that aimed at connecting probabilities with frequencies of the 
occurrence of phenomena in the real world, at throwing a “bridge” between them. He thought 
that the essence of the so-called Cournot lemma consisted in attaching to the law of large 
numbers the importance of a law of nature without any qualifying remarks about the 
probability of possible, although extremely rare exceptions. The notion of probability cannot 
be removed from the Cournot lemma, so, as he concluded, the logical value of the “bridge” 
itself is lost [12] 12. 
    Having been especially prompted by the need to work with time series and issuing from 
the concept of stochastic limit (asymptote), E.E. also constructed a theory of random 
functions.{A description of Slutsky’s pertinent findings follows.} 
    An important discovery made by Slutsky in the mid-1920s consisted in that he connected 
wavy oscillations with random oscillations and showed how the latter can engender the 
former […] Wavy oscillations are extremely common (for example, in series occurring in 
economics and meteorology), whereas unconnected randomly oscillating series are met with 
not so often. A practically important problem is, therefore, to derive the errors of the various 
general characteristics, – of the mean, the standard deviation, the correlation coefficient, – for 
connected series 13.  
    E.E. devoted much effort to the solution of that problem. His formulas are bulky, see for 
example the expression for the error of the correlation coefficient [24, p. 75]. Simpler 



formulas for particular cases are in [27]. Later Slutsky examined the possibility of applying 
the �2 test and its distribution to connected series as well as of determining the required 
magnitudes through the Fourier coefficients [25; 26]. 
    By issuing from his theory of connected series, and allowing for the course of random 
processes, Slutsky was able to provide a methodology of forecasting them, including 
sufficiently long-term forecasting, with given boundaries of error [29]. 
    We ought to dwell especially on his method of models (of statistical experimentation) for 
discovering connections between phenomena. His idea was as follows. When studying many 
problems not yet completely solved by theory, it is possible to arrange a statistical 
“experiment” and thus to decide whether the statistical correspondence between phenomena 
is random or not. For example, when selecting a number of best and worst harvests in Russia 
from among the series collected by Mikhailovsky for 115 years, we can compare them with 
the series of maximums and minimums of the number of sunspots for more than 300 years. If 
such comparisons are{if the correspondence is} only possible after shifting one of the series 
with respect to the other one, then, obviously, the coincidences will be random. However, 
since the sum of the squares of the discrepancies 14 is minimal when those series are 
compared without such shifting, we may be sufficiently convinced in that the coincidences 
are not random [28]. 
    I am unable to appraise Slutsky’s purely mathematical studies and am therefore quoting 
most eminent Soviet mathematicians. Smirnov (1948, pp. 418 – 419), after mentioning 
Slutsky’s investigation [13], wrote: 
 
    The next stage in the same direction was his works on the theory of continuous stochastic 
processes or random functions. One of Slutsky’s very important and effective findings here 
was the proof that any random stochastically continuous function on a segment is 
stochastically equivalent to a measurable function of an order not higher than the second 
Baire class. He also derived simple sufficient conditions for a stochastic equivalence of a 
random function and a continuous function on a segment, conditions for the differentiability 
of the latter, etc. These works undoubtedly occupy an honorable place among the 
investigations connected with the development of one of the most topical issues of the 
contemporary theory of probability, that{issue or theory?}owes its origin to Slutsky’s 
scientific initiative. 
    The next cycle of Slutsky’s works (1926 – 1927) was devoted to the examination of random 
stationary series, and they served as a point of departure for numerous and fruitful 
investigations in this important field. Issuing from a simplest model of a series obtained by a 
multiple moving summation of an unconnected series, he got a class of stationary series 
having pseudo-periodic properties imitating, over intervals of any large length, series 
obtained by superposing periodic functions. His finding was a sensation of sorts; it 
demanded a critical revision of the various attempts of statistical justification of  periodic 
regularities in geophysics, meteorology, etc. It occurred that the hypothesis of superposition 
of a finite number of regularly periodic oscillations was statistically undistinguishable from 
that of a random function with a very large zone of connectedness. 
    His remarkable work on stationary processes with a discrete spectrum was a still deeper 
penetration into the structure of random functions. In this case, the correlation function will 
be almost periodical. Slutsky’s main result consisted here in that a random function was also 
almost periodic, belonged to a certain type and was almost everywhere determined by its 
Fourier series. 
    These surprisingly new and fearlessly intended investigations, far from exhausting a very 
difficult and profound problem, nevertheless represent a prominent finding of our science. 
With respect to methodology and style, they closely adjoin the probability-theoretic concepts 
of the Moscow school (Kolmogorov, Khinchin), that, historically speaking, originated on a 



different foundation. The difficult to achieve combination of acuteness and wide theoretical 
reasoning with a quite clearly perceived concrete direction of the final results, of the final 
aim of the investigation, is Slutsky’s typical feature. 
 
    Proving that Slutsky’s works were close to those of the Moscow school, Kolmogorov 
(1948, p. 70) stated: 
 
    In 1934, Khinchin showed that a generalized technique of harmonic analysis was 
applicable to the most general stationary processes considered in Slutsky’s work […] The 
modern theory of stationary processes, which most fully explains the essence of continuous 
physical spectra, has indeed originated from Slutsky’s works, coupled with this result of 
Khinchin. 
    After E.E.’s interest in applications had shifted from economics to geophysics, it was quite 
natural for him to pass from considering connected series of random variables to random 
functions of continuous time. The peculiar relations, that exist between the different kinds of 
continuity, differentiability and integrability of such functions, make up a large area of the 
modern theory of probability whose construction is basically due to Slutsky [19; 20; 26; 30 – 
33] 15. Among the difficult results obtained, which are also interesting from the purely 
mathematical viewpoint, two theorems should be especially noted. According to these, a 
‘stochastically continuous’ random function can be realized in the space of measurable 
functions [31; 33]; and a stationary random function with a discrete spectrum is almost 
periodic in the Besikovitch sense with probability 1 [32]. 
 
    Kolmogorov then mentions the subtle mastery of Slutsky’s work on the tables of 
incomplete �- and B-functions that led him to the formulation of general problems. The issue 
consisted in developing a method of their interpolation, simpler than those usually applied, 
but ensuring the calculation of the values of these functions for intermediate values of their 
arguments with a stipulated precision. For E.E., this, apparently purely “technical”, problem 
became a subject of an independent scientific investigation on which he had been so 
enthusiastically working in his last years. He was able, as I indicated above, to discover a 
new solution of calculating the incomplete �-function, but that successful finish coincided 
with his tragic death.    
  
    Notes 
   
    1.{Chetverikov thus separated the theory of probability from pure mathematics.} 
    2. {Still extant at the Vernadsky Library, Ukrainian Academy of Sciences, Fond 1, No. 
44850 (Chipman 2004, p. 355.} 
    3.{A.I. Chuprov, father of the better known A.A. Chuprov.} 
    4. He only held them in 1918, after the revolution, at Moscow University. 
    5. Slutsky made the following marginal note on a reprint of Schults (1935): “This is a 
supplement to my work that began influencing{economists}only 20 years after having been 
published”.  
    6.{This explanation would have only been sufficient if written before 1926. Below, 
Chetverikov described Slutsky’s work in theoretical economics during 1926 – 1930 at the 
Conjuncture Institute and then implicitly noted that in 1930 the situation in Soviet statistics 
had drastically worsened. I (2004) stated that Slutsky had abandoned economics largely 
because of the last-mentioned fact. On the fate of the Conjuncture Institute see also Sheynin 
(1996, pp. 29 – 30). Kondratiev, its Director, who was elbowed out of science, persecuted, 
and shot in 1938 (Ibidem), had studied cycles in the development of capitalist economies. In 
at least one of his papers, he (1926) had acknowledged the assistance of Chetverikov and 



Slutsky, a fact that Chetverikov naturally had to pass over in silence. Three papers devoted to 
Kondratiev are in Ekonomika i Matematich. Metody, vol. 28, No. 2, 1992.} 
    7.{I (1996, p. 44) reprinted Chuprov’s review originally published in a newspaper. I also 
made public Slutsky’s relevant letters to Markov and Chuprov and Slutsky’s scientific 
character compiled by Chuprov (pp. 44 – 50). Slutsky’s correspondence with Chuprov 
discussed, among other issues, the former’s encounter with Pearson. Three letters from 
Slutsky to Pearson dated 1912 are now available (Sheynin 2004, pp. 227 – 235.} 
    Chuprov was six years older than Slutsky, had much more teaching experience, and was 
the generally accepted head of the{Russsian}statistical school. In 
the{Petersburg}Polytechnical Institute, he laid the foundation of teaching the theory of 
statistics. 
    8.{Chetverikov repeated the mistake made by Chuprov (1909, pp. 166 – 168). The latter 
stated that Cournot had provided a “canonical” proof of the law of large numbers. In actual 
fact, Cournot did not even formulate that law (and did not use that term), and his “Lemma” (a 
term only used by Chuprov himself) had simply indicated (after Dalembert!) that rare events 
did not happen (Cournot 1843, §43). Chuprov, however, interpreted that statement as “did 
not happen often”. Chetverikov was translator of Cournot (Moscow, 1970). Note that Slutsky 
[12, p. 33] followed Chuprov.} 
    9.{The translation of the passage below is due to Seneta (1992, p. 30) who published the 
letter (as well as another relevant one from Slutsky to his wife) in full. In 1970 Chetverikov 
had given me copies of these letters and about 1990 I sent them to Seneta. Seneta 
acknowledged my help in obtaining “important materials” but, being concerned that I could 
have problems with the Soviet authorities, did not elaborate. I (1993) explained all that and 
provided additional material concerning Chuprov, Slutsky and Chetverikov.} 
    10.{Hermann Fritz (1830 – 1893), see the appropriate volume of Poggendorff’s 
Handwörterbuch.}  

    11. Slutsky’s large work on those annual rings including all the pertinent calculations got 
lost during his evacuation from Moscow.    
    12.{Chuprov and Slutsky formulated the “Cournot lemma” not as Cournot himself did, see 
Note 7.} 
    13. These errors are usually many times greater than the respective errors in unconnected 
series. 
    14.{A loose but understandable description.} 
    15.{I changed the numbering, here and below, to conform to that in the present paper.} 
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8. Romanovsky. V.I. His reviews of R.A. Fisher;  

official attitude towards him; his obituary 

  
    Vsevolod Ivanovich Romanovsky (1879 – 1954) was an outstanding mathematician and 
statistician. He also originated statistical studies in Tashkent and might certainly be also 
remembered as an educationalist. Bogoliubov & Matvievskaia (1997) described his life and 
work but have not dwelt sufficiently on his ties with Western scientists (or on the ensuing 
criticism doubtless arranged from above), and this is what I am dealing with  by translating 
his reviews of Fisher’s books, pertinent materials of a Soviet statistical conference of 19481 
(fragments of one report and the resolution) and a publisher’s preface to the Russian 
translation of Fisher’s Statistical Methods… My manuscript “Romanovsky’s correspondence 
with Pearson and Fisher” intended for the forthcoming volume commemorating A.P. 
Youshkevich, will make public eight of his letters to Pearson (1924 – 1925) and 23 letters 
exchanged in 1929 – 1938 between him and Fisher 2.  
    Some of Romanovsky’s writings (1924; 1934) not translated below also bear on my 
subject. In the first of them, he (pt. 1, p. 12) called Pearson “our celebrated contemporary”, 
and, in the second part, discussed the latter’s work. Lenin had severely criticized Pearson’s 
ideology (Sheynin 1998, p. 530), and, beginning with ca. 1926, Soviet statisticians had been 
rejecting Pearson’s work out of hand 3. In the second writing, Romanovsky discussed the 
work of Fisher. He argued that it should be developed and propagandized (p. 83), that 
Fisher’s Statistical Methods …was almost exclusively “prescriptive”, which “distressed” 
those readers, who wished to study the described issues deeper, but that that book ought to be 
translated into Russian (p. 84). He also noted that Fisher’s methods were unknown to Russian 
statisticians and put forward recommendations concerning the teaching of statistics. In 
particular, Romanovsky (p. 86) advised the introduction of optional studies of statistical 
applications to genetics; cf. the Resolution of the Soviet conference below! 
 
    Notes 

 

    1. The criticism levelled there against Romanovsky was comparatively mild, no doubt 
because the participants simply obeyed ideological orders. Nevertheless, it led to a further 
attack against him, see my introductory remarks to the translation of Sarymsakov (1955) 
below. A highly ranked geodesist noted mistakes in Romanovsky’s treatise on the theory of 
errors and supported his remarks by stupid ideological accusations. He even alleged that 
Romanovsky’s expression “probability … is described by the law …” was unacceptable 
because Marx had declared that the world needed change rather than description. 
    2. In one of his letters to Fisher written in Paris in 1929, Romanovsky called the Soviet 
political police “the most dreadful and mighty organization”.  
    3. Even Fisher became suspect. Here is an editorial note to Romanovsky’s paper (1927, p. 
224): “The editorial staff does not share either the main suppositions of Fisher, who belongs 
to the Anglo – American empiricists’ school, or Romanovsky’s attitude to Fisher’s 
constructions …”  

 
8a.V.I. Romanovsky.  

Review of R.A. Fisher “Statistical Methods for Research Workers“. London, 1934 
Sozialistich. Rekonstruksia i Nauka, No. 9, 1935, pp. 123 – 127 



 
    One of the most typical features in the history of mathematical statistics during the last 20 
– 25 years is the rapid development of the theory of small samples, rich in important 
achievements. Its main problem is to enable to make as justified as possible inferences about 
phenomena or properties, for whose complete and adequate description very, if not infinitely 
many observations are needed, by issuing from a small number of statistical experiments or 
observations. Such problems are most often encountered in natural sciences and their 
applications, – in biology, agronomy, selection, etc. There, it is frequently required to obtain 
as reliable as possible conclusions about a phenomenon that can only be studied statistically, 
and, therefore, from the viewpoint of classical statistics, that ought to be observed many 
times. However, the real situation, for example when investigating the action of various 
fertilizers or the properties of several varieties of a cultivated plant, does not allow to make 
many observations. 
    The development of the theory of small samples is mainly due to a most prominent 
scientist, the English mathematician and statistician Ronald Aylmer Fisher, Professor of 
eugenics at London University. For a long time (for 15 years), until becoming, in 1933, the 
Galton chairperson, he was head of the statistical section of the oldest English agronomical 
station at Rothamsted. It was there that his practical work led to theoretical and practical 
achievements in mathematical statistics, which made him known the world over and ensured 
his election to the Royal Society, and which are almost completely reflected in the book 
under review. From among 82 of Fisher’s contributions published until now, 40 are devoted 
to theoretical research in mathematical statistics and 42 deal with its applications to the 
theory of Mendelian inheritance, agronomy, methodology of field experimentation, soil 
science, meteorology, theory of evolution, etc. 
    The first edition of Fisher’s book appeared in 1925 and the fifth in 1934 which testifies to 
its exceptional success among researchers in biology, agronomy, etc. The book was indeed 
mainly intended for them since it cannot at all be a theoretical guide to statistics, to say 
nothing about beginners or those inadequately versed in that discipline. The reader will not 
find a coherent theoretical exposition, proofs or derivations of the theorems applied there. On 
the other hand, he will see many very interesting and topical problems, mostly biological; 
exact indications about, and precise interpretation of their solution; and auxiliary tables 
whose compilation is not explained but whose usage and possible applications are described 
in detail. 
    The author quite deliberately eliminated a consistent theory whose foundation consists in 
logical and mathematical ideas, which are too difficult for an ordinary natural-scientific 
researcher and demand outstanding mathematical training. Their avoidance is therefore quite 
natural since the book aims at helping biologists, agronomists and others. According to 
Fisher’s opinion, the practical application of the general theorems of mathematical statistics 
is a special skill, distinct from that required by their mathematical justification. It is useful for 
many specialists for whom mathematical substantiations are not necessary. 
    The most typical feature of Fisher’s book is the novelty of the explicated methods, their 
deep practicality which meets the real demand made on statistical investigations in natural 
sciences. Classical statistics, the pre-Pearsonian, and to a large extent even the Pearsonian 
statistics, is characterized by the development of methods only suitable for statistical series or 
totalities comprising a large amount of data. The newest statistics, however, is being 
developed, as mentioned above, in the direction of deriving methods applicable for any, even 
for a very small number of observations. The theory of small samples is the theoretical 
foundation, the vital nerve of Fisher’s book. This will become especially clear when I shall 
go over to a systematic review of its contents.  
    The book begins with an introductory chapter providing a general definition of statistics as 
a branch of applied mathematics 1 where that science is made use of for treating observations. 



Here also, the author considers the main problems of statistics: the study of populations 
(totalities, collectives) and variability as well as of reduction of data. Population is 
understood not only as a collection of living individuals or of some objects, but, in general, 
as a totality of any unities yielding to statistical methods of study.  
    The theory of errors, for instance, is engaged in studying totalities of measurements of 
definite magnitudes. The study of populations naturally leads to the examination of 
variability which in turn involves the notions on the distribution of frequencies in finite and 
infinite totalities, and on correlation and covariation. Reduction of data consists in the 
description of involved totalities consisting of large amounts of data by means of a small 
number of numerical characteristics. These must as far as possible exhaust all that which is 
interesting or important for a given researcher in the totality. 
    When considering the study of populations, Fisher introduces the notion of a 
hypothetically infinite totality of values, which are possible under the same general 
conditions along with those actually observed, and such with respect to which the observed 
data constitute a random sample; the concept of a statistic, – of an empirical magnitude 
formed from the experimental data and serving for estimating the parameters of an infinite 
totality. 
    Then he formulates the three main problems originating when reducing the data: 
specification (the choice of a special form for the law of distribution of an infinite totality); 
estimation (the choice of statistics for estimating the parameters of infinite totalities) and the 
problem of distributions (derivation of precise laws of the distribution of the possible values 
of the statistics in samples similar to that under consideration). The third problem also 
includes the issue of determining tests of goodness of fit between empirical and theoretical 
distributions. Then follows a classification of statistics (consistent and inconsistent, effective 
and sufficient) which is one of Fisher’s most original and interesting statistical ideas. […] 
    All the book is a successive consideration of problems that can be solved by means of 
three distributions: the �2  discovered by Pearson in 1900 and essentially supplemented by 
Fisher; the t-distribution first established by Student (Gosset) in 1908; and the z-distribution 
introduced by Fisher in 1924. […] 
    The end of Chapter 2 is devoted to cumulants, these being special statistics introduced by 
Fisher instead of the moments and possessing some advantages as compared with them. […] 
At the end of{Chapter 4}Fisher considers the important issue of expanding �2 in components 
and applies his findings to studying the discrepancies between experiment and theory in 
Mendelian heredity. […] The second part{of Chapter 5}deals with the coefficients of linear 
and curvilinear regression in the case of two or more variables and with estimation of them, 
and of the discrepancies between them, which, again, is done by means of the t-distribution. 
[…] 
    The second table{in Chapter 6}enables to determine the appropriate value of the 
correlation coefficient r given  
 
    Z = (1/2)log nat[(1 + r)/(1 – r)]. 
 
The function Z is a transformation of r discovered by Fisher and remarkable in that its 

distribution is very close to normal with variance approximately equal to 1/ 3 - n for any 
values of r and the number of experiments n. The coefficient r is derived if these constitute a 
random sample from a normal population. This function enables a more precise estimate of r 
or of the discrepancies between its various values than that achieved by the usual formula for 
the mean square error of r which for small samples is not reliable at all. […]  
    The analysis of variances … developed by Fisher has most various and important 
applications. […] 



    Drawing on examples from genetics, Fisher shows{in Chapter 9}how to apply his method 
of maximum likelihood for estimating the sum{the quantity}of information inherent in the 
available data as well as its part made use of by various methods of their treatment. 
[…] The book is a remarkable phenomenon in spite of the existence, at present, of many 
writings devoted to mathematical statistics among which excellent contributions can be 
indicated, especially in English (for example, those of Yule, Tippett, Bowley, Kelley). Fisher 
indeed describes modern methods of mathematical statistics, efficacious and deeply practical 
on the one hand and based on rigorous stochastic theory on the other hand. There is no other 
such source except for Tippett (1931) that is close to the problems of investigators in natural 
sciences, thoroughly and comprehensively providing for all his requirements and completely 
and deeply describing all the details of statistical methodology in biology and at the same 
time being just as profoundly substantiated by theory. 
    The exposition is not everywhere clear, in some places it demands efforts for grasping the 
author’s ideas, but it is always consistent, comprehensive, rich in subtle and original remarks 
and is fresh as a primary source. Indeed, its subject-matter is almost completely Fisher’s own 
creation, checked in practice by him or his students; and what is borrowed, is deeply thought 
out and recast. 
    It is in the highest measure desirable to publish Fisher’s book in Russian, the more so since 
it is already translated and issued as a manuscript in a small number of copies by the Lenin 
All-Union Agricultural Academy 2.  
  

8b. V.I. Romanovsky.  

Review of R.A.Fisher “The Design of Experiments”. Edinburgh, 1935 
Sozialistich. Nauka i Tekhnika, No. 7, 1936, pp. 123 – 125  

 
    The newest methods of mathematical statistics based on the theory of small samples are 
called upon for playing an extremely important role in modern scientific methodology. In 
their context, many problems of the classical inductive logic are being solved anew, more 
precisely and deeply. 
    The new book of the English statistician R.A. Fisher, known the world over, that appeared 
in 1935, is indeed devoted to throwing light on the issues of inductive logic from the 
viewpoint of statistical methodology. It is a development of one of the chapters of his 
generally known contribution, Statistical Methods for Research Workers, and its title is 
typical. Since it discusses fundamental problems of the methodology of scientific 
investigation and the methods of their best and most proper solution, it is in some aspects 
even more important and more deserving of attention than that previous book. Its importance 
is enhanced by its considerations being based on long years of practical research and 
corroborated by various and numerous applications. 
    The book begins by indicating the two-pronged criticism usually levelled against 
experimental conclusions: It is alleged that either the experiment was mistakenly interpreted, 
thought or poorly carried out. The interpretation of trials or observations is, in essence, a 
statistical problem, but it does not exceed the bounds of inductive logic. The design of 
experiments is an issue of their logical structure and is most closely connected with their 
interpretation. The nature of both problems is the same and consists in revealing the logical 
conditions whose fulfillment can extend our knowledge by experimentation. It is very 
important that inductive inferences can be inaccurate but that the very nature of the 
inaccuracy and its degree can be determined absolutely precisely.  
    From Bayes and Laplace onwards, scientists have attempted to subordinate inductive 
inferences to mathematical estimation by issuing from that just mentioned proposition. 
Because of three circumstances, Fisher, however, entirely denies the theory of posterior 
probability constructed to this aim. First, it leads to obvious mathematical contradictions; 



second, it is not based on assumptions, that everyone would have felt absolutely clear and 
necessary; third, it is hardly applied in practice. On the contrary, Fisher puts forward his own 
method of estimating inferences, a direct method based on the logical structure of 
appropriately designed experiments. In his theory of experimentation, the main part is played 
by the concept of null hypothesis, by randomization of trials and their replication. 
    Each time, when we ought to formulate and estimate certain inferences from some 
experiments, we construct one or another hypothesis on the nature or essence of the studied 
phenomena. Fisher understands a null hypothesis as a proposition that some definite feature 
of those phenomena does not exist. For example […] Tests of significance can serve for 
checking null hypotheses by calculating, under some general assumption, their probability. If 
it occurs that that probability is lower than some definite boundary determining practically 
impossible phenomena, we may conclude with a very low risk of being mistaken, that the 
facts contradict the null hypothesis, and, consequently, refute it. If, however, its probability is 
not very low, the facts do not contradict it, the hypothesis might be admitted, although not as 
the truth (facts cannot absolutely admit any hypothesis, but they can refute it), but as a 
probable basis for further inferences and investigations. Fisher called those probabilities, 
which serve, in accord with his theory, for refuting or admitting a null hypothesis, fiducial or 
confidence probabilities 3, and introduced them instead of posterior probabilities which are 
based on theories connected with Bayes’ name.  
    The notion of probability plays the main part in estimating null hypotheses. An experiment 
should therefore be designed in such a way that that notion could be rightfully applied to it. 
Consequently, the experiment should be randomized and then repeated a sufficient number of 
times. Randomization ought to be understood as achieving such a pattern that subordinates to 
randomness those circumstances, which can lead to constant error, hardly or not at all 
yielding to estimation in repeated trials. In the mean, the action of that error will then vanish 
and the studied causes revealed all the more clearly. Replication aims at ensuring a more 
reliable examination of causes and makes possible their quantitative rather than only 
qualitative comparison. 
    In accord with the law of large numbers, statistical inferences are the more reliable the 
larger is the number of the pertinent trials. Owing to various circumstances, a large number 
of experiments is often impossible to achieve, but that condition might be slackened either by 
applying the theory of small samples or by carrying out complex experiments. The former 
enables the estimation of the results of a small number of trials; the latter possibility 
provides, even when the trials are repeated a small number of times, a sufficiently large 
number of cases that may be made use of for calculating the mean errors required for 
estimating various factors or phenomena.  
    In each of these directions, we are much indebted to Fisher. The benefits accrued to 
statistical analysis from the theory of small samples may now be considered more or less 
known. Lesser known is Fisher’s new concept of complex design of experiments, of 
examining all at once the influence of a number of factors rather than of one factor at a time, 
on the studied phenomenon. Contrary to the generally held opinion that the latter pattern, 
when one factor is varied and the other ones are kept constant, is optimal, Fisher shows that 
in many cases agronomical experiments can be carried out in such a way that a number of 
interacting and varying factors are examined at the same time. The experiment thus becomes 
more productive, acquires an extended basis for inductive inferences and makes higher 
precision possible without enlarging the number of observations 4.  
    The principles of complex experimentation may certainly be applied not only to agronomy 
but in any field where statistical methods of investigation are used and where the most 
effective and at the same time the simplest methods are desirable. They doubtless have a 
great future and will incalculably benefit science. 



    The above is a very short essay on the main notions to which Fisher’s new book is 
devoted. I shall now briefly discuss its separate chapters. The first two of them deal with the 
principles of experimentation; with general notions on the tests of significance; on null 
hypotheses; and on randomization illustrated by a psychophysical experiment. 
    The third chapter describes and examines Darwin’s experiment on the growth of plants 
under cross-fertilization and spontaneous pollination. There also Fisher discusses the Student 
t-test; mistaken applications of statistical data and their manipulation; connection between 
substantiation of inferences and randomization; and the possibility of applying statistical tests 
more widely than stipulated by the theorems on which they are based. 
    Chapters four and five discuss the methods of randomized blocks and Latin squares where 
the Fisherian general ideas on experiments and their interpretation are applied. These 
methods are especially fruitful in agronomical investigations, and Fisher explicates them in 
detail, thoroughly examines them from the viewpoint of his general principles and illustrates 
them by interesting examples. 
    The next four chapters are devoted to the development of the principles of complex 
experimentation. In addition to the main issues of the new method, Fisher considers some 
possible forms of its further development: confounding several factors when their interaction 
does not essentially influence the studied phenomenon; partial confounding; and the 
examination of concomitant changes for increasing the precision of the experiment. 
    In the last two chapters Fisher returns to the general principles. He introduces the concept 
of amount of information that serves for measuring the effectiveness of various statistical 
tests constructed for examining one and the same null hypothesis; generalizes the last-
mentioned notion by showing how to estimate entire classes of such hypotheses; considers 
the extention of the t-and �2-tests and the problem of estimation, – of the empirical derivation 
of the unknown parameters of the general population for which the experiment is a random 
sample. The end of the last chapter is given over to the calculation of the amount of 
information with regard to various statistical characteristics and to the application of that 
issue to the determination of the linkage of hereditary factors. 
    Fisher’s book deserves greatest attention. Here and there, it contains many interesting 
remarks and new ideas. It is written quite intelligently and only makes use of elementary 
mathematics. Nevertheless, being concise and rich in issues, it demands concentration and 
mental effort. […] 
    Many methods described by Fisher have already been applied in fields other than 
agronomy and biology, viz., in textile industry, horticulture, animal husbandry, chemical 
industry, etc. A Russian translation of the book is very desirable 5. It would be a very 
valuable supplement to the Soviet literature on statistical methodology. 
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Review of Fisher, R.A., Yates, F. “Statistical Tables for Biological, Agricultural and 

Medical Research”, 6
th

 edition. New York, 1938 
Sozialistich. Nauka i Tekhnika, No. 2/3, 1939, pp. 106 

 
    In 1938, Fisher, the leader of modern mathematical statistics in England, and Yates, head 
of the statistical section of the Rothamsted experimental station, issued new statistical tables 
[…] The tables had grown out of Fisher’s diverse practice of many years; for 15 years he had 
been head of the abovementioned section at Rothamsted, known the world over for its 
agricultural investigations. A few years ago, he turned over his job to his student Yates who 
successfully replaces him and is well known due to his statistical research. 
    Some tables are included in Fisher’s Statistical methods … the seventh edition of which 
appeared in 1938 and which enjoys a wide and sound reputation as a first-rate statistical aid 
for experimentalists. The tables make it possible to solve many topical problems occurring in 



experimentation and connected with the case of scarce data. The more important of these 
problems are comparison and estimation of means and of variances, methodology of the 
analysis of variances, estimation and comparison of dependences between statistical 
magnitudes, comparison of experimental data with theoretical values and estimation of the 
discrepancies between them. 
    A large number of other tables are here added to the 34 due to Fisher. The new ones are 
intended for the solution of further practical problems not considered in Fisher’s book and for 
facilitating yet more the practical methods expounded there. To the second category belong 
Tables 15 and 16 of Latin squares; of patterns of experiments by the method of randomized 
blocks for various numbers of replication and different versions of experimenting, of blocks 
and of the number of experiments in a block (Tables 17 – 19); tables of orthogonal 
polynomials (Table 23) for facilitating the laborious and time-consuming computation of 
curvilinear regressions; tables of common and natural logarithms (25 and 26) compiled in a 
new manner, compact but sufficient for usage; […] tables of random numbers compiled 
thoroughly and anew, not as extensive as the generally known tables of Tippett (1927) or the 
similar tables by the Soviet author Kadyrov (1936), but quite sufficient for the solution of 
most practical problems. All these tables are really necessary and valuable. 
    We also find a number of other tables (for example, 9 – 14, 20 – 22) intended for the 
solution of new important and interesting statistical problems, such as estimating the 
mortality of animals and plants made use of in experiments; estimating the frequencies of the 
arrangement of phenomena or objects in accord with certain groups or categories; for making 
statistical inferences when the order of some experimental materials is known rather than the 
pertinent exact values, etc.  
    The tables are preceded by an Introduction that describes them, illustrates their use by 
examples and indicates various practical problems whose solution is made easier by them. 
The tables are not bulky, and, together with the Introduction, occupy 90 pages. We, in the 
Soviet Union, in spite of the grand scale of our experimental work, regrettably do not have 
such tables. They are urgently needed but we should not simply reissue the Fisher & Yates 
Tables. That would have been the easiest way out, but their tables can be partly shortened, 
partly supplemented by some other important tables, whereas the Introduction, not 
everywhere clear, should be replaced by another one, more systematic and clear, and 
supplemented by new examples. 
 

8d. T.A. Sarymsakov. Statistical Methods and Issues in Geophysics ( Fragments) 
������ �	�	��
��� 	�������� �� ��������
�	��� 	����	����. �������, 1948 

(Second All-Union Conference on Mathematical Statistics. Tashkent, 1948). Tashkent, 1948, 
pp. 221 – 239 … 

 
    […] We ought to comprehend, interpret and appraise the theoretical and empirical 
regularities revealed by the theory of probability and mathematical statistics, first and 
foremost, by issuing from the physical nature and essence of the studied phenomenon. 
Indeed, when applied to some domain of knowledge, these two disciplines mostly play, as a 
rule, a subordinate part. To base oneself, when applying them, always (or only) on deductive 
mathematical considerations is in most cases dangerous because the inferences thus obtained 
can be incompatible with the physical or natural side of the studied phenomenon, and even 
fruitless. As an example, I may indicate the fruitless applications of the theory of probability 
and mathematical statistics to the theory of heredity 6… […]  
    As far as mathematical statistics, which is more practical{than the theory of probability}in 
its subject, is concerned, it was mostly developed{in the Soviet Union}by Romanovsky and 
several of his students, by Slutsky, who devoted very many writings to issues of statistical 
geophysics, and others. However, we ought to indicate a fundamental shortcoming occurring 



in a number of works in mathematical statistics carried out in Tashkent. When choosing their 
subject and the problems to be solved, Romanovsky strictly followed the Anglo-American 
direction. At the same time we must point out that a considerable part of investigations in 
mathematical statistics that was performed in Tashkent was concerned with concrete 
applications, and made wide use of those methods for their accomplishment which were 
developed by the Chebyshev school, – although certainly adapted for the solution of 
statistical problems. […] 
    …the specific nature of the socialist production in our country, as distinct from production 
based on private property in the capitalist nations, in some of which statistical research is 
widely enough used, is not yet sufficiently taken account of in{our}investigations of the 
applications of mathematical statistics, especially to industry. A number of our works both in 
this direction and in other fields mostly flow into the common channel of foreign 
investigations. 
    These circumstances demand a serious ideological and methodological reconstruction in 
mathematical statistics. The issue already raised by Kolmogorov (1938, p. 176) ten years 
ago, now becomes especially topical. He wrote then: “The development and reappraisal of 
the general concepts of mathematical statistics, which are now studied abroad under great 
influence of the idealistic philosophy, remain a matter for the future”. However, recent 
investigations of methodological issues of mathematical statistics pay considerably more 
attention to formal rigorous determination of its scope rather than to the extremely important, 
in the sense of ideology and subject, topic on the essence of its problems and on how should 
concrete phenomena be statistically examined. 
 

8e. Resolution of the Second All-Union Conference on Mathematical Statistics 

27 September – 4 October 1948, Tashkent 
������ �	�	��
��� 	�������� �� ��������
�	��� 	����	����. �������, 1948 

(Second All-Union Conference on Mathematical Statistics. Tashkent, 1948). Tashkent, 1948, 
pp. 331 – 317 

 
    The Five-Year Plan of reconstruction and further development of the national economy of 
the Soviet Union raises before Soviet science fundamentally new problems formulated by 
Comrade Stalin in his slogan addressed to Soviet scientists, – “to overtake and surpass the 
achievements of the science abroad”. The Great Patriotic War{1941 – 1945}put forward for 
the statisticians the topical issues concerning the theory of the precision of machinery, 
rejection of defective articles and inspection of the quality of mass products, etc. After the 
war, the part played by statistics in a number of branches of the national economy increased 
still more. The role of statistics in the development of the main directions of natural sciences 
is also great.  
    Some statisticians took up idealistic positions, supported the Weismann direction in 
biology and developed abstract patterns of formal genetics cut off from reality. This, 
however, does not at all discredit statistics itself as being a most important tool of 
investigation in biology and other sciences. The Conference resolutely condemns the speech 
of V.S. Nemchinov, made at the session of the Lenin All-Union Agricultural Academy, for 
his attempt statistically to “justify” the reactionary Weismann theories 7. Objectively, 
Academician Nemchinov adhered to the Machian Anglo-American school which endows 
statistics with the role of arbiter situated over the other sciences, a role for which it is not 
suited. 
    The latest decisions of the Central Committee of the All-Union Communist Party 
(Bolsheviks) concerning ideological issues raised the problem of rooting out the survivals of 
capitalism from people’s minds, which, among the Soviet intellectuals, are expressed by 
servility and kow-towing to foreign ideas, by lack of a proper struggle for the priority of the 



Russian, and especially of the Soviet science. Together with the past discussions on issues of 
philosophy, literature, music, and, finally, biology, these decisions directly indicate that it is 
necessary to revise the contents of statistics from the viewpoint of the struggle against 
bourgeois ideology as well as for attaining closer proximity between theoretical 
investigations and the problems of socialist practice. 
    Among statisticians, the passion for the theories of foreign, and especially English and 
American scientists, is still great. Along with these theories, often uncritically grasped, a 
Weltanschauung alien to Soviet scientists, and in particular the Machian concepts of the 
Anglo-American statistical school of Pearson, Fisher and others, had sometimes been 
introduced. Even during this Conference attempts had been made to force through the 
Machian Weltanschauung disguising it by loud revolutionary phrases (Brodovitsky, 
Zakharov). 
    The Conference accepts with satisfaction the statement of a most eminent Soviet 
statistician, the Full Member of the Uzbek Academy of Sciences, Professor Romanovsky, 
who confessed to having made ideological mistakes in some of his early works. The 
Conference considers it necessary to list the following essential shortcomings in the work of 
Soviet statisticians.    
    1. The existence of a gap between theory and practice resulting in that some serious 
theoretical findings were not carried out onto practical application. 
    2. The lack of prominent monographs generalizing numerous theoretical achievements of 
Soviet statistics and harmoniously explicating the concepts of Soviet statistics 8. 
    3. The methods of bourgeois statistics were not always critically interpreted; sometimes 
they had been propagandized and applied. 
    4. The teaching of the theory of probability and mathematical statistics, in spite of their 
ever increasing significance for studying most important issues in natural sciences, 
technology and economics, is either altogether lacking in the appropriate academic 
institutions or carried out insufficiently and sometimes on a low level. In particular, utterly 
insufficient attention is given to the training of specialists in mathematical statistics in the 
universities and the teaching of the elements of statistics is not at all introduced in 
technological academic institutions. 
    5. The publication of a special statistical periodical has yet not begun 9 which greatly 
hampers the intercourse and the exchange of experience between theoreticians and 
practitioners. 
    6. The existing educational literature and monographs on statistics and probability theory 
are meager, their quality is sometimes unsatisfactory and they are insufficiently connected 
with concrete applications. 
    In mathematical statistics, the Conference considers research in the following directions 
as most topical. 
    1. A construction of a consistent system of mathematical statistics embracing all of its 
newest ramifications and based on the principles of the Marxist dialectical method. 
    2. A further development of the theory of estimation of parameters and of checking 
hypotheses. In particular 
       a) The development of such a theory for series of dependent observations. 
       b) The development of methods for an unfixed number of observations (of the type of 
sequential analysis). 
    3. The development of statistical methods of inspection of manufacture and of finished 
articles; and in particular of methods not assuming a stationary condition of manufacturing. 
    4. Construction of a rational methodology of designing and treating field experiments and 
agricultural forecasts. 
    5. The further development of statistical methods of investigation in geophysics; in 
particular, in synoptic meteorology. 



    6. Stochastic justification of the various types of distributions occurring in natural sciences 
and technology by issuing from the essence of the studied phenomena 10, and the 
development of methods of sampling without the assumption of normality. 
    7. The compilation of necessary tables and the use of calculating machines as much as 
possible. 
    For propagating statistical knowledge the Conference believes that the following is 
necessary 
    1. The introduction of courses in mathematical statistics and theory of probability in the 
largest technical institutes and in the physical, biological, geographical and geological 
faculties of the universities, for selectionists in the agricultural institutes and especially for 
postgraduate students of all the abovementioned disciplines. The curricula and the scope of 
these courses should be closely coordinated with the main disciplines […] 
    2. A wide expansion of training of highly qualified specialists in the theory of probability 
and statistics; restoration of the pertinent training in the universities in Moscow, Leningrad 
and Tashkent as well as of postgraduate training in the all-union and republican academies of 
sciences and in the abovementioned universities. 
    3. Implementation of desirable additional training of specialists whose work is connected 
with statistics by organizing special courses and by individual attachment to scientific 
institutions and chairs. 
    4. The compilation, as soon as possible, of textbooks and educational aids on general 
courses in mathematical statistics and the theory of probability for mathematical faculties of 
the universities as well as on special courses for technical, geological and other institutions 
and faculties; the completion of a number of special monographs. 
    5. We charge Kolmogorov, Romanovsky and Gnedenko with preparing a plan of 
compilation of textbooks and monographs in mathematical statistics, theory of probability 
and their applications 11. 
    6. The publication of a journal of mathematical statistics for reflecting theoretical and 
methodological achievements of Soviet statisticians, applications of statistics to various 
fields of technology and natural sciences and methodological issues of teaching 12. 
    7. The establishment of an All-Union Statistical Society under the Soviet Academy of 
Sciences for uniting the work of theoreticians and practitioners in all fields of national 
economy so as to foster the development and propagation of statistical knowledge.  
    8. The organization, with the help of the All-Union Society for Propagating  Political and 
Scientific Knowledge, of seminars and lectures on the application of statistical methods for a 
wider circle of listeners. 
    9. A regular convocation, once in three years, of all-union conferences on mathematical 
statistics. 
    10. A convocation, in 1949, of an all-union conference on statistical methods of inspection 
and analysis of manufacturing. 
    11. The publication of the transactions of this Conference. 
    12. The pertinent editorial committee will include Romanovsky, Kolmogorov, Sarymsakov 
and Eidelnant. 
 

8f. The Publisher’s Preface  

to the Russian Translation of R.A. Fisher  

“Statistical Methods for Research Workers”. Moscow, 1958 

 
    The work of Fisher strongly influenced the development of mathematical statistics. 
Gosstatizdat{the State Publishers of Statistical Literature}therefore issues{a translation 
of}his book […]. The author is a prominent English theoretician of mathematical statistics. 
For many years he had been head of the statistical section of the Rothamsted experimental 



station in England. This book, as he indicates in the Introduction, was created as a result of 
his collaboration with experimentalists in biology.  
    It should be borne in mind that, being a theoretician of modern bourgeois statistics, 
bourgeois narrow-mindedness and formal viewpoints are in his nature. According to his 
concepts, quantitative analysis is an universal and absolute statistical means of cognition. In 
actual fact, he completely ignores the qualitative aspect of phenomena 13. Suffice it to 
indicate his statement that social teachings can only be raised up to the level of real science 
to that degree to which they apply statistical tools and arrive at their inferences by issuing 
from statistical arguments. Here, he bears in mind mathematical statistics which he considers 
as an universal science. 
    A duality, usual for bourgeois scientists, is typical of Fisher. On the one hand, submitting 
to objective reality, they make valuable observations and conclusions; on the other hand, 
being under the influence of an idealistic Weltanschauung, they color their findings in an 
appropriate way. When considering the methods that Fisher describes, it is impossible to 
deny their logicality; when, however, passing on to concrete examples illustrating them, we 
meet with some non-scientific propositions concerning sociological issues. Thus, it results 
from one of his examples, that if one of the two monozygotic twins became a criminal, the 
second twin will follow suit almost surely. It follows that criminality was already present in 
that impregnated egg, from which those twins were later developed. It is clear that such a 
concept of a “biological” origin of criminality absolutely ignores the social conditions of the 
life of men from which bourgeois sociologists and economists disengage themselves 14. 
    Fisher’s exposition is irregular: in some places he describes an issue in all details including 
calculations, elsewhere he only sketches a problem. His discussion of statistical methods 
cannot be considered simple and quite popular; an acquaintance with his book demands 
certain effort. Although the book is intended for researchers in biology and agronomy, it will 
also be somewhat interesting for statisticians working in economics. Making use of the 
correct propositions of mathematical statistics, Soviet readers will cast away all the 
conclusions and considerations unacceptable to real statistical science. 
 
    Notes 

 
    1.{On the relation between statistics and mathematics see Sheynin (1999, pp. 707 – 708).} 
    2.{An ordinary edition of the translation only appeared in 1958, and was accompanied by 
negative commentaries, see Item 6 of this section.}  
    3.{In accord with present-day terminology, I translated Romanovsky’s doveritelnye as 
confidence (probabilities). These, however, were introduced by Neyman in 1937.}  
    4. I advise readers to take notice of Yates (1935). Yates replaced Fisher at Rothamsted 
when the latter had passed on to London University. Yates minutely examined complex 
experiments in the issue of the J. Roy. Stat. Soc. devoted to applications of statistics to 
agronomy and industry. 
    5.{No such translation ever appeared.} 
    6.{The last two sentences were considered extremely important and their essence was 
repeated in the Resolution, see Item 5 of this section. From 1935 onward, genetics in the 
Soviet Union came under fierce attacks and was rooted out in 1948 as being contrary to 
dialectical materialism; it only reappeared in 1964. The contrasting of mathematics and the 
“physical or natural” side of phenomena, – of quantitative and qualitative, – was typical for 
Soviet statisticians, see Sheynin (1998, pp. 540 – 541 and elsewhere) and may be explained 
in a similar way: quantitative considerations had not been allowed to interfere with Marxist 
(or Leninist, or Stalinist) dogmas.} 



    7.{Nemchinov had to abandon his post of Director of the Timiriazev Agricultural 
Academy, to leave his chair of statistics there (Lifshitz 1967, p. 19), and to confess publicly 
his guilt (Sheynin 1998, p. 545).} 
    8.{Soviet statistics may obviously be understood as a discipline obeying ideological 
dogmas, cf. Note 6 above. Below, the Resolution stated that statistics should be based on the 
Marxist dialectical method.}  
    9.{The most influential Soviet statistical periodical, ��	���� 	����	����, was 
suppressed in 1930 and did not reappear until 1948.}  
   10.{Cf. Note 6.} 
   11.{In 1950, Gnedenko published his generally known 1��	 ������ ��������	��� 
(Course in the Theory of Probability; several later editions and translations). He “followed 
the path suggested by Kolmogorov” (p. 47 of the edition of 1954).} 
   12.{The periodical ������ ��������	��� � �� ���������� (Theory of probability and Its 
Applications) is only being published since 1955. No Statistical Society (see below) was ever 
established.} 
   13.{Cf. Note 6.}   
   14.{In such cases, similarity of the main conditions (of the conditions of life of the twins) 
is always presupposed.} 
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8g. T.A. Sarymsakov. Vsevolod Ivanovich Romanovsky. An Obituary 



Uspekhi Matematich. Nauk, vol. 10, No. 1 (63), pp. 79 – 88 
 
    Romanovsky, the eminent mathematician of our country, Deputy of the Supreme Soviet of 
the Uzbek Soviet Socialist Republic, Stalin Prize winner, Ordinary Member of the Uzbek 
Academy of Sciences, Professor at the Lenin Sredneaziatsky {Central Asian} State 
University {SAGU}, passed away on October 6, 1954. 
    He was born on Dec. 5, 1879, in Almaty and received his secondary education at the 
Tashkent non-classical school {Realschule} graduating in 1900. In 1906 he graduated from 
Petersburg University and was left there to prepare himself for professorship. After passing 
his Master examinations in 1908, Romanovsky returned to Tashkent and became teacher of 
mathematics and physics at the non-classical school. From 1911 to 1917 he was reader 
{Docent} and then Professor at Warsaw University. In 1912, after he defended his 
dissertation On partial differential equations, the degree of Master of Mathematics was 
conferred upon him. In 1916 Romanovsky completed his doctor’s thesis but its defence under 
war conditions proved impossible. The degree of Doctor of Physical and Mathematical 
Sciences was conferred upon him in 1935 without his presenting a dissertation. 
    From the day that the SAGU was founded and until he died, Romanovsky never broke off 
his connections with it remaining Professor of the physical and mathematical faculty. For 34 
years he presided over the chairs of general mathematics and of theory of probability and 
mathematical statistics; for a number of years he was also Dean of his faculty. 
    Romanovsky was Ordinary Member of the Uzbek Academy of Sciences from the moment 
of its establishment in 1943, member of its presidium and chairman of the branch of physical 
and mathematical sciences. His teaching activities at SAGU left a considerable mark. Owing 
to the lack of qualified instructors in the field of mathematics, he had to read quite diverse 
mathematical courses, especially during the initial period of the University’s existence. 
Romanovsky managed this duty with a great success presenting his courses on a high 
scientific level. 
    Romanovsky undoubtedly deserves great praise for organizing and developing the higher 
mathematical education in the Central Asiatic republics {of the Soviet Union} and especially 
in Uzbekistan. He performed a considerable and noble work of training and coaching 
scientific personnel from among the people of local nationalities. 
    Modernity of the substance of the courses read; aspiration for coordinating the studied 
problems with the current scientific and practical needs of our socialist state, and, finally, the 
ability to expound intelligibly involved theoretical problems, – these were the main features 
of V.I. as a teacher. Add to all this his simplicity of manner and his love for students, and you 
will understand that he could not have failed to attract attention to himself and to his subject. 
Indeed, more than sixty of his former students are now working in academic institutions and 
research establishments of our country.  
    Romanovsky always combined teaching activities with research, considerable both in scale 
and importance. He published more than 160 writings on various fields of mathematics with 
their overwhelming majority belonging to the theory of probability and mathematical 
statistics. He busied himself with other branches of mathematics, mostly with differential and 
integral equations and some problems in algebra and number theory, either in the first period 
of his scientific work (contributions on the first two topics) or in connection with studying 
some issues from probability theory and mathematical statistics. 
    The totality of Romanovsky’s publications in probability and statistics (embracing almost 
all sections of mathematical statistics) unquestionably represents a considerable contribution 
to their development in our country. Accordingly, he became an eminent authority on these 
branches of the mathematical science not only at home, but also far beyond the boundaries of 
our country.  



    Among Romanovsky’s most fundamental and important studies in probability is his work 
on Markov chains (which he began in 1928) and their generalizations (correlation chains and 
polycyclic chains) and on generalizing the central limit theorem onto the multidimensional 
case. He was the first to study exhaustively by algebraic methods the limiting (as n � 
) 
behavior of the transition probabilities describing the change of state during n steps for 
homogeneous Markov chains with a finite number of states [96]. 
    In the same paper and in his later work [112; 121; 126; 132; 142] Romanovsky was 
engaged in proving a number of other limit theorems for the same kind of Markov chains. 
This research also became the starting point for many other studies of Markov chains and 
their various generalizations by algebraic methods. In [63], applying the method of 
characteristic functions, he extended the central limit theorem onto sums of independent 
random vectors. 
    In statistics, Romanovsky’s work cover an extremely wide range of problems. It is hardly 
possible to point out any large section of this discipline, whether modern or classical, in 
whose development he did not actively and authoritatively participate. Especially great are 
Romanovsky’s merits in widely popularizing mathematical-statistical methods in our country 
as well as in heightening the mathematical level of statistical thought. Here, his course [144] 
published in 1924 and 1939 and his books [50; 105; 136; 137] played a very large part. 
    I shall now briefly describe some of his important studies in mathematical statistics. 
Depending on the form of the theoretical law of distribution and on the organization of 
observations, there appear various methods of approximately estimating the different 
characteristics of the parent population. The most prominent research in our country in this 
sphere was done by Romanovsky. 
    A large cycle of his writings [38; 39; 45; 46; 48; 54; 60; 62] concerned with the theory of 
sampling was generally recognized. With regard to their substance, they adjoin the studies of 
the British school of statistics, but they advantageously differ from the latter by rigor of their 
methodological principles. In addition, when choosing methods for solving his problems, 
Romanovsky exclusively used those developed by the Chebyshev school; to be sure, he 
perfected and adopted these methods for achieving new goals. That Romanovsky followed 
here Chebyshev can partly be explained by his belonging to the latter’s school and having 
attended the course in probability theory read by the celebrated Markov. Keeping in his 
studies to that mathematical rigor that distinguished his teacher, Markov, he used the theory 
as the main tool for logically irreproachably justifying mathematical statistics. Such a 
substantiation was indeed lacking in the constructions of British statisticians whose works 
served Romanovsky as a starting point for choosing his problems. The rigorous theoretical 
underpinning of mathematical statistics is one of his merits that promoted its development in 
our country.  
    Romanovsky was the first to offer an analytical derivation of the laws of distribution of the 
well-known criteria, of the Student – Fisher t and z, of empirical coefficients of regression 
and other characteristics [105]. He also provided a more general theory of the Pearson chi-
squared test [65] and studied problems connected with checking whether two independent 
samples belonged to one and the same normal population. 
    From among Romanovsky’s work on probability and statistics deserving serious attention 
I also mention [113; 120; 122; and 115]. In the first of these, he shows that the � criterion, 
that he himself introduced in 1928 [60], is much easier to apply to all the problems where the 
Fisherian z test based on the tables of that scholar is made use of; that it leads to the same 
qualitative solutions; and that it often solves these problems more precisely than the latter. In 
addition, the construction of the former is simpler.  
    The second writing [120] is very interesting methodologically. There, Romanovsky 
attempts to review systematically the main statistical concepts and problems. Given the 



variety and detachment of those latter, and the availability of a diverse set of methods applied 
by statistics, his endeavor was absolutely necessary. 
    The third paper provided an elementary and simple solution to a topical statistical problem 
connected with objectively estimating unknown characteristics of parent populations by 
means of observation. In the last-mentioned work he calculated transition and other kinds of 
probabilities for Markov chains and offered their statistical estimates given the appropriate 
observations. 
    The classical theory of periodograms enables to analyze a number of random variables 
under the assumption that several periodic oscillations and additional perturbations 
independent from one trial to another one are superposed. Romanovsky devoted a series of 
important studies [78; 79; 81] to the circumstances occurring when admitting dependence 
between random perturbations. 
    Systematically and intensively carrying out his scientific work for half a century, 
Romanovsky, especially from the 1930s onwards, had been paying more attention than he 
did before to problems directly connected with practical needs, e.g., in [86; 87; 98; 146]. And 
during the last period of his life he was much engaged in the important problem of 
contemporary statistics, – in the statistical estimation of the quality of production [134; 145; 
153; 151; and other ones]. 
    From among contributions not connected with probability or statistics I mention [68; 72; 
104; 92]. The first three of these, although originating from problems connected with Markov 
chains, provided findings of independent mathematical interest.  
    In concluding this brief review, it is also necessary to indicate that, not restricting his 
efforts to publishing scientific contributions, Romanovsky unceasingly counselled, verbally 
and in writing, most diverse productive establishments and scientific institutions and 
answered questions arriving from all quarters of our country. Until his last days he combined 
scientific studies with active social work. He was permanent chairman of Tashkent 
Mathematical Society and an active member of the Society for Dissemination of Political and 
Scientific Knowledge. The people and the government of Uzbekistan estimated his merits at 
their true worth. He was three times elected Deputy of the Republic’s Supreme Soviet and 
decorated with three orders of Lenin and an Order of the Red Banner of Labor; he became 
Honored Science Worker of Uzbekistan, and he wined a Stalin prize (1948). 
    The sum totals of all his scientific work and teaching activities was the mathematical 
school that he created in Tashkent. 
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    In the most general sense, an accident is understood as any unforeseen event causing harm 
to life or property. Such an understanding of accidents seems to be too general for the 
relevant events to be usefully considered under a single head. Special attention, owing to 
their importance for both the public health and national economy, is due to accidents whose 
victims are people engaged as manual laborers in industrial enterprises (accidents du travail, 
Betriebsunfälle). By demanding legislative intervention, this group of accidents has lately 
become an independent object of study. There even exists a special International Congress 
on Accidents. It took place three times (Paris, 1889; Bern, 1891; Milan, 1894), and, 
beginning with this year, it is called Congrès International des Accidents du Travail et des 
Assurances Sociales. 
    Whether the study of accidents is an aim in itself, or caused by practical considerations 
(for instance, in connection with the appropriate insurance), the method of examination is 
always mostly statistical. This is quite natural since there hardly exists any other domain of 
facts where the action of the so-called random causes is felt just as clearly. A proper 
collection and organization of statistics of accidents of the indicated type (of the so-called 
occupational accidents) and its correct application is impossible without specifying 
beforehand the concept of occupational accident. 
    It may be defined as a bodily injury unwillingly and suddenly caused to a person working 
in a certain industrial{in a productive}enterprise by some external process (for example, by 
falling down from a high place) or conditions (e.g., by hightened air temperature) during 
work. The suddenness and external influence mainly serve as indications for separating 
accidents and diseases from each other. Events pathologically quite identical one with 
another become, or not become accidents depending on the type and the method of the action 
of their causes. Lumbago, for example, Márestaing says, should be considered an accident 
when proven that it was caused suddenly by a single abrupt effort during work. The same 
author indicates a number of other examples (rupture of a varicose vessel or a muscle, cases 
of frost-bitten limbs etc) whose attribution to an accident often becomes questionable. This is 
especially so when various causes were acting at the same time, some of them purely 
external, the other ones intrinsic, as a certain predisposition.   



    No lesser difficulties than those encountered by medical examination are met with when 
discerning those economic indicators that characterize the notion of occupational accident. 
Usually it is comparatively easy to decide whether the victim of the accident was engaged in 
the industrial enterprise; however, his relation with it (more precisely, with its owner) could 
well be understood in different ways. And it is much more often doubtful whether he had 
indeed been working at the moment of the accident. It is sometimes hardly possible to 
ascertain when does a certain man begin, and end his occupational activities. Especially 
difficult are accidents taking place en route, for instance to, or from the enterprise. An 
accident occurring during a break can also cause doubt. No general solution exists for such 
cases. It may be stated about each of them that they constitute a quaestio facti.  
    The definition above provides a guiding principle for solving such problems, but even only 
in principle the concept of occupational accident seems to be questionable. Some authors 
follow the indications stated above, others understand that concept in a narrower sense 
demanding that there exist a causal relation between a given accident and the victim’s kind of 
work. According to the latter interpretation, an occupational accident may be recognized as 
such only when the danger, that brought it about, is exclusively, or in the highest measure (as 
compared with the conditions of ordinary life) peculiar to the kind of work of the victim. 
From that viewpoint, an employee, sent by the owner on an errand, even concerning 
business, and run over by a horse-car, is not a victim of an occupational accident. The theory 
of occupational risk based on that point of view considerably narrows the domain of the 
concept of occupational accident, and, therefore, of the sphere of the ensuing legal 
consequences (payment of recompense to victim and his family on the strength of contract or 
law).  
    The issue of whether the theory is true is connected with the law current in force and 
cannot therefore be solved independently. German laws concerning insurance against 
accidents provide no definite answer to that question and the practice of the 
Reichsversicherungsamt, the supreme legal instance on that kind of insurance, reveals 
numerous examples of conflicting decisions: first, they recognize the theory of occupational 
risk, then, they reject it as discordant with the will of the lawgiver.  
    Somewhat complete statistical data on accidents exist in those states which introduced 
pertinent compulsory insurance of considerable groups of the population. To these belong 
Germany and Austria. Special investigations of accidents were also made in other countries, 
for instance in Switzerland and France, and the compiled information deserves attention all 
by itself 1. However, the probability of leaving accidents out is apparently lower when 
insurance is compulsory. Scientifically and practically important are, in addition, not the 
absolute, but rather the relative number of accidents, – the ratio of their absolute number to 
the number of people exposed to the danger of accidents. Consequently, we ought to know 
how many people are engaged in each branch of industry. And it is very desirable and almost 
necessary that the information on those exposed to the danger, and on the actual victims 
issues from the same source; otherwise, disparity in the counting of the same individuals or 
of those belonging to one and the same category will easily occur. This condition can best be 
fulfilled for statistics connected with insurance, and, because of the circumstances described 
above, we ought to restrict our attention to the results recorded in German and Austrian 
statistics.  
    In 1894, in the German industrial associations established for insuring against accidents 
(gewerbliche Berufsgenossenschaften) having 5.2 mln insured members, there were more 
than 190 thousand accidents, and, in the similar landwirthschaftliche 
Berufsgenossenschaften, 12.3 mln and about 70 thousand, respectively. To these, about 23 
thousand industrial accidents in German enterprises managed by the state, the provinces and 
the communities (0.7 mln insured) should be added.  



    In accord with the gravity of their consequences, accidents are separated into several 
categories: 
    1. Mild accidents causing incapacity for work not more than for 13 weeks (in Austria, not 
more than for 4 weeks).  
    2. Those causing a longer but still temporary incapacity. 
    3. Accidents resulting in complete or partial permanent disability. 
    4. Fatal accidents. 
    I adduce the relative numbers of accidents of these categories; note that the number of 
accidents coincides with the number of victims. In this table 2, attention is turned first of all 
on the gradual increase in the relative numbers of accidents, both in their recorded totals and 
in those of the two last-mentioned categories. Such an increase is observed not only for all 
the insured taken as a single whole, but also for the separate branches of industry, in 
Germany as well as in Austria. The opponents of the system of compulsory insurance are apt 
to interpret this fact, not foreseen beforehand, as an argument favoring their viewpoint and 
attribute the increase to the action of the insurance. Even assuming, however, that confidence 
in a partial recompense for the harm caused by an accident can sometimes relax a worker’s 
vigilance and prudence (mostly when handling machines and tools dangerous for life and 
health), we conclude, as von Mayr absolutely correctly remarked at the Milan Congress, that 
that premise speaks against insurance as such rather than against the compulsion. 
    Actually, the connection between insurance and the increase in the number of accidents 
cannot be considered as proven by statistical data. It is mush more probable that the increase 
is purely fictitious, that it may be explained by the improvement, over the years, of the 
system of recording accidents, and by the population’s ever better understanding the 
institution of insurance and of the ensuing rights to demand recompense for the consequences 
of accidents. 
    Another possible cause of the relative increase of those recompensed in Germany may be 
seen in a transition from the narrow interpretation of an occupational accident to its wide 
definition according to which the presence of a special occupational danger connected with 
the victim’s kind of work is not demanded anymore. In general, given the vagueness and 
relativity of the concept of occupational accident, not each distinction between statistical 
numbers concerning different countries or periods corresponds to the same distinction in real 
life.  
    In this respect, interesting are the facts reported by Greulich at the Milan Congress. As a 
result of a law passed in 1877 and imposing on manufacturers the duty to report each more or 
less serious accident, a continuous increase in their numbers was being noted in the Zürich 
canton during 1878 – 1883. Then, a directive demanding a stricter observance of the law was 
issued and the number of accidents in 1885 increased at once by 50%. The law of 1887 
introduced a new, more favorable for the victims, procedure at investigations of civil 
responsibility, and proclaimed free legal hearings of cases dealing with recompense for the 
consequences of accidents, – and this fact was again reflected in the considerable increase in 
the pertinent statistical figures. And so, it is not proven, and neither is it likely that the 
introduction of compulsory insurance in Germany and Austria led to an actual increase in the 
number of accidents. And there are still less grounds for recognizing a causal relationship 
between the two facts.  
    The categories of occupational accidents listed above are vague and relative to the same 
extent and perhaps even more so. Thus, rather often sure objective indications of whether a 
victim is disabled forever or only temporary are lacking. Not less difficult is the exact 
distinction between complete and partial disability. Consequently, it might be thought that 
the variation of the numbers in columns 5 and 7 in the first part of Table 1 was occasioned by 
a gradual change of the views held by the authorities responsible for granting pensions to the 
victims.  



    Separate spheres of work considerably differ in the degree of danger for those involved. 
The relative numbers given above provide an idea about that difference between 
manufacturing industry and agriculture. German statistics furnishes relative numbers of 
accidents for each industrial Genossenschaft separately. Each of these associations covers 
industrial enterprises of a certain branch. Some branches are united in a single Imperial 
Genossenschaft, others spread over certain industrial regions and are divided between several 
associations. Here are some figures for 1894 giving an idea about the variation of the number 
of relative (per 1000 insured) accidents 3. Note that those insured in a given Genossenschaft 
are often, according to their occupation, very heterogeneous. Were it possible to separate the 
totality of those insured and engaged in a definite branch of industry into several groups in 
accord with their kind of work, the relative number of accidents (i.e., the coefficients of risk) 
for them would have considerably differed from each other. This is evident, for example, for 
employees of a railway and it should especially be especially borne in mind when comparing 
two nations, or different parts of one and the same country. In such cases the observed 
statistical variations are possibly caused by the different composition of the pertinent 
working populations that can also exist when the technology is the same because of the 
distinct economic conditions and forms of production and sale. Issuing from such 
considerations, Jottrand 4 put forward the demand that statistics of accidents collect workers 
into groups not covering one or another branch of industry, but by their kind of work (miners, 
foundry workers, […], – in all, 33 categories). Austrian statistics meets that demand to a 
certain extent; it occurs, for instance, that among builders the coefficient of risk for roofers is 
considerably higher than for carpenters. Indeed, in 1893 the pertinent figures were […] 
    The investigation of the causes of accidents is of special interest. A cause is here 
understood as either those technical structures or tools which led to the accident while 
working on/with them, and those external processes which directly caused the bodily harm, 
or certain personal attitudes of the victims and their employers to the conditions of 
occupational danger causing the accident. In the following tables 

5 100 grave accidents that 
occurred in Germany are distributed in accord with their main causes 6. Lines 1 – 3 in Table 
4 taken together show accidents that ought to be blamed on the employers and managers 
whereas lines 4 – 8 cover the cases having occurred through the workers’ fault. Line 9 
illustrates accidents of which both the employers and the workers were guilty. When being 
described in such a manner, the indications of the table become very valuable both for the 
lawgiver and those responsible for preventing accidents by adopting appropriate general 
measures. 
     
    Notes 
     
    1. The general statistics of accidents is not trustworthy. For example, the French official 
statistics showed 1959 accidents having occurred during 1885 – 1887 in the coalmines 
whereas a special investigation covering the same time period and not even extending over 
all the mines gave 48,344 cases, i.e. 24 times more. 
    2.{Table 1 provides the yearly numbers of accidents per thousand insured for German 
industrial (1887 – 1895) and agricultural Genossenschaften and for Austria (1891 – 1894). Its 
columns 5 and 7 of its first part, mentioned below, concern Germany and show a steady 
decrease of accidents resulting in a complete permanent disability and a steady increase of 
those leading to temporary disability.} 
    3.{Table 2 lists 10 Genossenschaften covering various industrial branches and provides the 
number of grave accidents and the total number of them in each of the 10 cases. Here are a 
few figures from this table. The Nordrhein-Westfalen blast-furnace and rolling industry: 
145.3 accidents (the highest figure), 9.9 of them grave. The carrier’s trade (Fuhrgewerbe?), 
13.8 grave accidents (the highest number) with the total number of them being only 44.1.}   



    4. He thoroughly remarks: 
 
        A large number of accidents in breweries (14% in 1887 according to German data) is 
occasioned by carting, 18%, by loading, unloading and carrying barrels. The coefficient of 
risk will consequently be quite different for breweries selling beer on the spot and those 
having a vast region of customers; for those carting beer and breweries sending it by 
railway. 
 
    5. {Table 3 provides separate data on industrial (1887) and agricultural (1891) enterprises 
in connection with 16 different structures, procedures etc. For example, Item 3, machinery in 
the proper sense except for lifting gear in industrial enterprises: 17.55% of all the accidents, 
3.21% of all the accidents, 3.21 % of that per cent proving fatal; Item 13, water-borne 
transportation, 0.99% and 74.05% respectively. Table 4 shows figures for the same two kinds 
of enterprises and years and lists 13 items connected with the second main cause. Thus, lack 
of safety structures in agricultural enterprises (Item 2), 10,64% and 11.35% respectively; 
thoughtlessness and intoxication (Item 6), 1.98% and 1.51% respectively.} 
    6. However interesting are these data in themselves, they should be interpreted very 
cautiously. In logging, Jottrand indicates, 
    459 accidents were caused by machines, 273 of them by circular saws and only 17 by 
band-saws. Are we therefore justified in recommending the latter as comparatively less 
dangerous instead of the former? Not at all since it is likely that the difference between the 
numbers was simply caused by the circular saw being much more in use than the band-saw. 
 
    In general, it would be delusive to regard the numbers in the first column as indicators of 
the appropriate risks. 
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Foreword by Translator 

 
    Oskar (Nikolaevich) Anderson (1887 – 1960) was Chuprov’s student and the last 
representative of the Continental direction of statistics. Little known information about him is 
in Sheynin (1996, §7.8). There also, in §15.6, the reader will see that on June 9, 1925, 
Anderson had sent Pearson a manuscript and that Pearson at once agreed to publish it in 
Biometrika. Note that the letters below were written later. 
    I am grateful to University College London for allowing me to publish the following 
letters which are kept by them (Pearson Papers NNo. 442 and 627/2). Both letters devoted to 
the variate difference method are from Anderson who studied it from 1911 (when he wrote 
his dissertation on the coefficient of correlation and its application to secular series) onward 
and, together with Student (Gosset), was its co-creator. In particular, two from among his 
papers that appeared in Biometrika (1923; 1926 – 1927) treated the same issue. In the second 
of these, Anderson (p. 299/45) briefly outlined the history and the essence of that method. 
    His letters below precede the second Biometrika paper; the second letter makes it clear that 
Pearson had tentatively agreed to grant Anderson 15 – 20 pages for publishing his not yet 
completed manuscript. Actually, however, the article of 1926 – 1927 occupied some 60 
pages which testifies that Pearson highly appreciated it. Then, Anderson desired to see his 
manuscript translated from German to English, but that did not happen, perhaps owing to its 
great length. 
    I believe that the publication of the Anderson letters, in spite of the existing Biometrika 
article, will not be amiss. His Ausgewählte Schriften, Bde 1 – 2, were published in Tübingen 
in 1963 and his latest biography written by Heinrich & Rosemarie Strecker is in Statisticians 
of the Centuries (2001), Editors C.C. Heyde, E. Seneta. New York, pp. 377 – 381. 

*  *   * 
    Letter No. 1 
    Professeur Oskar Anderson, Varna, Ecole Supérieure de Commerce (Bulgarie) 
   Varna, den 27. November 1925 
 
    Sehr geehrter Herr Professor! 
    In Ihrer Publikation (Pearson & Elderton 1923, p. 308) ist es zu lesen: 
 
    We think it safe to say that there really does exist a substantial negative correlation 
between deaths of the same group in the first and second years of life. It is not as great as we 
found it in the previous paper using hypotheses, which, we admit, ought to have been tested; 
but it is quite adequate to indicate that natural selection is really at work. 
 
    Ich glaube beweisen zu können, daß Sie und Frl. E.M. Elderton hier der W. 
Person’schen{Persons’schen}Kritik gegenüber unnützerweise nachgegeben haben und daß 
Ihre ursprünglichen Koeffizienten, welche Sie in der Arbeit Pearson & Elderton (1915) 
veröffentlicht haben, denjenigen der eingangs erwähnten Schrift jedenfalls in nichts 
nachstehen und ihnen zum mindesten ganz ebenbürtig an die Seite gestellt werden können. 
    Wie Sie sich erinnern werden, haben Sie in der letzteren zur ursprünglichen Methode Ihres 
Biometr. Laboratoriums zurückgegriffen (1923, p. 284): 
 



    To fit high order parabolae to both variates and then take the differences between the 
ordinates of these parabolae and the observed data for x and y. 
 
Und zwar benutzten Sie dabei “the Rhodes’ and Sheppard’s systems of smoothing”. Worauf 
beruht denn eigentlich dieses so populäre Verfahren, welches der Variate-Difference-
Methode entgegengestellt wird? Doch offenbar darauf, daß man voraussetzt, daß gerade der 
“ausgeglichene“ (smoothed) Wert der gegebenen evolutorischen Variablen deren “glatte“ 
Komponente genau wiedergiebt 1. 
    Es sei u1, u2, u3, ..., uN eine evolutorische Reihe, deren jedes Glied aus einem “glatten“ 
Element G und einem restlichen “zufälligen“ (random) Element x bestehen möge, so daß 
 
    ui = Gi + xi. 
 
Soviel ich übersehen kann, wird bei allen Ausgleichungsmethoden (Periodogramm und 
kleinste Quadrate mit eingerechnet) ui�, d. h. der “ausgeglichene“ Wert von ui, durch eine 
mehr oder weniger komplizierte lineare Funktion einer Anzahl seiner Nebenglieder 
dargestellt (oder auch durch eine Funktion von deren Gesamtzahl): 
 
    ui) = F(ui–j; ui–j+1; …; ui; ui+1; …; ui+r), 
 
oder kurz ui� = F(uj, i, r). 
 
(Es werden ja bekanntlich bei Ausgleichungsrechnungen sogar alle nichtlineare Relationen 
zwischen den beobachteten und den unbekannten Größen durch bestimmte Kunstgriffe in 
angenäherte lineare verwandelt.) 
    Ist F(uj, i, r) linear, so kann man offenbar setzen: 
 
    ui� = F(uj, i, r) = F(Gj, i, r) + F(xj, i, r)  
 
und daher 
 
    ui – ui� = Gi – F(Gj, i, r) + xi – F(xj, i, r). 
 
    Folglich führt die übliche Hypothese ui – ui� = xi zwangsläufig zur Annahme  
 
    Gi – F(Gj, i, r) – F(xj, i, r) = 0, oder Gi = F(Gj, i, r) + F(xj, i, r). 
 
    Ich kann nun aber absolut nicht einsehen, warum das “glatte” Element G unter anderem 
auch durch eine lineare Funktion seiner zufälligen “Beobachtungsfehler” ausgedrückt werden 
sollte. Man wollte ja gerade durch die Ausgleichung sich von deren Einfluss befreien! Ich 
glaube vielmehr, daß man ohne Bedenken nur 
 
    Gi – F(Gj, i, r) = 0 
 
setzen kann, und daß folglich das restliche Glied ui – ui� nicht durch xi sondern durch   
[xi – F(xj, i, r)] darzustellen ist. Schliesslich kann man ja auch die mathematische Erwartung 
nur dieses Ausdruckes gleich Null setzen, keinesfalls aber diejenige von xi an und für sich.  
    Man darf also durchaus nicht die mathematische Erwartung von (ui – ui�) (uj – uj�) gleich 
derjenigen von xi xj  setzen, oder den Korrelationskoeffizienten zwischen zwei zufälligen 
Komponenten xi und yi zweier evolutorischer Reihen U und S als gleich dem Koeffizienten 
zwischen (ui – ui�) und (si – si�) betrachten. 



    Hier sind, im Allgemeinen, ganz analoge Korrektionen anzubringen, wie Sie, Herr 
Professor, diese beim Falle der Variate-Diff. Methode auf S. 309 Ihrer [Pearson & Elderton 
(1923)] ganz richtig angedeutet haben. Ein konkretes Beispiel. Auf S. 295 – 296 von 
Whittaker & Robinson (1924) finden wir die Sheppard’schen Ausgleichungsformeln für 
Parabeln bis zur 5. Ordnung und für Anzahl der bei der Ausgleichung benutzten Glieder von 
3 bis 21 (d.h. bis n = 10). 
    Nehmen wir an: Ausgleichungsparabel 2ter Ordnung; n = 2. Dann ist 
 
    uo – uo� = uo – (1/35)[17uo + 12(u1 + u–1) – 3(u2 + u–2)] = 
                   (1/35)[18uo – 12(u1 + u–1) + 3(u2 + u–2)] = 
                   (3/35)[u–2 – 4u–1 + 6uo – 4u1 + u2] = (3/35)�4 uo 

 

wenn man �4 für zentrale 4te Differenz setzt. 
    Es ist also, in mir geläufigeren Bezeichnungen, 
 
    ui – ui� = (3/35)!4 ui–2. 
 
Wird, folglich, angenommen dass in (ui – ui�) der letzte Rest einer G-Komponente 
verschwunden ist, so läuft das auf die Annahme  
 
    ui – ui� = (3/35)!4 xi–2  
 
hinaus; man erhält also hier, im Grunde genommen, eine Formel der Variate-Diff. Methode 
wieder! 
    Greifen wir das selbe Problem von einer anderen Seite an. Die geläufigen 
Ausgleichungsmethoden werden gewöhnlich aus bestimmten Hypothesen über die 
Beschaffenheit der glatten Komponente G abgeleitet, und die zufällige x-Komponente wird 
eben als Beobachtungsfehler betrachtet. Wenn aber unser Interesse auf der x-Komponente 
konzentriert wird, so dürfte gerade das entgegengesetzte Verfahren am Platze sein. Von 
diesem Standpunkt ausgehend, wollen wir versuchen, die Variate-Difference Methode als ein 
neues Ausgleichungsverfahren auszubauen.  
    Es sei wieder  
 
    u1 = G1 + x1, u2 = G2 + x2, ..., uN = GN + xN ;   
 
und !2k bedeutet die (2k)-te endliche Differenz, so daß 
 

    !2kxi = xi + 2kxi+1 + 2
2kC xi+2 + ... + k

kC2 xi+k + ... 

 
Nehmen wir nun an, daß bei dieser 2k-ten Differenz die evolutorische Komponente G 
endgiltig verschwunden ist. Dann ist 
 
    ui – ui) = z!2kui–k = z!2kxi–k. 
 
    Hier bedeutet ui� den nach unserem Ausgleichungsverfahren zu bestimmenden genauen 
Wert von Gi, und z – einen vorläufig unbestimmten Multiplikator, dessen vorteilhaftester 
Wert noch gefunden werden muß. Da nun 
 
    ui) = Gi + xi – z!2kxi–k , 
 



so kann dieser vorteilhafteste Wert von z (analog dem Verfahren der Methode der kleinsten 
Quadrate) der Bedingung  
 
    E(xi – z!2kxi–k)

2 = minimum 
 
unterworfen werden. Das symbol E bedeutet hier mathematische Erwartung. 
    Wenn x eine zufällige Variable ist, so daß Exi = Const, Exi

2 = Const, 
Exi xj = Exi Exj (j � i), so verwandelt sich obige Gleichung2 in 
 
    Exi

2 – 2zE(xi!
 2kxi–k + z2E(!2kxi–k)

2 
 
oder                  
 

    Ex2 – 2z
k

kC2 E(xi – Ex)2 + z2 k

kC
2

4 E(xi – Ex)2. 

 
Die erste Ableitung nach z ergebt 
 

    – 2 k

kC2 E(xi – Ex)2 + 2z
k

kC
2

4 E(xi – Ex)2.         

 
Setzt man sie gleich Null, so erhält man daraus 
 
    z = [(2k)!]3/[(4k)!k!k!]. 
 
    Da die 2te Ableitung positiv ist, so ist der hier gefundene Wert von z ein Minimum. Es ist 
also 
 
    ui� = ui – {[(2k)!]3/[(4k)!k!k!]}!2kxi–k = ui – {[(2k)!]3/[(4k)!k!k!]}!2kui–k, 
 
oder, in zentralen Differenzen ausgedrückt, 
 
    uo� = uo – {[(2k)!]3/[(4k)!k!k!]}�2kuo. 
 
    Das wäre also diejenige Ausgleichungsformel, welche der Anwendung der Variate 
Difference Methode entspricht. Setzt man hier k = 1, 2, 3, ... ein, so erhält man unmittelbar 
 
    bei k = 1, uo� = (1/3)[uo + (u1 + u–1)], 
    bei k = 2, uo� = (1/35)[17uo + 12(u1 + u–1) – 3(u2 + u–2)], 
    bei k = 3, uo) = (1/231)[131uo + 75(u1 + u–1) – 30(u2 + u–2) + 5(u3 + u–3)], 
u.s.w. 
 
    Wir haben also für die “Variate-Difference“-Ausgleichungsmethode genau dieselben 
Koeffizienten gefunden, welche die Sheppard’sche Ausgleichung in dem Falle ergiebt, wenn 
man sein n der Ordnung seiner Parabel (oder der Hälfte der Ordnung unserer Differenz) 
gleich setzt! 
     Dieses Ergebnis kam für mich seinerzeit recht unerwartet, obwohl es ja ohne besondere 
Schwierigkeiten aus Sheppard’s Formeln abgeleitet werden kann. Ob es sonst bekannt ist, 
kann ich nicht beurteilen, da für mich leider die Sheppard’sche Arbeit bis jetzt unerreichbar 
geblieben ist, und ich überhaupt hier in Varna in sehr wenige Werke der engl. und amerik. 
wissenschaftlichen Litteratur Einsicht bekommen kann. 



    Jedenfalls, glaube ich erwiesen zu haben, dass es nicht angeht, der Var. Diff. Methode die 
Bestimmung der zufälligen Residualen xi gerade nach dem Sheppard’schen Verfahren 
gegenüberzustellen. Entweder sind bei letzterem genau dieselben Korrektionen, wie bei 
ersterer, anzubringen, oder aber muß man die von der evolutorischen Komponente befreiten 
2k-ten Differenzen als mit einem gewissen konstanten Faktor multiplizierte wahre Werte von 
x ansehen und folglich an der Existenz einer mehr oder weniger beträchtlichen Korrelation 
zwischen !2kxi und !2kxi+j (oder bzw. zwischen !2kxi und !2kyi+j)  keinen Anstoß nehmen. Ich 
für meinen Teil entscheide mich natürlich für erstere Alternative. 
    Leider konnte ich mir hier die Rhodes’sche Arbeit ebenfalls nicht verschaffen und bin 
daher außerstande sein Verfahren von meinem Standpunkte aus zu kontrollieren. Ich halte es 
aber für sehr wahrscheinlich, daß auch letzteres zur selben Klasse der 
Ausgleichungsmethoden gehört, die ich am Anfang dieses Brief erwähnte. Ich möchte daher 
annehmen daß 
    1) Ihre 

pp yxR  auf S. 308 von Pearson & Elderton (1923) Korrektionen zu erhalten haben, 

die Sie, wahrscheinlich, den durch die Var. Diff. Meth. erbrachten Resultaten näherbringen 
würden; daß 
    2) Ihre Korrelationskoeffizienten sowie für Xp, Xp+i (ebenda S. 303), als auch für Xp, Yp±i 
(S. 305) sehr wohl spurious sein können, und daher ohne vorherige Korrektion nicht der 
Kommentare auf S. 306 – 307 bedürfen und nicht gegen die Anwendbarkeit der Var. Diff. 
Methode zeugen können; und daß 
    3) Wenigstens bei Anwendung einer anderen Sheppard’schen Ausgleichungsformel Sie 
auch zu mit der Var. Diff. Methode identischen Resultaten gelangen könnten. 
    Bedürfen letztere nicht der Korrektionen, die Sie auf S. 309 andeuten? Ich bin imstande, 
auch auf diese Frage zu antworten, möchte aber hier Ihre Zeit nicht zu lange mit meinem 
Brief in Anspruch nehmen. Nur soviel sei gesagt, daß ich den genauen Ausdruck für die 
Stand. dev. der Differenz 
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bestimmt habe. Bei kleinerem N (also auch in Ihrem Falle) ist letztere doch derart, daß man 
nicht anzunehmen braucht, diese Differenz sei gleich Null. Auch für eine reine random series 
kann dann die Reihe �k

2, �k+1
2, �k+2

2, ... sehr wohl allmählich ansteigen oder, im Gegenteil, 
langsam abfallen. Desgleichen, natürlich auch die Reihe pk, pk+1, pk+2, ... wenn hier pj für 
 

    �
−

=

jN

i 1

!jxi!
jyi/

j

jC2 (N – j)          

 
steht. Wenn aber die Reihe pi, von einem gewissen k angefangen, wirklich stabil geworden 
ist, so kann hierauf dasjenige Theorem angewandt werden, welches ich in einer Fußnote auf 
S. 146 meines Artickels (1923) andeutete, d.h. je länger die konstante Reihe pk, pk+1, pk+2, … 
desto wahrscheinlicher kann man annehmen, daß alle Korrelationskoeffizienten zwischen xi 
und yi±j dem Nullpunkt recht nahe zu stehen kommen (natürlich, ausgenommen xiyi). 
    Um zum Schlusse zu gelangen. Meine Ansicht über die Variate Difference Methode geht 
jetzt dahin, daß diese auch als ein regelrechtes Ausgleichungs-verfahren angesehen werden 
kann, welches zum Teil mit dem Sheppard’schen zu identifizieren ist. Den einen Vorteil der 
ersteren haben Sie sehr richtig auf S. 284 [Pearson & Elderton (1923)] angegeben: die 
Leichtigkeit, mit der man feststellen kann, ob die evolutorische Komponente wirklich schon 
als eliminiert angesehen zu werden vermag. Dazu kommt die Sicherheit der Kontrollen, da 
für alle wichtigeren Mittelwerte, Momente und Kriterien jetzt die Stand. Deviationen 



bestimmt sind. Ferner erlaubt diese Methode tiefer in die gegenseitigen Verhältnisse der 
einzelnen Komponenten einer evolutorischen oder säkularen Reihe einzudringen, als es bei 
anderen Verfahren bis jetzt der Fall gewesen ist. Was bei ersterer offen zu Tage liegt, wird 
bei den anderen Verfahren manchmal nur im Stillen hineingeschmuggelt (siehe erste und 
zweite Seite dieses Briefes) 3. 
    Obige Ausführungen bilden eine gedrängte und unvollkommene Darstellung einiger 
Ergebnisse meiner neuen Untersuchung über die Var. Diff. Methode, an der ich im Sommer 
gearbeitet habe und die ich zwischen Weinachten und Ostern zu schließen hoffe (ca. 3 – 4 
Druckboden). Ich werde sehr durch die Berechnung von verschiedenen numerischen 
Beispielen aufgehalten, welche ich ohne fremde Hilfe auszuführen gezwungen bin. Ich habe 
einige hypothetische Beispiele konstruiert, aber auch eine Anzahl konkreten Reihen 
untersucht, wobei ich manchmal zu recht interessanten Ergebnissen gelangt bin. Unter 
anderem, ist es mir bis jetzt, trotz aller Bemühungen, nicht gelungen, eine wirklich zackige 
Reihe zu finden, die den kurzperiodischen Sinus-Reihen Yule’s (1921) einigermassen 
entsprochen hätte. Ich habe aber dennoch einige Methoden ausgearbeitet, die es erlauben, 
eine wirklich vorhandene schädliche z-Komponente zu eliminieren. 
    Ferner habe ich die recht interessanten Zusammenhänge untersucht, die zwischen dem 
Lexis – Bortkiewicz’schen Divergenzkoeffizienten 4 Q2 und der Var.-Diff. Methode 
bestehen, und dabei auch die Frage über die Konstruktion von aus verschiedenen 
Komponenten zusammengesetzten evolutorischen Reihen beleuchtet, speziell über den 
Zusammenhang zwischen meinen z-Reihen und der Lexis’schen übernormalen Stabilität. 
    Ich hoffe, die Arbeit irgendwo mit Hilfe unseres Verbandes russischer akademischer 
Lehrer im Auslande (dessen Vorsitzender ist Prof. Vinogradoff, Oxford) unterbringen zu 
können, doch sind die Aussichten noch ungewiss. Das Manuskript in Bulgarischer Sprache 
zu drucken hat, natürlich, keinen Sinn. 
    Ich bitte sehr um Entschuldigung, daß ich Ihre Zeit mit diesem Briefe in Anspruch nehme. 
Ich möchte aber dadurch einerseits mein Prioritätsrecht auf die hier dargelegten 
wissenschaftlichen Ideen sichern und, andererseits, tröste ich mich damit, dass Sie, Herr 
Professor, in den behandelten Fragen teilweise auch engagiert sind und daher vielleicht für 
Sie einiges Interesse Sich abgewinnen könnten. 
    Mit vorzüglicher Hochachtung, Ihr Oskar Anderson 
 
    Letter No. 2 
Prof. Oskar Anderson, Ecole Supérieure de Commerce, Varna, Bulgarie 
Varna, den 10. Dezember 1925 
 
    Sehr geehrter Herr Professor, 
    Soeben erhielt ich Ihren w. Brief vom 4.XII und beeile mich ihn zu beantworten. Meines 
Wissens, ist es dem Vorsitzenden des Verbandes Russischer Akadem. Lehrer im Auslande, 
Prof. Vinogradoff (Oxford), gelungen, von einigen Akademien der Wissenschaften (Oslo, 
Rom, London, ...) zu erreichen, daß sie sich bereit erklärt haben, gemäß seiner 
Rekommandation auch Schriften russischer Autoren zum Drucke anzunehmen. Eben diese 
Möglichkeit hatte ich im Sinn, als ich letztens an Sie schrieb. Da jedoch Prof. Vinogradoff 
möglicherweise (was ihm niemand verargen kann) die Schriften seiner Kollegen vom Fach, 
also Historiker und Juristen, bevorzugen könnte, und ich auch sonst befürchte, daß dank dem 
großen Andrang von anderen Konkurrenten der Druck meiner Arbeit Gefahr liefe, sich stark 
zu verzögern, so wäre ich natürlich sehr froh, wenn Sie dieselbe wirklich für die Biometrika 
annehmen wollten. Diese Zeitschrift hat Weltruhm und zudem dürfte ihr Auditorium mit den 
Grundideen der Variate Difference-Methode wohl bekannt sein. Das würde mir erlauben, 
mich kürzer zu fassen. Ob ich meine Arbeit in jene 15 – 20 Seiten, die Sie mir eventuell 
anbieten, hineinzwängen kann, – weiß ich noch nicht, will es aber versuchen. Jedenfalls, 



werde ich das ganze Material in kurze und möglichst selbstständige Abschnitte einteilen und 
es Ihnen überlassen, das eine oder das andere davon zu streichen. 
    Das Gestrichene werde ich dann trachten, in Norvegen oder Italien unterzubringen. Mit 
Ihrer Publikation Pearson & Elderton (1915) will ich bei Raummangel mich auch möglichst 
wenig befassen und werde mich nur mit einigen kurzen Bemerkungen begnügen. Ich hoffe, 
dass Sie, Herr Professor, es vielleicht für angebracht halten werden, in einer Vor- oder 
Schluss-Bemerkung zu meinem Artickel ihren jetzigen Standpunkt in der Frage darzulegen. 
Sind Sie mit mir einverstanden, so stehen Ihnen ja zu Korrektions-Berechnungen die Kräfte 
Ihres Laboratoriums zur Verfügung! Desgleichen werde ich auch keine Korrektionen zum 
Rhodes’schen oder anderen Ausgleichungsmethoden deduzieren.  
    Ich hoffe, noch bis Anfang Februar Ihnen meine Schrift in neuer Redaktion zuschicken zu 
können und werde dann mit Ungeduld auf Ihre endgiltige Entscheidung warten. Letzten 
Endes bleibt mir ja noch die von Ihnen zugestandene Möglichkeit im Mai-Heft der 
Biometrika nur den Text meines Briefes vom 27. November zu veröffentlichen. 
    Zum Schluss möchte ich Ihnen hier noch eine Frage vorlegen, welche Ihnen vielleicht 
gänzlich verfrüht erscheinen wird, für mich aber schon jetzt von einem gewissen aktuellen 
Interesse ist, die Frage über die Sprache nämlich. Fast jeder Russische oder Deutsche 
Gelehrte liest Englisch, aber relativ nur wenige Angel-Sachsen und Franzosen verstehen 
deutsch oder wollen deutsch verstehen. Daher wäre es für mich sehr wichtig, wenn mein 
zukünftiger Artickel (falls er wirklich von Ihnen angenommen werden sollte) in englischer 
Sprache erschiene. Wenn ich die Übersetzung selber besorge, so kostet es mich 
verhältnißmäßig viel Zeit und – die Hauptsache – werde ich doch nicht sicher sein, ob mir 
nicht irgendwo etliche lächerliche Russismen untergelaufen sind. Auf der 4. Seite eines jeden 
Biometrika-Heftes steht:  
 
    Russian contributors may use either Russian or German but their papers will be translated 
into English before publication. 
 
Was muss ich nun tun, um eine solche Übersetzung zu veranlassen? Ist das eine Geld-Frage? 
    Mit vorzüglicher Hochachtung Ihr O. Anderson 
 
    Notes 
    1.{Evolutionary series is a term likely coined by Lexis (1879, §1). Nowadays, we would 
say, a series possessing a trend.} 
    2.{Anderson obviously had in mind the Bedingung formulated above.} 
    3.{The second page of Anderson’s manuscript ended after the formula for (uo – uo�).} 
    4.{Bortkiewicz (and, even more, Markov and Chuprov) had indeed studied the Lexian 
theory, but the coefficient Q (later replaced by Q2) was due to Lexis alone. In his Biometrika 
paper Anderson (1926 – 1927) did not anymore mention Bortkiewicz in that connection. A 
few lines below, Anderson once more refers to Lexis, – to his theory of the stability of 
statistical series. It is strange, however, that neither here, nor in the published paper did he 
mention Chuprov’s refutation (1918 – 1919) of the Lexian reasoning.}     
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11. Ya. Mordukh.  

On Connected Trials Corresponding to the Condition of Stochastic Commutativity 
Unpublished; kept at University College London, Pearson Papers, NNo. 442 and 627/2 … 

 
Foreword by Translator 

 
    Hardly anything is known about Mordukh, a former student of Chuprov, who emigrated 
from Russia. Chuprov [7, pp. 60 – 61] mentioned him most favorably (our economist […] 
graduated from Uppsala University and moved to Dresden {where Chuprov then lived} to be 
my student) and noted his mathematical talent. However, it also followed from Chuprov’s 
correspondence (Ibidem) that Mordukh had not found a position for himself. Answering my 
inquiry, Anders Molander (Archives of that University) stated on 21 Jan. 2000 that Jacob 
Mordukh, born 4 July 1895, was matriculated there on 20 Jan. 1919 and graduated 
(apparently, from the Philosophical Faculty) on 14 Sept. 1921 as Bachelor of Arts. His 
subjects were Slavonic languages, mathematics and statistics. Nothing else is known about 
him. 
    Below, in the article now translated, Mordukh enlarges on Chuprov’s discovery of 
exchangeability, as it is called now; see [6], where the latter’s contribution is highly 
appraised (pp. 246 and 253 – 255). I adduce a few remarks about terminology. First, 
Mordukh used the terms disjunction and conjunction as well as the appropriate verbs and 
participles. Second, he wrote law of distribution of the values … just as Chuprov did. Third, 
Mordukh preferred random variable to the now standard Russian term random quantity. 
Here also, he apparently took after Chuprov who nevertheless wavered between these two 
terms [7, §15.4]. Fourth and last, I replaced Mordukh’s unusual parameters-h by parameters 
{h}.  

*   *   * 
    1. Among the constructions of the mathematical theory of probability applied for justifying 
the methods of statistical investigations, two patterns claim to be considered as the 
cornerstones: the scheme of independent trials usually illustrated by extracting balls from an 
urn with their immediate return; and the pattern of dependent trials corresponding to the case 
of unreturned balls. The exposition below keeps to a more general formulation. Suppose that 
a closed urn contains S tickets, s1 of them marked with number x(1), s2 balls with x(2), …; and 
sk, with the number x(k). Suppose also that N tickets are extracted. If the drawn ticket, after its 
number is recorded, is returned to the urn before the next extraction takes place, we have the 
layout of the returned ticket; otherwise, we speak about the scheme of the unreturned ticket. 
    The transition from the second pattern and its appropriate formulas to the first one is 
known to present no difficulties. The scheme of the returned ticket can formally be 



considered as the limiting case of the other one: the greater is the number S of the tickets in 
the urn, the weaker is the connection between the separate trials so that in the limit, as S = 
 
(and with a finite number of trials, N), the pattern of dependent trials passes on to that of 
independent trials. Suppose for example that the urn contains s white and s black balls. The 
probability of drawing in two consecutive extractions, first a white ball and then a black one, 
will be equal to P = (1/2)�(1/2) = 1/4 when the ball is returned; and to Ps = (s/2s)�[s/(2s – 1)] 
= (1/2)�{1/[2 – (1/s)]} when the ball is not returned, and we find that P = lim Ps as s = 
.  
    This derivation for the pattern of the returned ticket is not really interesting because the 
establishment of the formulas for the other scheme is much more difficult. And, on the 
contrary, it would be somewhat beneficial to have the possibility of an inverse transition 
from the formulas of the arrangement of the returned ticket to the more complicated relations 
valid for the other pattern. This problem was not apparently posed before although it admits 
of a very simple solution interesting not only because it simplifies the derivation of formulas 
for the layout of the non-returned ticket, but also because it leads to important theoretical 
constructions.  
 
    2. N trials are made on a random variable x that can take values x(1), x(2), …, x(k), with 
probabilities p1, p2, …, pk respectively and the law of distribution of this variable remains 
fixed all the time. Considering all these trials together as a single whole, we shall call them a 
system if the separate trials somehow depend one on another, and a totality if they are 
mutually independent. 
    Denote the random empirical values taken by the variable x at the first, the second, …, the 
N-th trial by x1, x2, …, xN. Let Ex be the expectation of x and  

E Nh

N

hh
xxx ...21

21 , the expectation of the product Nh

N

hh
xxx ...21

21 . An indefinite number of 

parameters can characterize the connections between the trials. Among them, those of the 

type of E Nh

N

hh
xxx ...21

21  are known to be most widely used. When applying them, let us 

stipulate that the system (or the totality) of the trials is called uniform if this expectation 
persists under any permutation of the indices h 1. 
    Supposing that 
 

    E Nh

N

hh
xxx ...21

21 = 
Nhhhm ...

21
  

 
and denoting a permutation of the indices by hi1, hi2, …, hiN, we may consequently 
characterize a uniform system (totality) by the condition that 
 
    

Nhhhm ...
21

 = 
iNii hhhm ...21

                                                                                 (1) 

 
takes place for any permutation. In particular, when agreeing to write mh00…0 = mh, we shall 
have 
 
    Ex1

h = Ex2
h = … = ExN

h = Exh = mh.                                                    (2a; 2b) 
 
    In accord with the theorem about the expectation of a product for mutually independent 
trials we have 
 

    E Nh

N

hh
xxx ...21

21 = Nh

N

hh
ExExEx ...21

21  or 
Nhhhm ...

21
 = 

Nhhh mmm ...
21

. 

 



We therefore easily convince ourselves that the transition from a uniform system of trials and 
its appropriate formulas expressed through parameters 

Nhhhm ...
21

to a totality and its formulas 

(the disjunction of a uniform system into a totality, as we shall call this operation) presents 
no formal mathematical difficulties and is always justified. When replacing expressions of 
the type of 

Nhhhm ...
21

in the formulas pertaining to a uniform system by the corresponding 

expressions 
Nhhh mmm ...

21
we may always consider the relations obtained as belonging to the 

case of a totality.  
    On the contrary, such simple rules for transforming the formulas for an inverse transition 
from a totality to a uniform system (for a conjunction of a totality into a uniform system) can 
be indicated not for all cases at all. It is not, however, difficult to establish one very simple 
and general condition under which the conjunction of the formulas, – that is, a transition 
from the expressions of the type of 

Nhhh mmm ...
21

 to expressions 
Nhhhm ...

21
, – means a 

conjunction of a totality into a uniform system.  
 
    3. When considering a totality as a disjuncted system, and, inversely, understanding a 
system as a conjuncted totality, we introduce the following notation for the operations of 
disjunction and conjunction, respectively: 
 
    ]

Nhhhm ...
21

[ = 
Nhhh mmm ...

21
, [

Nhhh mmm ...
21

] = 
Nhhhm ...

21
. 

 
    Formulating the symbolic substance of these formulas in words, we shall say that the 
operation of disjunction comes to the factorization of the product 

Nhhhm ...
21

with the factors 

being 
Nhhh mmm ,...,,

21
; and, inversely, the operation of conjunction is as though a 

multiplication of these factors resulting in the product 
Nhhhm ...

21
.  

    We are considering integral rational functions G(x1; x2; …, xN); that is, polynomials of the 
type 

    G(x1; x2; …, xN) =� Nhhhc ...21

Nh

N

hh
xxx ...21

21  

where 
Nhhhc ...21

are the coefficients of the terms (of the products) Nh

N

hh
xxx ...21

21  and the sum is 

extended over the various systems of the exponents h.  
    Owing to the theorem about the expectation of a sum, that applies both to totalities and 
systems of trials to the same extent, we have 
 
    EG(x1; x2; …, xN) = 

    E� Nhhhc ...21

Nh

N

hh
xxx ...21

21 =� Nhhhc ...21
E Nh

N

hh
xxx ...21

21 . 

 
Consequently, denoting EG for a totality by E]G[ and by E[G] for the case of a uniform 
system, we shall have 
 
    E]G[ =� Nhhhc ...21 Nhhh mmm ,...,,

21
, E[G] =� Nhhhc ...21 Nhhhm ...

21
.      

 
    We distinguish between two cases: Either none of the coefficients c includes the 
parameters {m}; or, at least one of them is their function. In the first instance we have 
 
    ]

Nhhhc ...21 Nhhhm ...
21

[ = 
Nhhhc ...21 Nhhh mmm  ...

21
                                                 (3) 

 



and, inversely, 
 
    [

Nhhhc ...21 Nhhh mmm  ...
21

] = 
Nhhhc ...21 Nhhhm ...

21
.                                                (4) 

 
    Accordingly, by disjuncting the expression for E[G] and conjuncting the expression for 
E]G[ we find that 2 
 
    ]� Nhhhc ...21 Nhhhm ...

21
[ =� Nhhhc ...21 Nhhh mmm  ...

21
 = E]G[, 

    [� Nhhhc ...21 Nhhh mmm  ...
21

] =� Nhhhc ...21 Nhhhm ...
21

 = E[G]. 

 
    Consequently, we satisfy ourselves that by disjuncting the formulas concerning a uniform 
system and by conjuncting those pertaining to a totality, we shall indeed turn them into each 
other. In the second instance formula (3) persists but the inverse relation (4) does not take 
place because here, in addition to the mulipliers 

Nhhh mmm ,...,,
21

, the factors mh included in 

the coefficients c are also multiplied ; consequently, instead of the product sought, 
Nhhhm ...

21
, 

we obtain a different product, ......21 hhhh N
m lacking the appropriate meaning. It indeed follows 

that in this second case a conjunction applied to the formulas pertaining to a totality does not 
lead to the formulas concerning a uniform system. 
    We thus conclude that the condition for the conjunction of the formulas expressing the 
expectation of integral rational functions G(x1; x2; …, xN) to conjunct a totality into a uniform 
system, – that this condition is, that none of the coefficients c includes the parameters {m}. In 
this, and only in this instance, we are always justified, when replacing the expression of the 
type  

Nhhh mmm  ...
21

in the formulas pertaining to a totality by the corresponding expressions 

Nhhhm ...
21

, in considering the obtained relations as belonging to the case of a uniform system. 

    A few examples. Supposing that 
 
    x(N) = (1/N) (x1 + x2 + … + xN), mr(N) = Exr

(N)  
 
we shall have for the case of a totality of trials 3 
 

    mr]N[ = m1
r + (1/N) 2

rC (m1
r–2 m2 – m1

r) +  

    (1/N 2){3 4
rC m1

r–4m2
2 + 3

rC [m1
r–3m3 – 

2

)1(3 −r
m1

r–2m2 + 
4

13 −r
m1

r]} + … 

 
    In particular, 
 
    m1]N[ = m1; m2]N[ = m1

2 + (1/N) (m2 – m1
2);  

    m3]N[ = m1
3 + (3/N) (m1m2 – m1

3) + (1/N 2) (m3 – m1m2 + 2m1
3);  

    m4]N[ = {I omit this formula}. 
 
    Applying conjunction to these formulas, we directly obtain the formulas concerning a 
uniform system 4: 
 

    mr[N] = m11…1 + (1/N) 2
rC (m11…12 – m11…1) +   

    (1/N 2)[3 4
rC m11…122 + 3

rC (m11…13 – 
2

)1(3 −r
m11…12 + 

4

13 −r
m11…1)]. 



 
In particular, 
 
    m1[N] = m1; m2[N] = m11 + (1/N) (m2 – m11);  
    m3[N] = m111 + (3/N) (m12 – m111) + (1/N 2) (m3 – m12 + 2 m111);  
     m4[N] = {I omit this formula.} 
 
    4. Parameters {µ} which are the expectations of the products 
 
    Nh

N
hh mxmxmx )...()()( 11211

21 −−−                                                              (5) 

 
are very often used along with the parameters {m} as a characteristic of a studied system or 
totality of trials. Supposing that 
 
    E Nh

N
hh mxmxmx )...()()( 11211

21 −−− = 
Nhhh ...21

µ  

 
we may, similar to what we did before, describe a uniform system (or totality) of trials by the 
condition that the equality 
 
    

Nhhh ...21
µ  = 

iNii hhh ...21
µ   

 
takes place for any permutation of the indices h1, h2, …, hN. In particular, agreeing to write µh 
instead of µh0…0, we shall have 
 
    E(x1– m1)

h = E(x2– m1)
h = … = E(xN– m1)

h = E(x– m1)
h = µh. 

 
    Noting that for mutually independent trials 
 
    E Nh

N
hh mxmxmx )...()()( 11211

21 −−− = 

    Nh
N

hh mxEmxEmxE )(...)()( 11211
21 −−− , 

  
or 

Nhhh ...21
µ  = 

Nhhh µµµ ...
21

, we easily become convinced that, when applying the parameters 

{µ}, a disjunction of a uniform system into a totality is carried out as simple as in the case in 
which parameters {m} are being used. 
    On the contrary, when transferring from a totality to a uniform system, identical rules for 
conjunction cannot be established for both sets of parameters because the coefficients of 
integral rational functions (5) include the powers of the parameter m1, and, consequently, on 
the strength of the above, a conjunction of the parameters {m} is not here justified at all. As 
an illustration, let us consider the relation between µ22 and µ2

2. Noting that 
 
    E(x1– m1)

2(x2– m1)
 2 =   

    E[x1
2x2

2 – 2x1x2(x1 + x2)m1 + (x1
2 + x2

2)m1
2 + 4x1x2m1

2 – 2(x1 + x2)m1
3 + m1

4] 
 
we find for the case of a uniform system 
 
    µ22 = m22 – 4m12m1 + 2m2m1

2 + 4m11m1
2 – 3m1

4  
 
whereas for a totality 
       



    µ2
2 = m2

2 – 2m2m1
2 + m1

4. 
 
    Since 
 
    ]m22 – 4m12m1 + 2m2m1

2 + 4m11m1
2 – 3m1

4[ = m2
2 – 2m2m1

2 + m1
4, 

 
we convince ourselves that, when considering µ22 as a function of the parameters {m}, we 
may extend the rules of disjunction to cover it: ]µ22[ = µ2

2. The inverse relation does not, 
however, exist because 
 
    [m2

2 – 2m2m1
2 + m1

4] � m22 – 4m12m1 + 2m2m1
2 + 4m11m1

2 – 3m1
4. 

 
    Consequently, the rules of conjunction cannot be extended to cover µ2

2 as a function of the 
parameters {m}, and [µ2

2] � µ22. It is of course possible to formulate the rules of conjunction 
directly for the parameters {µ} when issuing not from the functions G(x1; x2; …, xN) of the 
variables x1; x2; …, xN themselves but from functions of the deviations of the variables from 
their expectation m1: G(X1; X2; …, XN) = G(x1– m1; x2– m1; …; xN – m1), – and then, 
accordingly and analogous to the above, to determine       
 
    ]

Nhhh ...21
µ [ = 

Nhhh µµµ ...
21

, and, inversely, [
Nhhh µµµ ...

21
] = 

Nhhh ...21
µ . 

 
    For example, considering E(x1– m1)

2(x2– m1)
 2 as E(X1

2 X2
2) and replacing m by µ when 

passing on from variables x to variables X, we shall have for a totality E(X1
2 X2

2) = E(X1
2) 

E(X2
2) = µ2

2. And, for a uniform system, E(X1
2 X2

2) = µ22 and we may consequently write not 
only ]µ22[ = µ2

2 but also inversely (as distinct from the previous example in which µ2
2 and 

µ22 were considered as functions of the parameters {m}): [µ2
2] = µ22. Saying nothing about 

the violation of the unity of conjunction with respect to the parameters {µ} and to their 
expression through the parameters {m} by the extension of the previous rules of this 
operation onto the parameters {µ}, the conjunction of the {µ} parameters thus defined is 
unrealizable in any of the cases in which a transition to the parameters of the type 

Nhh ...1 2
µ is 

intended. Indeed, µ1 = 0 and the formulas to be conjuncted cannot therefore include terms of 
the type µ1,  

Nhh µµ ,...,
2

containing the factor µ1 and necessary for obtaining the product  

Nhh ...1 2
µ . 

    At the same time, it is indeed this property, µ1 = 0, that underlies the supplementary 
calculational significance of the parameters µh. In a number of cases we manage to replace 
the parameters {m} by the corresponding parameters {µ}; owing to this (and because of the 
property µ1 = 0) we are able to represent awkward and hardly surveyable formulas in a 
simpler and more obvious form. Such a replacement of the parameters 

Nhhhm ...
21

 by 

parameters 
Nhhh ...21

µ is always possible if only the studied function G(x1; x2; …, xN) whose 

expectation is being determined, satisfies the condition 
 
    G(x1; x2; …, xN) = G(x1– a; x2– a; …; xN – a)                                              (6) 
 
for any value of a and, consequently, for a = m1 as well. As an example of a function 
satisfying this condition we adduce the deviation of the random empirical value of the 
variable x from the mean of its values, x(N). Namely, we have 



    xi – x(N) = (xi – a) – (1/N)�
=

N

i 1

(xi – a) 

and we may therefore express the expectation E(xi – x(N))
h in terms of both the parameters 

{m} and only of the parameters {µ}. For example, 
 
    E(xi – x(N))

2 = [(N – 1)/N](m2 – m1
2) = [(N – 1)/N](µ2 – µ1

2) = [(N – 1)/N] µ2.  
 
    We consider functions of a special kind obeying the condition (6) and, namely, the 
expressions 
 
    M�h = (x1 – x2) (x1 – x3) … (x1 – x1+h) 
 
and in general 
 
    

NhhhM ...21
′ =  

    (xi – xi+1) (xi – xi+2) … (xi – )
1hix + (xj – xj+1) (xj – xj+2) …(xj – )

2hjx +  … 

    (xk – xk+1) … (xk – )
Nhkx +  

 
where the x’s are the random empirical values of the variable x taken by it in different trials 5. 
    Denoting by M�h, M

(3)
h, …, M(i)

h, etc the expressions similar to M�h so that for example    
 
    M�h = (x2 – x1) (x2 – x3) … (x2 – x1+h), M

(i)
h = (xi – xi+1) (xi – xi+2) … (xi – xi+h) 

 
and in the same way denoting by 

NhhhM ...21
′′ , NhhhM ...

)3(
21 , Nhhh

iM ...
)(

21 etc the expressions 

similar in the same sense to 
NhhhM ...21

′ , we shall have, for the case of a uniform system or 

totality of trials,  
 
    EM�h = EM�h = … = EM(i)

h, E
NhhhM ...21

′ = E
NhhhM ...21

′′  = … = E Nhhh
iM ...
)(

21 . 

 
    Supposing that 
 
    E(xi – xi+1) … (xi – )

1hix + (xj – xj+1)…(xj – )
2hjx + …(xk – xk+1)…(xk – )

Nhkx +  = 

    
NhhhM ...21

 

 
we may describe, analogous to what we did before, a uniform system (or totality) by the 
condition that the equality 
 
    

NhhhM ...21
= 

iNii hhhM ...21
 

 
takes place for any permutations of the indices. In particular, we shall have 
 
    E(x1 – x2) (x1 – x3) … (x1 – x1+h) = E(x2 – x1) (x2 – x3) … (x2 – x1+h) = … = 
    E(xi – xi+1) (xi – xi+2) … (xi – xi+h) = Mh. 
      
    Noting that for independent trials 
 
    E(xi – xi+1) (xi – xi+2) … (xi – )

1hix + (xj – xj+1) (xj – xj+2) …(xj – )
2hjx +  … 



    (xk – xk+1) … (xk – )
Nhkx + = E(xi – xi+1) (xi – xi+2) … (xi – )

1hix + � 

    E(xj – xj+1) (xj  – xj+2) …(xj – )
2hjx + …�E(xk – xk+1) … (xk – )

Nhkx +   

 
or 

NhhhM ...21
= 

Nhhh MMM ...
21

and that  

 
    E(x1 – x2) (x1 – x3) … (x1 – x1+h) = E x1

h – E(x2 + x3 + … + x1+h) x1
h–1 + 

    E(x2x3 + x2x4 + x3x4 + … + xhx1+h) x1
h–2 – E(x2x3x4 + x2x3x5 + …) x1

h–3 + … + 
    (– 1h)E(x2x3x4 … x1+h)  
 
or   

    Mh =�
=

h

i 0

(– 1)i i

hC mh–i mi
i =�

=

h

i 0

(– 1)i i

hC µh–i µ1
i = µh,                             (7) 

we satisfy ourselves without difficulties that a disjunction of a uniform system into a totality 
is always accomplished by a disjunction of the parameters {M} and their simple replacement 
by parameters {µ}. Let us write low-case � instead of capital M both for a uniform system 
and a totality 6. In the first instance only we may define, in accord with the above, the 
operation of disjunction of the parameters {�}: 
 
    ]

Nhhh� ...21
[ = 

Nhhh µµµ ...
21

 and in particular ]�h[ = µh. 

 
Inversely, when defining the operation of conjunction of the parameters {µ}as 
  
    [

Nhhh µµµ ...
21

] = 
Nhhh� ...21

and in particular [µh] = �h, 

 
it is not difficult to show that, if the initial function, whose expectation is being determined, 
satisfies the condition (6), and if the coefficients of the variables do not include the 
parameters {µ}, the conjunction of a totality into a uniform system is brought about by a 
simple replacement of these parameters by parameters {�} and a multiplication, i.e., a 
conjunction, of the latter. 
    When writing out 
 
    (x1 – x2)

2 = [(x1 – x3) + (x3 – x2)][(x1 – x4) + (x4 – x2)] =    
    (x1 – x3)(x1 – x4) + (x1 – x3)( x4 – x2) + (x3 – x2)(x1 – x4) + (x2 – x3)(x2 – x4) = 
    M�2 + M�11 + M�11 + M�2, 
 
    (x1 – x2)

3 = [(x1 – x3) + (x3 – x2)][(x1 – x4) + (x4 – x2)][(x1 – x5) + (x5 – x2)] = 
    (x1 – x3)(x1 – x4)(x1 – x5) + (x1 – x3)(x1 – x4)(x5 – x2) + … = 
    M�3 + M�12 + M�12 + M(3)

12 + M(4)
12 + M(5)

12 + M(6)
12 – M�3, … 

 
    (x1 – x2)

m =  
    [(x1 – x3) + (x3 – x2)][(x1 – x4) + (x4 – x2)] …  [(x1 – xm+2) + (xm+2 – x2)] = … 
 
we convince ourselves that (x1 – x2)

m can be identically represented as an algebraic sum of 

expressions )(
...21

i

hhh N
M . In absolutely the same way we show that, in general, any expression 

(x1 – x2)
m (x1 – x3)

n … (x1 – xN)p can be represented as  

    �
Nhhhi ,...,,),( 21

)(
...21

i

hhh N
M±  

where the sum extends over the corresponding values of the indices h and i.  



    On the other hand, we note that functions satisfying the condition (6) can be represented as 
functions of the differences of the variables; for example, as  
F(x1 – x2; x1 – x3; …; x1 – xN). Namely, supposing that a = x1, we find that 
    
    G(x1; x2; …, xN) = G(0; x2 – x1; x3 – x1; …; xN – x1) 
 
so that 
 

    G(x1; x2; …, xN) = �
Nmmm ,...,, 21

Nmmmc ...21

Nm

N

mm
xxx ...21

21 = 

    �
Nmmm ,...,, 21

Nmm
c ...0 2

Nm
N

mm xxxxxx )...()()( 11312
32 −−− . 

 
And, since 
 

    Nm
N

mm xxxxxx )...()()( 11312
32 −−− = �

Nhhhi ,...,,),( 21

)(
...21

i

hhh N
M± , 

  
we indeed satisfy ourselves that any integral rational function obeying the condition (6) can 
be represented as  
 

    G(x1; x2; …, xN) = �
Nhhhi ,...,,),( 21

)(
...21

i

hhh N
c

)(
 ...21

i

hhh N
M . 

                                
    Noting that 
 
    E

NhhhM ...21
′ = E

NhhhM ...21
′′ = … = E Nhh

iM ...
)(

21 = 
NhhhM ...21

 

 
we find that, in accord with the theorem about the expectation of a sum,  
 
    EG(x1; x2; …, xN) = �

Nhhh ,...,, 21

Nhhhc ...21 NhhhM ...21
. 

 
In particular, in the case of a totality we have 
 
     E]G[ = �

Nhhh ,...,, 21

Nhhhc ...21 Nhhh µµµ ...
21

 

 
and, for a uniform system, 
 
    E[G] = �

Nhhh ,...,, 21

Nhhhc ...21 Nhhh� ...21
. 

 
    Repeating step by step the course of reasoning in §2, we convince ourselves that, with 
respect to parameters {M} as well, the disjunction of the formulas concerning a uniform 
system, and a conjunction of the formulas belonging to a totality, bring about a transition 
from one set to another one. We are therefore justified, in all the cases in which G(x1; x2; …, 
xN) satisfies the indicated conditions, in replacing the expressions of the type 

Nhhh µµµ ...
21

 in 

the formulas concerning totalities by the corresponding expressions 
Nhhh� ...21

and to consider 



the thus obtained relations as pertaining to a uniform system. On the other hand, noting that 

NhhM ...1 2
 = 0 7, we become convinced, that the abovementioned inconvenience, that occurs 

when conjuncting the parameters {µ} because of the vanishing of µ1, disappears. The 
supplementary calculational importance of the parameters {M} is indeed based on the 
vanishing of 

NhhM ...1 2
. 8 

    Example. Supposing that 
 

    Ur
(N) = E(1/N)�

=

N

i 1

(xi – x(N))
r                                                                       (8) 

  
and that, in general,  
 

    )(
...21

N

rrr m
U  = (1/N m)E�

=

N

i 1

1)( )(
r

Ni xx − �
=

N

i 1

2)( )(
r

Ni xx − …�
=

N

i 1

mr
Ni xx )( )(− ,                 (9) 

we shall have for a totality of trials 9 
 
    Ur

]N[ = µ r  – (1/N)[rµ r  – (1/2)r[–2]µ r–2 µ2] +  
    (1/N 2){(1/2)r[–2]µ r – [(r – 1)/2] r[–2]µ r–2 µ2 – (1/6) r[–3]µ r–3 µ3 +                     
    (1/8) r[–4]µ r–4 µ2

2} + …, 
 
    Urr

]N[ =     
     µ r

2 + (1/N)[µ2r – (2r + 1)µ r
2 – 2rµ r+1µ r–1 + r2µ r–1

2µ2 + r(r – 1)µ rµ r–2µ2] – 
    (1/N 2)[2rµ2r – r(2r – 1)µ2r–2µ2 – 4r2µ r+1µ r–1 – 3(r + 1)µ r

2 –   
    r(r – 1)µ r+2µ r–2 + 3r2µ r–1

2µ2 + r(r – 1)(4r + 1)µ rµ r–2µ2 +  
    r[–3]µ r+1µr–3µ2 + r2(r – 1)µ r–1µ r–2µ3 + (1/3)r[–3]µ rµ r–3µ3 –  
    (3/4)r2(r – 1)2µ r–2

2µ2
2 – r

2(r – 1)(r – 2)µ r–1µ r–3µ2
2 – (1/4)r[–4]µ rµ r–4µ2

2] + … 
 
    Applying the operation of conjunction to these formulas, we directly obtain the formulas 
concerning a uniform system: 
 
    Ur

[N] = �r
 – (1/N)[r�r

 – (1/2) r[–2] �r–2,2] – (1/N 2){(1/2) r[–2] �r –  
    [(r – 1)/2] r[–2] �r–2,2 – (1/6) r[–3] �r–3,3 + (1/8) r[–4] �r–4,2,2] + … 
 
    Urr

[N] =  
    �rr

 + (1/N)[�2r
 – (2r + 1)�rr – 2r�r+1,r–1 + r2�r–1,r–1,2] + r(r – 1)�r,r–2,2] – 

 
    (1/N 2)[2r�2r

 – r(2r – 1)�r–2,2 – 4r2�r+1,r–1 – 3(r + 1)�rr
 – r(r – 1)�r+2,r–2 + 

    3r[–3]�r–1,r–1,2 +r(r – 1)(4r + 1)�r,r–2,2 + r[–3]�r+1,r–3,2 + r2(r – 1)�r–1,r–2,3 + 
    (1/3)r[–3]�r,r–3,3 – (3/4)r2(r – 1)2�r–2,r–2,2,2 – r2(r – 1)(r – 2)�r–1,r–3,2,2 – 
    (1/4) r[–4]

r,r–4,2,2] + … 
 
    Supposing that, for example, r = 2 and 3, we get from the first formula 
 
    U2

[N] = �2
 – (1/N)�2

 = [(N – 1)/N] �2,  
    U3

[N] = �3
 – (3/N)�3 + (2/ N 2)�3 = [(N – 1)(N – 2)/N 2]�3.                      (11) 

 
The second formula, as well as the first one for r > 3, only provides approximate expressions 
containing terms to within the order (1/N 2) inclusively. 
 



    5. We return to the patterns of the returned and unreturned tickets. Let the urn still contain 
S tickets with s1 of them marked by the number x(1); s2 of them, by x(2); …; and sk, by the 
number x(k). Considering these numbers as the values of some random variable x having 
probabilities s1/S, s2/S, …, sk/S, respectively and let us agree to denote the numbers appearing 
in the first, the second, …, the N-th extraction, by x1, x2, …, xN. The scheme of the returned 
ticket deals, as it is immediately clear, with a totality of trials on a variable whose law of 
distribution is always fixed. In the case of the unreturned ticket we have a system of trials. It 
is not difficult to show that the system thus obtained is uniform [2, pp. 216 – 219]. 
    Indeed, if the extracted ticket is not returned, it is absolutely indifferent whether the N 
tickets are drawn in turn, one by one, or all at once. It follows that the order of the 
appearance of the separate tickets does not matter at all and that we may enumerate them as 
we please considering any of them as being extracted at the first, the second, … drawing. The 

expectation E Nh

N

hh
xxx ...21

21 remains therefore invariable under any permutation x1, x2, …, xN; 

or, which is the same, under any permutation of the indices h1, h2, …, hN. Consequently, the 
thus obtained system of trials is uniform.  
    The analytical connection between the separate extractions made without returning the 
ticket can be defined by the following main property of this arrangement: if N = S, the tickets 
marked by the numbers x1, x2, …, xN exhaust the urn; they therefore represent the s1 tickets 
marked by the number x(1), s2 of them, by x(2); …; and sk, by the number x(k), all of them taken 
in some order. Issuing from this property, we shall have 
 

    mh = Exh =�
=

k

i 1

(si/S)x(i)h = (1/S)�
=

S

j 1

xj
h  

and, in general, 
 

    
Nhhhm ...

21
 = E Nh

N

hh
xxx ...21

21  = (1/S[–N])� N

N

h

i

h

i

h

i xxx ...2

2

1

1
, 

 
cf. notation (10). The sum extends over all the combinations with repetitions of the indices i1, 
i2, …, iN taken from numbers 1, 2, …, S, N at a time. Noting that this sum is a symmetric 
function of the variables x1, x2, …, xS and can therefore be expressed by elementary 
symmetric functions of the type  

    �
=

S

i 1

xi
h, 

we convince ourselves that for the pattern of the unreturned ticket the parameters 

Nhhhm ...
21

can be rationally expressed through the parameters mh. We have for example [5] 

 
    m11 = [1/S(S – 1)]�

ji ,

xi xj =  

     [1/S(S – 1)] [(x1 + x2 + … + xS)
2 – (x1

2 + x2
2 + + … + xS

2)] = 
    [1/S(S – 1)] (S 2m1

2 – Sm2), 
 

    m12 = [1/S(S – 1)]�
ji ,

xi xj
2 = [1/S(S – 1)][�

=

S

i 1

xi�
=

S

j 1

xj
2 –�

=

S

i 1

 xi
3] = 

    [1/S(S – 1)] (S 2m1m2 – Sm3), 
 
    m111 = [1/S(S – 1)(S – 2)]�

kji ,,

xi xj xk =  



    [1/S(S – 1)(S – 2)][(�
=

S

i 1

xi)
3 – 3�

=

S

i 1

xi�
=

S

j 1

xj
2 + 2�

=

S

i 1

xi
3] =  

    [1/S(S – 1)(S – 2)] (S 3m1
3 – 3S 2m1m2 + 2Sm3).

 

 
    And in the same way (Ibidem) 
 
    m13 = [1/S(S – 1)] (S 2m1m3 – Sm4), m22 = [1/S(S – 1)] (S 2m2

2 – Sm4), 
    m112 = [1/S(S – 1)(S – 2)] (S2m1

2m2 – 2S2m1m3 – S 2m2
2 + 2Sm4), 

    m1111 =  
    [1/S(S – 1)(S – 2)(S – 3)] (S 4m1

4 – 6S 3m1
2m2 + 8S 2m1m3

 + 3S 2m2
2 – 6Sm4). 

 
    Without providing the proof itself, we also indicate the general formula: 

    
Nhhhm ...

21 ][

)1(
N

N

S −

−
�

=

N

r 1

{(–S)r �
rkkk ...21

[|k1 – 1 |k2 – 1 … |kr – 1� 

    �
Nhhh ...21

αhhhm +++ ...21 δγβαα hhhhh mm +++++ ++ ...... ...
21

]}                                            (12) 

where the second sum extends over all the values of k1, k2, …, kr satisfying the conditions 1 
≤  k1 ≤  k2 ≤  … ≤  kr and k1 + k2 + … + kr = N and the third one, over all the groups of all the 
combinations without repetitions of the indices h1, h2, …, hN taken k1, k2, …, kr at a time. 
Then {in my own notation}, � = k1, � = k1 + k2, � = k1 + k2 + … + kr–1 + 1 + … and � = k1 + k2 
+ … + kr. {The author had not explained the meaning of symbols such as |a which also 
appear in §8}  
    Supposing for example that in this general formula N = 2, 3 or 4, we find that (Ibidem) 
 
    

21hhm = {1/[S(S – 1)]}(S2
21 hh mm – S

21 hhm + ),  

 
    

321 hhhm = {1/[S(S – 1)(S – 2)]}[S3
321 hhh mmm –  

    S2(
321 hhh mm + +

213312 hhhhhh mmmm ++ + ) + 2S
321 hhhm ++ ], 

 
    

4321 hhhhm = {I omit this formula.} 

 
    6. Considering 
                       
    

Nhhh ...21
µ = E Nh

N
hh mxmxmx )...()()( 11211

21 −−−  

 

as the expectation E Nh

N

hh XXX ...21

21 with Xi = xi – m1, i = 1, 2, …, N, we satisfy ourselves 

that, when replacing m by µ everywhere in the formulas above, we obtain formulas 
expressing the parameters 

Nhhh ...21
µ through the parameters µh. Noting that µ1= 0, we find that, 

for example, 
 
    µ11 = – [1/(S – 1)]µ2, µ12 = – [1/(S – 1)]µ3, µ111 =  [2/(S – 1)(S – 2)]µ3, 
    µ13 = – [1/(S – 1)]µ4, µ112 = [2/(S – 1)(S – 2)]µ4 – [S/(S – 1)(S – 2)]µ2

2, 
    µ22 = – [1/(S – 1)]µ4 + [S/(S – 1)]µ2

2, 
    µ1111 = – [6/(S – 1)(S – 2)(S – 3)]µ4 + [3S/(S – 1)(S – 2)(S – 3)]µ2

2. 
 



    When expressing the parameters 
Nhhh� ...21

through the parameters 
Nhhh ...21

µ 10 and replacing 

the latter by their expression in terms of parameters µh, we obtain formulas determining the 
former quantities as special parameters in the pattern of the unreturned ticket. We have for 
example 
 
    �2 = µ2 – µ11 = [S/(S – 1)]µ2, �3 = µ3 – 3µ12 + 2µ111 = [S2/(S – 1)(S – 2)]µ3, 
    �4 = µ4 – 4µ13 + 6µ112 – 3µ1111 =  

    
)3)(2)(1(

3

−−− SSS

S
µ4 – 

)3)(2)(1(

)32(

−−−

−

SSS

SS
(µ4 + 3µ2

2), 

    �22 = µ22 – 2µ112 + µ1111 = 
)3)(2)(1(

3

−−− SSS

S
µ2

2 –    

    
)3)(2( −− SS

S
(µ4 + 3µ2

2) etc. 

 
    These formulas might be considered as describing the transition from a uniform system in 
general to its special case, to the arrangement of the unreturned ticket. The transition from 
the layout of the returned ticket to the other one is thus brought about in two stages: First, by 
conjuncting the totality into a uniform system, i.e., by a transition from parameters 

ihµ , i = 1, 

2, …, N, concerning the scheme of the returned ticket to parameters 
Nhhh� ...21

 characterising a 

uniform system; and, second, by an inverse transition from these latter parameters to 
parameters µh accomplished by the formulas for the transfer from a uniform system to its 
special case, to the scheme of the unreturned ticket. The uniform system and the parameters 
{M} describing it are thus an intermediate link, a changing station of sorts on the way from 
the pattern of the returned ticket to the other one. 
    A few examples will explain this. Issuing from (9) and (8) we shall have for the 
arrangement of the returned ticket [3, p. 186, formula (7) and p. 192, formula (19)] 
     
    U2

]N[ = [(N – 1)/N]µ2, U3
]N[ = [(N – 1)(N – 2)/N 2]µ3, r 

    U4
]N[ = [(N – 1)(N – 2)(N – 3)/N 3]µ4 + [(N – 1)(2N – 3)/N 3](µ4 + 3µ2

2), 
    U22

]N[ = [(N – 1)(N – 2)(N – 3)/N 3]µ2
2 + [(N – 1)2/N 3](µ4 + 3µ2

2). 
 
    Applying the operation of conjunction to these formulas we pass over to the formulas 
concerning a uniform system (for U2

[N] and U3
[N] see formulas (11)) 

 
    U4

[N] = [(N – 1)(N – 2)(N – 3)/N 3]�4 + [(N – 1)(2N – 3)/N 3](�4 + 3�22), 
    U22

[N] = [(N – 1)(N – 2)(N – 3)/N 3]�22 + [(N – 1)(2N – 3)/N 3](�4 + 3�22). 
 
    Substituting the above expressions for the parameters �2, �3, �4 and �22 into these 

formulas and denoting ][
...21

N

rrr m
U  in the special case of a uniform system, – in the pattern of 

the unreturned ticket, – by ]/[
...21

SN

rrr m
U , we find that, finally, 

 

    U2
[N/S] = 

)1(

)1(

−

−

SN

SN
µ2, U3

[N/S] = 
)2)(1(

)2)(1(
2

2

−−

−−

SSN

SNN
µ3, 

 

    U4
[N/S] = 

)3)(2)(1(

)3)(2)(1(
3

3

−−−

−−−

SSSN

SNNN
µ4 +     



                 
)3)(2)(1(

)3332)()((1(
3 −−−

+−−−−

SSSN

SNSNSNSN
(µ4 + 3µ2

2), 

   

       U22
[N/S] = 

)3)(2)(1(

)3)(2)(1(
3

3

−−−

−−−

SSSN

SNNN
µ2

2 +     

                  
)3)(2)(1(

)1)()(1(
3 −−−

−−−−−

SSSN

SNSNSNSN
(µ4 + 3µ2

2). 

 
    Introducing, as we did before, the notation (10), we can also represent these formulas in 
the following way: 
   

    U2
[N/S] = ]2[2

2]2[

−

−

SN

SN
µ2, U3

[N/S] = ]3[3

3]3[

−

−

SN

SN
µ3, 

 

    U4
[N/S] = ]4[4

4]4[

−

−

SN

SN
µ4 + 

)3)(2(

)3332)((
2]2[2

2]2[

−−

+−−−
−

−

SSNSN

NSNSNSSN
(µ4 + 3µ2

2),      

    U22
[N/S] = ]4[4

4]4[

−

−

SN

SN
µ2

2 + 
)3)(2(

)1)((
2]2[2

2]2[

−−

−−−−
−

−

SSNSN

NSNSNSSN
(µ4 + 3µ2

2). 

 
    It is useful to note the following relation between the parameters {�} and {µ}: 
 
    �4 + 3�22 = [S/(S – 1)] (µ4 + 3µ2

2),                                                           (13)   
                   
or, which is the same, 
 
    S [– 2](�4 + 3�22) = S 2(µ4 + 3µ2

2). 
 
    7. Such is the general method that enables us to throw a bridge from the formulas 
concerning the scheme of the returned ticket to those describing the other pattern. In some 
cases, however, the formulas sought can be also obtained in a shorter way. Thus, in the 
examples above, the following reasoning will rapidly lead us to our goal. And the 
supplementary calculational importance of the parameters {M} will reveal itself with special 
clearness. We issue from the remark that for N = S and denoting 
 
    x(S) = (1/S)(x1 + x2 + … + xS) = m1  
 
we have 
 

    Ur
[S/S] = E(1/S)�

=

S

i 1

(xi – xS)
r = E(1/S)�

=

S

i 1

(xi – m1)
r = Eµ r = µ r, 

    ]/[
...21

SS

rrr m
U = E{[(1/S)�

=

S

i 1

1)( 1
r

i mx − ] … [(1/S)�
=

S

i 1

mr
i mx )( 1− ]} = 

                        
mrrr µµµ ...

21
. 

 

    Taking this into account and, on the other hand, expressing ]/[
...21

SS

rrr m
U  through the 

parameters {�}, we shall have 
 



    µ2
 = U2

[S/S] = [(S – 1)/S]�2, µ3
 = U3

[S/S] = [(S – 1)(S – 2)/S2]�3, 

    µ4
 = U4

[S/S] = 3

)3)(2)(1(

S

SSS −−−
�4 + 3

)32)(1(

S

SS −−
(�4 + 3�22),     

    µ2
2 = U22

[S/S] = 3

)3)(2)(1(

S

SSS −−−
�22 + 3

2)1(

S

S −
(�4 + 3�22) 

 
so that 
 

    �2 = [S/(S – 1)]µ2, �3 = 
)2)(1(

2

−− SS

S
µ3, 

    �4 = 
)3)(2)(1(

3

−−− SSS

S
µ4 – 

)3)(2)(1(

)32(

−−−

−

SSS

SS
(µ4 + 3µ2

2),  

    �22 = 
)3)(2)(1(

3

−−− SSS

S
µ2

2 – 
)3)(2( −− SS

S
(µ4 + 3µ2

2). 

 
    We thus derive all the already known to us formulas for the transition from a uniform 
system to its special case, the layout of the unreturned ticket. Making use of the relation (13), 
we obtain without difficulties the sought expressions for U2

[N/S], U3
[N/S], U4

[N/S] and U22
[N/S]. 

    Another example. In the scheme of the returned ticket we have (cf. [3, p. 186, formula (7)] 
 

    U5
]N[ = 4

)4)(3)(2)(1(

N

NNNN −−−−
µ5 + 4

2)2)(1(5

N

NN −−
(µ5 + 2µ2µ3) 

 
and, as it follows, for a uniform system, 
 

    U5
[N] = 4

)4)(3)(2)(1(

N

NNNN −−−−
�5 + 4

2)2)(1(5

N

NN −−
(�5 + 2�23). 

 
    When applying the expectation of U23

(N) we obtain for the totality of trials (cf. Note 11)  
 

    U5
]N[ + 2 U23

]N[ = 2

)2)(1(

N

NN −−
(µ5 + 2µ2µ3) 

 
and, consequently, for a uniform system, 
 

    U5
[N] + 2 U23

[N] = 2

)2)(1(

N

NN −−
(�5 + 2�23). 

 
    Noting that, on the other hand, when N = S, 
 
    U5

[S/S] = µ5, U23
[S/S] = µ2µ3, 

 
we obtain, analogous to the above, 
 

    µ5 = U5
[S/S] = 4

)4)(3)(2)(1(

S

SSSS −−−−
�5 + 5 4

2)2)(1(

S

SS −−
(�5 + 2�23), 



    µ5 + 2µ2µ3 = U5
[S/S] + 2U23

[S/S] = 2

)2)(1(

S

SS −−
(�5 + 2�23) 

 
so that 
 

    �5 + 2�23 = 
)2)(1(

2

−− SS

S
(µ5 + 2µ2µ3), S [–3](�5 + 2�23) = S3(µ5 + 2µ2µ3), 

     

    �5 = 
)4)(3)(2)(1(

4

−−−− SSSS

S
µ5 – 

    5
)4)(3)(2)(1(

)2(2

−−−−

−

SSSS

SS
(µ5 + 2µ2µ3). 

 
    Substituting these values of �5 and (�5 + 2�23) in the above expressions for U5

[N], we 
finally arrive at 
 

    U5
[N/S] = 

)4)(3)(2)(1(
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or, in another notation, 
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    8. As an example of a uniform system of trials we have until now considered the layout of 
the unreturned ticket. The scheme of an attached ticket can serve as another illustration, 
formally very much resembling the first one but at the same time contrary to it in a certain 
sense 12. We arrive at the latter when, after each extraction, not only the drawn ticket is 
returned back, but a new ticket with the same number is also put in the urn. Thus, N 
consecutively added tickets correspond to N consecutive extractions. Without dwelling on 
this pattern 13, we adduce a few formulas describing it. Making use of notation (10), we 
obtain a formula similar to the known to us relation (12) for the pattern of an unreturned 
ticket: 
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where the sums extend over the same domains.  
    Passing on to the parameters {µ} we find that, in particular, as in (12),  
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    In the same way we obtain 
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    Denoting Ur

[N] for the pattern of an attached ticket by Ur
[S/N] we shall have finally 
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    Noting that all these formulas pass on to the corresponding formulas for the scheme of an 
unreturned ticket when S is replaced by – S, we convince ourselves that the pattern of an 
attached and the unreturned tickets formally represent one and the same type of uniform 
systems. 
 
    9. In §2 we offered an indication of the concept of uniform system based on the relation 
(1) persisting under any permutation of the indices. Noting that for independent trials relation 
(2b) held when the factors in its right side changed places, we satisfy ourselves that, in this 



case, the same property is true with respect to the indices in the left side of (1) and that, 
therefore, if the law of distribution of the variable remains fixed, the totality of the trials 
possesses the property of uniformity.  
    The uniformity of a totality is thus founded on the property of a product not to change its 
value when the order of its factors is changed, – on the commutativity of the product. When 
considering the issue under a somewhat different stochastic [1, p. 3] point of view, we may 
say: The uniformity of a totality is based on the persistence of the expectation in the left side 
of (2a) under any order of the trials. It is this property that we call stochastic commutativity.  
    It is not difficult to convince ourselves that, for a system, the property of uniformity is also 
founded on the stochastic commutativity of the trials: here also, the constancy of the value of 

Nhhhm ...21
for any permutation of its indices, and the independence of the expectation 

mentioned above of the order of the trials on the random variable x, are only different verbal 
formulations of one and the same proposition. 
    The concept of stochastic commutativity can also be presented in a somewhat different 
form. Denoting, as we did before, the probabilities that the variable x takes values x(1), x(2), 
…, x(k), by p1, p2, …, pk respectively, let us agree to designate the probability that x takes 
values x(i1), x(i2), …, x(iN) at the first, the second, …, the N-th trial 14, by pi1 i2 … iN. Noting that 
for mutually independent trials this probability equals pi1�pi2 … piN and that the latter product 
does not change when its factors change places, we become convinced that in case of a 
totality of trials the probability by pi1 i2 … iN remains constant for any permutation of its 
indices. In other words, the probability that in N trials the variable x will take the values x(i1), 
x(i2), …, x(iN) does not depend on the order in which these values appear. 
    For a totality of trials this proposition is naturally trivial, because, if the trials are mutually 
independent, their order is absolutely indifferent and we may enumerate them as we please. 
However, the main indication of stochastic commutativity of trials (as we, in conformity with 
the above, are calling the property of independence of the quantity pi1�pi2 … piN of the order 
of the trials) is not their mutual independence at all, but the constancy of the law of 
distribution of the appropriate variable. Abandoning therefore the supposition of 
independence of the trials, we obtain stochastically commutative systems of trials; that is, 
systems for which the order of the trials is stochastically indifferent. The patterns of the 
unreturned and an attached tickets can illustrate this. Making use of notation (10), we find 
that the probability of drawing h1 tickets with number x(1), h2 tickets with number x(2), …, hk 
tickets with number x(k) from the urn in a definite order will be, for the various arrangements 
and having N = h1 + h2 + … + hk, is, for 
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    Neither is it difficult to show that, assuming such a definition of stochastic commutativity, 
that its notion coincides with the concept of uniformity. Noting that 
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we satisfy ourselves that the constancy of pi1�pi2 … piN for any permutation of its indices 
leads to the same property for 

Nhhhm ...21
, i.e., that a system of trials obeying the condition of 

stochastic commutativity is always uniform. Inversely, an algebraic analysis can show that a 
constancy of 

Nhhhm ...21
 for any permutation of its indices leads to the same property for pi1�pi2 



… piN; that is, that a uniform system always satisfies the condition of stochastic 
commutativity. Both concepts thus coincide. 
 
    10. We have brought a uniform system and a totality under a common concept of trials 
obeying the condition of stochastic commutativity. The formation of such a common notion 
seems all the more expedient because it covers various types of interrelations between the 
trials which cannot be empirically distinguished one from another. No tests can be provided 
which could have, for example, establish, without taking into account prior data, {only} by 
studying some numbers marked on the extracted tickets, whether the drawings were made 
according to the scheme of a returned, of an unreturned, or an attached ticket. 
    It was Chuprov [4] who asked himself whether totalities from the various types of uniform 
systems can be empirically distinguished from each other. Indicating that the Lexian test for 
the normal stability of a series (the coefficient of dispersion Q2 should be approximately 
equal to 1) is necessary but not sufficient for the assumption of normal stability (i.e., for the 
constancy of the law of distribution of the variable in all the trials and for their mutual 
independence) to hold, he discovered that the other methods provided by him were no better. 
On the basis of our constructions and in particular by applying the parameters {M} 
introduced by us, Chuprov’s findings can be represented even more obviously and, besides, 
in a generalized form. And at the same time it is revealed with an absolute clearness exactly 
why the different types of a uniform system cannot be empirically distinguished one from 
another or from a totality. 
    A detailed mathematical analysis of the issue would have demanded more place than we 
have at our disposal and we shall therefore restrict our attention to brief general indications. 
The methods by which an investigator attempts to establish whether a series of empirical 
values considered by him conforms to some stochastic assumptions may be separated into 
two groups in which 
    1) A number of functions of the empirical values of the variable, whose expectations are 
equal to each other provided that the stochastic suppositions are valid, is constructed. 
    2) Such a function of these empirical values of the variable whose expectation under the 
given assumptions takes a definite numerical value, is constructed. Thus, the Lexian test of 
normal stability, EQ2 = 1. 
    For these methods of either group to lead to the solution {of the problem}, the suggested 
tests should be not only necessary but also sufficient. This means that the initial equalities 
should only take place when the given assumptions are fulfilled, and not to be valid under 
other suppositions from which the researcher attempts to separate himself. When pondering 
over the operation of conjunction of a totality into a uniform system as studied above, we are 
at once convinced that the methods of the first group cannot lead to the isolation of the case 
in which we deal with a totality of trials from those instances where we have some 
modification of a uniform system before us. Indeed, denoting by F(x1; x2; …; xN) and �(x1; 
x2; …; xN) two integral rational functions of the empirical values of the variable x, whose 
expectations are equal to each other under the assumptions of a totality, we see at once, when 
mentally carrying out the operation of conjunction, that the equality EF = E� should also be 
valid for the general case of a uniform system. 
    As to the methods that we attributed to the second group, we may in essence extend the 
same course of reasoning to these also, and to consider the numerical constant as that second 
function of the empirical values of the variable, whose expectation is being compared with 
the expectation of the constructed coefficient. A more precise mathematical analysis which 
we do not here reproduce, leads to the same conclusion. It shows that for any coefficient 
whose expectation is equal to some numerical constant under the assumptions that the 
variable obeys a fixed law of distribution and its values are mutually independent, we obtain 
for this expectation the same value as in the general case of a uniform system. 



    It follows that the question about the empirical possibility of distinguishing between a 
normal and a non-normal dispersion should be answered in the negative. 
 
    Notes 
 
    1. See [5] where the author establishes the notion of uniform connection to which our 
concept of uniform system is indeed adjoined. Note that a uniform system of trials can only 
exist if the law of distribution of the variable remains fixed during all the trials. This directly 
follows from the definition if we set all the h’s excepting one of them equal to zero. 
    2. We suppose that ]a + b + c + …[ = ]a[ + ]b[ + ]c[ + … and that,  in the same ways, [a + 
b + c + …] = [a] + [b] + [c] + …; that is, a disjunction (a conjunction) of a sum is defined as 
a disjunction (a conjunction) of its terms. 
    3. See [3, p. 151, formulas (10) and (11)]. We replace µ2, µ3 and µ4 in these formulas by 
their expressions through m1, m2, m3 and m4 (same source, p. 148, formula (2)). For a totality 
of trials we write mr]N[; and for a uniform system mr[N] instead of {Chuprov’s notation} mr(N). 
    4. Cf. [5]. Note that when conjuncting a power, we write it down as a product. For 
example, m1

2 = m1m1 and [m1
2] = [m1m1] = m11 etc. 

    5. We always suppose that j > i + h1, k > … > j + h2, etc, i.e., that not a single value from 
among xj, xj+1, …, 

2hjx + coincides with any of the values xi, xi+1, …, 
1hix + and in the same way 

that not a single value from among xk,  xk+1, …, 
Nhkx + coincides with any of the previous x’s, 

etc.         
    6.{Here and in the appropriate instances below the author uses the Russian low-case �.} 
    7. Since  
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    8. Absolutely in the same way as in the case of a totality in which we have, because of µ1 
= 0, 
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    9. See [3, p. 186, formula (6) and p. 189, formula (12)]. There, 
 
    r[–k] = r(r – 1) … (r – k + 1).                                                                      (10) 
 
    10. Thus (cf. Note 8), we have 
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    11. It can be considered as a particular case of a more general identity, 
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]N[ = [(N – 1)/N] (µ4 + 3µ2
2) 

 
or, when passing on to a uniform system, of 
 
    U4

[N] + 3U22
[N] = [(N – 1)/N] (M4 + 3M22). 

 
Supposing that N = S, we indeed find that 
 
    (µ4 + 3µ2

2) = U4
[S/S] + 3U22

[S/S] = [(S – 1)/S] (M4 + 3M22),  
    S [–2](M4 + 3M22) = S 2(µ4 + 3µ2

2). 
 
    12. The pattern of an unreturned ticket is contrary to that of an attached ticket just as, in 
the Lexian terminology, a scheme of a supernormally stable statistical series is opposed to 
the arrangement of a series with a subnormal stability. 
    13. The uniformity of the system of trials obtained on the basis of the new layout is very 
simply revealed by means of a test established in the next section. 
    14. Magnitudes x(i1), x(i2), …, x(iN) represent some of the values x(1), x(2), …, x(k); some or all 
of them may be identical. It is assumed here as it was before that the law of distribution of 
the variable remains fixed. 
 
    References 
 
    1. Bortkiewicz, L., von (1917), Die Iterationen. Berlin. 
    2. Chuprov, A.A. (1918 – 1919), Zur Theorie der Stabilität statistischer Reihen. Skand. 
Aktuarietidskr., t. 1, pp. 199 – 256; t. 2, pp. 80 – 133. 
    3. --- (1918 – 1919 and 1921), On the mathematical expectation of the moments of 
frequency distributions. Biometrika, vol. 12, pp. 140 – 169 and 185 – 210; vol. 13, pp. 283 – 
295.   
    4. --- (1922), Ist die normale Dispersion empirisch nachweisbar? Nordisk Stat. Tidskr., t. 1, 
pp. 369 – 393. 
    5. --- (1923), On the mathematical expectation of the moments of frequency distributions 
in the case of correlated observations. Metron, t. 2, pp. 461 – 493 and 646 – 683. 
    6. Seneta, E. (1987), Chuprov on finite exchangeability, expectation of ratios and measures 
of association. Hist. Math., vol. 14, pp. 243 – 257. 
    7. Sheynin, O. (1990, in Russian), Chuprov. Göttingen, 1996. 
 

12. A.N. Kolmogorov. Determining the Center of Scattering  

and the Measure of Precision Given a Restricted Number of Observations 
Izvestia Akademii Nauk SSSR, ser. Math., vol. 6, 1942, pp. 3 – 32  

 
Foreword by Translator 

    This paper was apparently written hastily, and, at the time, its subject-matter did not 
perhaps belong to the author’s main scientific field. He mixed up Bayesian ideas and the 
concept of confidence intervals and in §4 he showed that the posterior distribution of a 
parameter was asymptotically normal without mentioning that this was due to the well-
known Bernstein- von Mises theorem. Points of more general interest are Kolmogorov’s 
debate with Bernstein on confidence probability and, in Note 11, a new axiom of the theory of 
probability. The author apparently set high store by artillery (even apart from ballistics) as a 
field of application for probability theory. Indeed, this is seen from Gnedenko’s relevant 
statement [1, p. 211] which he inserted even without substantiating it, a fact about which I 



then expressed my doubts). And Gnedenko certainly attempted to remain in line with his 
former teacher. 
    In both of Kolmogorov’s papers here translated, apparently for the benefit of his readers, 
the author numbered almost all the displayed formulas whether mentioned in the sequel or 
not. I only preserved these numbers in the paper just below.  
    1. Gnedenko, B.V., Sheynin, O.B. (1978, in Russian), Theory of probability. A chapter in 
Mathematics of the 19th Century (pp. 211 – 288). Editors, A.N. Kolmogorov, A.P. 
Youshkevich. Basel, 1992 and 2001. 
 

*   *   * 
    This paper is appearing owing to two circumstances. First, intending to explicate his 
viewpoint and investigations on the stochastic justification of mathematical statistics in 
several later articles, the author considers it expedient to premise them by a detailed critical 
examination of the existing methods carrying it out by issuing from a sufficiently simple 
classical problem of mathematical statistics. For this goal it is quite natural to choose the 
problem of estimating the parameters of the Gaussian law of distribution given n independent 
observations. 
    Second, the author was asked to offer his conclusion about the differences of opinion 
existing among artillery men on the methods of estimating the measure of precision by 
experimental data, see for example [10 – 12]. The author became therefore aware of the 
desirability of acquainting them with the results achieved by Student and Fisher concerning 
small samples. Exactly these issues definitively determined the concrete subject-matter of 
this article. 
    It is clear now that the article only mainly claims to be methodologically interesting. The 
author believes that the new factual information is represented here by the definition of 
sufficient statistics and sufficient systems of statistics (§2) and by the specification of the 
remainder terms in limit theorems (§4). The need to compare critically the various 
approaches to the studied problems inevitably led to a rather lengthy article as compared with 
the elementary nature of the problems here considered. 

  
    Introduction. Suppose that random variables  
 
    x1, x2, …, xn                                                                                                  (1) 
 
are independent and obey the Gaussian law of distribution with a common center of 
scattering a and common measure of precision h. In this case the n-dimensional law of 
distribution of the xi’s is known to be determined by the density   
 
    f(x1; x2; …; xn|a; h) = (hn/�n/2)exp (– h2S2),                                                (2) 
 
    S2 = (x1 – a)2  + (x2 – a)2 + … + (xn – a)2.                                                    (3) 
 
    Instead of formula (2) it is sometimes convenient to apply an equivalent formula    
 
    f(x1; x2; …; xn | a; h) = (hn/�n/2)exp[– h2S1

2 – nh2( x  – a)2],                         (4) 
    x  = (x1+ x2 +… + xn)/n, S = (x1 – x )2  + (x2 – x )2 + … + (xn – x )2.    (5; 6) 
 
    All courses in probability theory for artillery men consider the following three problems. 
    1. Assuming h to be known, approximately estimate a by the observed values of (1). 
    2. Assuming that a is known, approximately estimate h by the same values. 
    3. Again issuing from (1), approximately determine both a and h.  



    Practically this means that it is required to indicate functions ha  and of the known 
magnitudes, – of (1) and h in Problem 1; of (1) and a in Problem 2; and of only (1) in 
Problem 3, – which should be most reasonably chosen as the approximate values of the 
estimated magnitudes. 
    In addition, it is required to estimate the mean precision attained by applying the 
approximate ha  and . And it is sometimes additionally needed to indicate such functions a� 
and a�, h� and h� of the magnitudes given in the problem under consideration, that it would 
be possible to state, without the risk of making wrong conclusions too often, that a� ≤  a ≤  a� 
and, respectively, h� ≤  h ≤  h�. Here, a� and a� are called the confidence limits of a, and h� 
and h�, the confidence limits of h. 
 
    1. The Classical Method. The classical method of solving the formulated problems is 
based on the assumption that, before observing the values of (1), the estimated magnitudes 
(a, in Problem 1; h, in Problem 2; and both a and h, in Problem 3) obey some prior law of 
distribution. Supposing that this law is known, it is possible to calculate the conditional 
(posterior) law of distribution of the estimated parameters if the results of observation (1) are 
known. For the sake of simplicity we restrict our attention to the case of continuous prior 
laws given by the appropriate densities.  
    In Problem 1, applying the Bayes theorem, we shall obtain the following expression for the 
conditional density of a, given the values of (1): 
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Here, �1(a) is the unconditional (prior) density of a before observation. 
    In Problems 2 and 3 the corresponding formulas are 
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where �2(h) and �3(a; h) are the respective unconditional densities.  
    Formulas (7) – (9) are unfit for direct application not only because they are involved, but, 
mainly, since the prior densities included there are usually unknown. In addition, it should be 
clearly understood that the very assumption about the existence of any certain prior 
distribution of a and h can only be justified for some separate and sufficiently restricted 
classes of cases. For example, it is quite reasonable to consider the law of distribution of the 
measure of precision when shooting from a rifle under some definite conditions and for a 
randomly chosen soldier 1 from a given regiment 2. It is senseless, however, to discuss the 
prior distribution of this measure for shooting in general (under any conditions and from any 
firearms belonging to times past or to future years).  
 
    2. Sufficient Statistics and Systems of Sufficient Statistics. In this section, we assume 
that the prior densities �1(a), �2(h) and �3(a; h) exist. No practically useful estimates of a or 
h can be obtained by this assumption taken by itself, but some sufficiently instructive general 
corollaries may be elicited from it. 



    For Problem 1, formula (7) shows that the conditional density �1(a | x1; x2; …; xn) is 
completely determined by the prior density �1(a), the measure of precision h (which is 
assumed here to be given beforehand) and the mean value x  of the observed magnitudes (1). 
It follows that, for any prior distribution of a and a given h, all that (1) additionally 
contributes to the estimation of a is included in only one magnitude, x . It is therefore said 
that, in Problem 1, x  is a sufficient statistic for estimating a.  
    The general definition of a sufficient statistic may be thus formulated 3. Let the observed 
magnitudes (1) have a law of distribution depending on parameters �1, �2, …, �s whose 
values are unknown. Any function of the observed magnitudes (1) is called a statistic 4. A 
statistic � is called sufficient for parameter �j if the conditional distribution of the parameter, 
given (1), is completely determined by the prior distribution of �1, �2, …, �s and the value of 
the statistic �. Formula (8) shows that S in Problem 2 is a sufficient statistic for estimating h.  
    The definition of a sufficient statistic is generalized as follows. A system of functions  
 
    � i ( x1; x2; …; xn), i = 1, 2, …, m 
 
is called a sufficient system of statistics for the system of parameters �1, �2, …, �k (where k ≤  
s, so that, generally speaking, this system only constitutes a part of the complete system of 
parameters) if the conditional k-dimensional distribution of �1, �2, …, �k given (1) is 
completely determined by the prior distribution of �1, �2, …, �s and the values of the statistics 
�1, �2, …, �m. 
    Formula (9) shows that in Problem 3 the magnitudes x  and S1 constitute a sufficient 
system of statistics for the system of parameters a and h. For each of these parameters taken 
separately the system ( x ; S1) is obviously also sufficient 5.  
    Following Fisher, the results obtained above may be thus summarized: All the information 
6 included in the observations (1) with respect to a and h is determined, in Problem 1, by the 
value of x ; in Problem 2, by S; and, in Problem 3, by the values of x  and S1. 
    Consequently, it should be resolved that, under our assumptions, the search for the most 
perfect methods of estimating a and h may be restricted to such that only make use of the 
observed magnitudes (1) by calculating the appropriate values of x (in Problem 1), S (in 
Problem 2), and x  and S1 (in Problem 3). For example, we may refuse to consider the 
estimation of a by the median of the observations or by the mean of the extreme 
observational results 
 
    d = (xmax + xmin)/2.                                                                                     (10) 
 
Such methods can only be interesting in that they are very simple 7.  
    In particular, when searching for a most sensible type of functions ha  ,

�
, a�, a�, h�, h� 

(Introduction), it is natural to restrict our efforts by functions a , a�, a� only depending on x  
and h (Problem 1); by h , h� and h�, only depending on S and a (Problem 2); and by ha  ,

�
, a�, 

a�, h�, h� only depending on x  and S1 (Problem 3). 
    This conclusion, quite conforming to the general opinion of the practitioners, and of 
artillery men in particular, could have been justified by other methods as well, not at all 
depending on the assumption about the existence of the prior distributions of a and h. 
 
    3. The Hypothesis of a Constant Prior Density and Its Criticism. Many treatises 
intended for artillery men assume that the prior densities in formulas (7) – (9) are constant, 
i.e., that it is possible to consider that 
 
    �1(a) = Const, �2(h) = Const, �3(a; h) = Const. 
 



Strictly speaking, this assumption is not only arbitrary, it is also certainly wrong since it 
contradicts the demands that 
 

    �
∞

∞−
�1(a) da = 1, �

∞

∞−
�2(h) dh = 1, �

∞

∞− �
∞

0
�3(a; h) dh da = 1 

 
which follow from the main principles of the theory of probability. 
    In some cases, however, the approximate constancy of the prior distributions can persist 
within a sufficiently large range of the arguments, a and h. In such instances, it may be hoped 
that the formulas that follow from (7) – (9) when replacing the functions �1, �2 and �3 by 
constants, will be approximately correct. In §4 we shall see that it is possible to reckon on 
this when the number of observations n is sufficiently large; and, in Problem 1, also when n 
is small if only the mean square deviation 
 
    � = 1/(h�2)                                                                                                (11) 
 
is sufficiently small as compared with the a priori admissible range of a. Replacing the 
functions �1, �2 and �3 in formulas (7) – (9) by constants, we obtain          
 

    �1(a | x1; x2; …; xn) = (h π/n )exp[– nh2(a – x )2],                                 (12) 

    �2(h | x1; x2; …; xn) = 
]2/)1[( 

2 1

+Γ

+

n

S n

 hnexp(– h2S2),                                   (13) 

    �3(a; h | x1; x2; …; xn) = 
)2/(

2 1

n

Sn n

Γπ
 hnexp[– h2S1

2 – nh2(a – x )2].         (14) 

 
    For Problem 1 formula (12) leads to the conclusion that the conditional distribution of a 
given (1) will be Gaussian with parameters x  and h�n. Being simple, this result is quite 
satisfactory. However, as indicated above, it is only established by unfoundedly assuming 
that �1(a) = Const. In §4 we shall see that this result can {nevertheless} be justified as 
approximately correct under some sufficiently natural assumptions. 
    Formulas (13) and (14) are also obtained by means of unfounded assumptions, �2(h) = 
Const and �3(a; h) = Const. Indeed, their reliable substantiation is only possible in the form 
of a limit theorem establishing that, under some natural assumptions, and a sufficiently large 
number of observations n, these formulas are approximately correct. Nevertheless, we shall 
see in §4 that, given the same assumptions and large values of n, these formulas can be fairly 
approximated by much more simple formulas (18) and (19). Thus it occurs that for small 
values of n formulas (13) and (14) are unjustified, and superfluous otherwise; and that they 
have no practical significance at all. 
    To illustrate the arbitrariness of the results arrived at by issuing from the hypothesis of a 
constant prior density when n is not too large, we shall consider Problem 2 from a somewhat 
different viewpoint. The assumption that the mean square deviation � possesses a constant 
prior density is not less natural than the same assumption about h. And this alternative 
assumption leads to 
 
    �2(h) = Const, �2(h) = Const/h2, 

    �2(h | x1; x2; …; xn) = 
]2/)1[( 

2 1

−Γ

−

n

S n

 h n–2exp(– h2S2).                         (13bis) 

 



    Let us calculate now, by means of formulas (13) and (13bis), the conditional expectation 
of h given (1). We have, respectively,  
 

    *h �= 
]2/)1[(  

]2/)2[( 

+Γ

+Γ

nS

n
, 

]2/)1[(  

)2/(
**

−Γ

Γ
=

nS

n
h .                              (15; 15bis) 

 
It is easy to determine that 
 
    *h  = **h [1 + (1/n)].                                                                              (16) 
 
We see that for large values of n the difference between *h  and **h  is not large but that it 
can be very considerable otherwise. 
 
    4. Limit Theorems. Here, we will establish that, under some natural assumptions and a 
sufficiently large number of observations n (and in some cases, for Problem 1, for small 
values of n as well), it is possible to apply the approximate formulas    
 

    �1(a|x1; x2; …; xn) ~ (h π/n )exp[– nh2(a – x )2],                                   (17) 

    �2(h|x1; x2; …; xn) ~ (s π/2 )exp[– 2S2(h – h )2],                                   (18) 

    �3(a; h|x1; x2; …; xn) ~ (S1 nh 21 /�)exp[– n 2
1h (a – x )2 – 2S1(h – 1h )2] (19) 

 
    where 
 

    h  = (1/S) 2/n , 1h  = (1/S1) 2/)1( −n .                                            (20, 21) 

 
    Introducing 
 
    � = h�n (a – x ), � = S�2(h – h ), �1 = h1�n (a – x ), �1 = S1�2(h – 1h ) 
                                                                                                               (22 – 25)  
 
whose conditional densities, given (1), are, respectively, 
 
    �1(�|x1; x2; …; xn) = (1/h�n) �1(a|x1; x2; …; xn),                                       (26) 
    �2(�|x1; x2; …; xn) = (1/S�2) �2(h|x1; x2; …; xn),                                       (27)   

    �3(�1; �1|x1; x2; …; xn) = (1/S1 1h n2 ) �3(a; h|x1; x2; …; xn),                   (28) 
 
we may rewrite formulas (17) – (19) as 
 
    �1(�|x1; x2; …; xn) ~ (1/��)exp (– �2),                                                       (29) 
    �2(�|x1; x2; …; xn) ~ (1/��)exp (–� 2),                                                        (30) 
    �3(�1; �1|x1; x2; …; xn) ~ (1/�)exp (–�1

2 – � 2).                                           (31) 
 
    When considering Problem 1 the following limit theorem justifies the applicability of the 
approximate formula (29), – or, which is the same, of its equivalent, the formula (17). 
    Theorem 1. If the prior density �1(a) has a bounded first derivative and �1( x ) � 0, then, 
uniformly with respect to �, 
 
    �1(�|x1; x2; …; xn) = (1/��) exp (– �2){1 + O[1/(h�n)](1 + | �|)}.            (32) 



 
Here, as nh2 � 
 and for constant �1(a) and x , O[1/(h�n)] is a magnitude having an order 
not higher than [1/(h�n)], uniformly with respect to �. 
    To prove this theorem we note that, on the strength of (7), (22) and (26), 
 

    �1(�|x1; x2; …; xn) = 

�
∞

∞−
+−

+−

ααϕα

αϕα

dnhx

nhx

)]/([)exp(

)]/([)exp(

1
2

1
2

.                          (33) 

 
Since the first derivative of �1(a) is bounded, we have, uniformly with respect to �,   
 
    �1[ x  + (�/h�n)] = �1( x ) + � O[1/h�n]. 
 
If �1( x ) � 0, inserting this estimate into (33), we obtain, after some transformations, the 
estimate (32). 
    Without assuming that the first derivative of �1(a) is bounded and only demanding that 
�1(a) be continuous at point a = x , it would have been possible to obtain a weaker result 
 
    �1(�|x1; x2; …; xn) = (1/��) exp (– �2) + R 
 
where R � 0 as nh2 � 
, uniformly with respect to � on any finite interval �� ≤  � ≤  ��. On 
the contrary, when strengthening the assumption about the smoothness (bounded higher 
derivatives, analyticity, etc) of the function �1(a), it would not have been possible to replace 
the factor O[1/h�n] in the estimate (32) by any other one of a lower order. Indeed, when 
assuming a bounded second derivative of �1(a), we may apply the estimate 
 
    �1[ x  + (�/h�n)] = �1( x ) + ��1( x ) [�/(h�n)] + �2 O[1/nh2]. 
 
    Inserting it in formula (33) we shall obtain, after some transformations,  
 

    �1(�|x1; x2; …; xn) = (1/��)exp(– �2)[1 +
nhx

x α

ϕ

ϕ

)(

)(

1

1′ + (1 + �2)O[1/nh2].(34) 

 
    This formula shows that for ��1( x ) � 0 and with a bounded second derivative ��1(a) the 
correction term O[1/h�n](1 + �2) in formula (32) has indeed order 1/h�n for any fixed � � 0. 
    For the conditional expectation of a given (1)  
 
    E(a|x1; x2; …; xn) = x  + (1/h�n) E(�|x1; x2; …; xn) = 

    x  + (1/h�n) �
∞

∞−
��1(�|x1; x2; …; xn) d� 

 
formula (32) leads to the estimate   
 
    E(a|x1; x2; …; xn) = x  + O(1/nh2).                                                            (35) 
 
Here, the order of the correction term O(1/nh2) cannot be lowered by any additional 
assumptions about the smoothness of the function �1(a) since for a bounded second 
derivative ��1(a) it follows from (34) that                            
 



    E(a|x1; x2; …; xn) = x  + 2
1

1 1

)(2

)(

nhx

x

ϕ

ϕ ′
 + O[1/(h=n)3].                                (36) 

 
Formula (36) shows that for ��1( x ) � 0 and with a bounded ��1(a) the correction term in 
formula (35) has indeed order 1/nh2.                                    
    When issuing from (35) and neglecting the terms of the order of 1/nh2, it is natural to 
assume x  as the approximate value of the center of scattering a given (1). Because of (17) 
the measure of precision of this approximate value can be roughly considered to be h�n. 
    More precisely, the estimate 8  
 
    E(a – x )2|x1; x2; …; xn) = (1/2nh2)[1 + O(1/h�n)]                                    (37) 
 
follows for the conditional expectation of the square of the deviation (a – x ) given (1), i.e., 
for   
 
    E(a – x )2|x1; x2; …; xn) = (1/nh2) E(�2|x1; x2; …; xn) = 

    (1/nh2) �
∞

∞−
�2�1(�|x1; x2; …; xn) d �. 

 
    On the strength of (37) and supposing that the measure of precision of an approximate 
value θ of some parameter � given (1) is the magnitude 
 

    h(θ |x1; x2; …; xn) = 
];...;;)[(2

1

21
2

nxxxE θθ −
,                                     (38) 

 
we obtain for x considered as an approximation of a 
 
    h( x |x1; x2; …; xn) = h�n[1 + O(1/h�n)].                                                   (39) 
 
    To obtain the confidence limits for a given (1) it is natural to consider the conditional 
probabilities 
 
    P[|a – x | ≤  (c/h�n)|x1; x2; …; xn] = P(|�| ≤  c|x1; x2; …; xn) =  

    �−
c

c
�1(�|x1; x2; …; xn) d�. 

 
Their estimate follows 9 from (32): 
 

    P[|a – x | ≤  (c/h�n)|x1; x2; …; xn] = (2/��) �
c

0
exp (– �2) d� + O(1/h�n).(40)  

     
Here, O(1/h�n) is a magnitude having order not higher than (1/h�n) uniformly with respect 
to c. Thus, neglecting O(1/h�n), we may say that, given (1), a is situated within the limits 
 
    x  – (c/h�n) ≤  a ≤  x  + (c/h�n)                                                             (41a) 
 
with probability 
 

    " = (2/��) �
c

0
exp (– �2) d�.                                                                    (41b) 



 
    The applicability of the approximate formula (30), or, which is the same, of its equivalent, 
the formula (18), to Problem 2 is justified by 
    Theorem 2. If the prior density �2(h) has a bounded first derivative and �2( h ) � 0, then, 
uniformly with respect to �, 
 
    �2(�|x1; x2; …; xn) = (1/��)exp (–� 2)[1 + (1 + | �|) O(1/�n)].                    (42) 
 
We do not prove this theorem. The proof is somewhat more complicated than the proof of 
Theorem 1 but the ideas underlying both are quite similar. As before, the expression O(1/�n) 
in (42) stands for a magnitude having order (1/�n) uniformly with respect to � for constant 
�2(h) and h  and as n � 
. 
    The estimate  
 
    E(h|x1; x2; …; xn) = h [1 + O(1/n)]                                                            (43) 
 
follows from (42) for the conditional expectation 
 
    E(h|x1; x2; …; xn) = h  + (1/S�2) E(�|x1; x2; …; xn) =  

    h [1 + (1/�n) E(�|x1; x2; …; xn) = h [1 + (1/�n) �
∞

∞−
��2(�|x1; x2; …; xn) d�].   

  
    On the strength of (43), neglecting a relative error of order 1/n, it is natural to assume h  as 
the approximate value of h. If the precise expression for the prior density �2(h) is unknown, it 
is unavoidable to neglect such relative errors when keeping to the viewpoint adopted in this 
section concerning the choice of an approximate value for h. Indeed, we have seen (end of 
§3) that, when replacing �2(h) = Const by �2(h) = Const/h2, the relative change in E(h|x1; x2; 
…; xn) is 1/n. It would be easy to adduce such examples of the same change in E(h|x1; x2; …; 
xn) caused by the change of �2(h) where these functions would have obeyed all the demands 
necessary for densities and possessed bounded derivations of any high order. 
    Owing to(18) we may approximately assume that the measure of precision of the 
approximate value h of h is (S/�2) = �n/ h . More precisely 
 
    E[(h – h )2|x1; x2; …; xn] = ( h 2/2n)[1 + O(1/�n)],                                    (44) 

    h( h |x1; x2; …; xn) = 
];...;;)[(2

1

21
2

nxxxhhE −
 = (�n/ h )[1 + O(1/�n)].(45) 

    
    Finally, it easily follows from (42) that 
 

    P[|h – h | ≤  (c h /�n)|x1; x2; …; xn] = (2/��) �
c

0
exp (– �2) d� + O(1/�n). (46) 

 
    Neglecting O(1/�n), we may therefore say that, given (1), h is situated within the limits 
 
    h (1 – c�n) ≤  h ≤  h (1 + c�n) 
 
with probability (41b). 
    For Problem 3 we have 



    Theorem 3. If the prior density �3(a; h) has bounded first derivatives with respect to a and 

h, and �3(a; h ) � 0, then, uniformly with respect to �1 and �1, 
 
    �3(�1; �1|x1; x2; …; xn) = (1/�)exp(– �1

2 – �1
2)[1 + (1 + |�1| + | �1|)O(1/�n)]. 

                                                                                                                       (47) 
 
    As in Theorem 2, O(1/�n) denotes a magnitude having order (1/�n) uniformly with respect 
to �1 and �1 if �3(a; h), x  and 1h  are constant and n � 
. The proof is quite similar to that of 
Theorem 2 and we do not adduce it. 
    It follows from (47) that   
 
    E(a|x1; x2; …; xn) = x  + (1/ 1h ) O(1/n),                                                     (48) 

    E[(a – x )2|x1; x2; …; xn] = (1/2n 1h 2)[1 + O(1/�n)],                                 (49) 

    P[|(a – x )| ≤  (c/ 1h �n)|x1; x2; …; xn] = (2/��) �
c

0
exp(–�2)d� + O(1/�n),(50) 

    E(h|x1; x2; …; xn) = 1h [1 + O(1/�n)],                                                        (51) 

    E[(h – h )2|x1; x2; …; xn] = ( 1h 2/2n)[1 + O(1/�n)],                                   (52) 

    P[|h – 1h | ≤  (c 1h /�n)|x1; x2; …; xn] = (2/��) �
c

0
exp(– �2) d� + O(1/�n). (53) 

 
Neglecting magnitudes of the order of 1/n in Problem 3, it is natural to assume, on the 
strength of formulas (48) and (51), that x  is an approximate value of a, and 1h , an 
approximate value of h. And, issuing from formulas (49) and (52), we may approximately 
consider 1h �n and �n/ 1h as the measures of precision of these approximations respectively.  
    Formulas (50) and (53) allow us to determine the confidence limits for a and h 
corresponding to within magnitudes of the order of 1/�n with a given probability ". 
    As in Problem 2, the conditional expectation E(h|x1; x2; …; xn) is only determined by 
formula (51) to within factor [1 + O(1/�n)]. Therefore, in keeping with the viewpoint adopted 
in this section, discussions about choosing 1h  or, for example, 2h  = �n/S1�2 as the 
approximate value for h are meaningless. 
    From the practical point of view, Theorems 1, 2 and 3 are not equally important. 
According to Theorem 1, the precision of the approximate formulas (29) and (17) increases 
for a constant �1(a) not only with an increasing n, but also with the increase in the measure of 
precision h. Therefore, if the mean square deviation � = 1/h�2 is small as compared with the 
a priori admissible region of a, we are somewhat justified in applying these formulas for 
small values of n (and even for n = 1) as well. However, in the case of Theorems 2 and 3 the 
remainder terms of formulas (42) and (47) only decrease with an increasing n so that they do 
not offer anything for small values of n. 
 
    5. The Fisherian Confidence Limits and Confidence Probabilities. As stated in the 
Introduction, the problem of approximately estimating parameter � given (1) can be 
formulated in particular thus: It is required to determine such confidence limits ��(x1; x2; …; 
xn) and ��(x1; x2; …; xn) for � that it would be practically possible to neglect the case in 
which � is situated beyond the interval (the confidence interval) [��; ��].  
    In order to judge whether certain confidence limits ��; �� for parameter � are suitable for a 
given (1), it is natural to consider the conditional probability  
 
    P(�� ≤  � ≤  ��|x1; x2; …; xn).                                                                     (54) 
 



If it is close to unity (for example, if it is 0.99 or 0.999), we will be inclined to assume, 
without considerable hesitation, that �� ≤  � ≤  ��. Consequently, when the conditional 
probabilities (54) are known for any �� and ��, it is natural to assume some probability " 
sufficiently close to unity and to choose values of ��(x1; x2; …; xn) and ��(x1; x2; …; xn) for 
each system (1) such that 
 
    P(�� ≤  � ≤  ��|x1; x2; …; xn) = ";                                                              (55) 
 
and, in addition, that, under this condition, the length of the interval [��; ��] will be the least 
possible. 
    For example, in Problem 1, assuming that formula (17) is correct, the shortest confidence 
interval for a obeying restriction (55) is given by formulas (41a; 41b). Note, however, 
concerning this example, that formula (17) may only be justified (even as an approximation) 
under rather restrictive assumptions specified in §4. As to the strict expression (7) for the 
conditional probability �1(a|x1; x2; …; xn) , it includes the prior density �1(a) which is usually 
unknown.  
    The same situation exists in most of the other problems of estimating parameters. The 
strict expression of the conditional probabilities (54) usually includes an unknown 
distribution of the parameters.  
    There exists an opinion, upheld in the Soviet Union by Bernstein (see, for example, [5]), 
that in cases in which the prior distribution of the parameters is unknown, the theory of 
probability cannot offer the practitioner anything excepting limit theorems similar to those 
indicated in §4. According to this point of view, if the prior distribution of the parameters is 
unknown, and given a restricted number of observations, an objective scientific approach to 
the most sensible choice of confidence limits for the estimated parameters is simply 
impossible. 
    Here, it is certainly true that the conditional distribution of the parameters, given the 
results of the observations, depends on the prior distribution of the same parameters, and we 
cannot disregard it. But the opinion, that the indication of sensible confidence limits for the 
estimated parameters is inseparably linked with considering conditional probabilities (54), is 
wrong.  
    In most practical (in particular, artillery) problems the matter concerns the establishment 
of general rules for estimating parameters to be recommended for systematic application to 
some vast category of cases. In this section devoted to confidence intervals, we are concerned 
with rules such as: 
    Under certain general conditions it is recommended to consider, whatever be the 
observational results (1), that the value of parameter � is situated within the boundaries 
��(x1; x2; …; xn) and ��(x1; x2; …; xn). When recommending such a rule for future 
mathematical application without knowing the values (1) in each separate case, there is no 
reason to consider the conditional probabilities (54). Instead, it is natural to turn to the 
unconditional probability 
 
    P[��(x1; x2; …; xn) ≤  � ≤  ��(x1; x2; …; xn)]                                              (56) 
 
that no error will occur when applying the rule. 
    Given the type of the functions ��(x1; x2; …; xn) and ��(x1; x2; …; xn), the unconditional 
probability (56) is generally determined by the distribution of the magnitudes (1) which 
depends on the parameters �, �1, �2, …, �s and by the unconditional (prior) distribution of 
these parameters. Denoting the conditional probability of obeying the inequalities �� ≤  � ≤  
�� when the values of the parameters are given by  
 



    P(�� ≤  � ≤  ��|�, �1, �2, …, �s)                                                                   (57) 
 
and assuming that the prior distribution of the parameters has density �(�, �1, �2, …, �s), we 
will obtain the following expression for the unconditional probability (56):  
 
    P(�� ≤  � ≤  ��) = 

   � � … � P(�� ≤  � ≤  ��|�, �1, …, �s)�(�, �1, …, �s)d�d�1…d�s.           (58) 

 
    A particular case of such rules, when the conditional probability (57) remains constant at 
all possible values of �, �1, …, �s, is especially important for practice. If this conditional 
probability is constant and equals ", then, on the strength of (59), 
 

    P(�� ≤  � ≤  ��) = � � … � "�(�, �1, …, �s)d �d �1…d �s = ". 

  
This means that the unconditional probability (56) does not depend on the unconditional 
distribution of the parameters 10. 
    We have already indicated in §1 that the very hypothesis on the existence of a prior 
distribution of the parameters is not always sensible. However, if the conditional probability 
(57) does not depend on the values of the parameters and is invariably equal to one and the 
same number " then it is natural to consider that the unconditional probability (56) exists and 
is equal to " even in those cases in which the hypothesis on the existence of a prior 
distribution of the parameters is not admitted 11. 
    If the conditional probability (57) is equal to " for all the possible values of the parameters 
(so that, consequently, the same is true with respect to the unconditional probability (56) for 
any form of the prior distribution of the parameters), we shall say, following Fisher [1; 2], 
that our rule has a certain confidence probability equal to ". It is easy to see that for Problem 
1 the rule that recommends to assume that a is situated within the boundaries 
 
    a� ≤  a ≤  a�                                                                                                (59) 
 
where 
 
    a� = x  + c�/h�n, a� = x  + c�/h�n                                                             (60) 
 
has a certain confidence probability 
 

    " = (1/��) �
′′

′

c

c
exp (– �2) d�.                                                                    (61) 

 
Indeed, for any a and h, 
 
    P(a� ≤  a ≤  a�|a; h) = P( x  + c�/h�n ≤  a ≤  x  + c�/h�n|a; h) = 
  

    P(a – c�/h�n ≤  x  ≤  a – c�/h�n|a; h) = (1/��) �
′−

′′−

c

c
exp (– �2) d� = 

     (1/��) �
′′

′

c

c
exp (– �2) d�. 

 
    For example, if c� = – 2 and c� = 2, 
 



    " = (2/��) �
2

0
exp (– �2) d� = 0.9953. 

 
Thus, the rule that recommends to assume that 
 
    |a – x | ≤  2/h�n                                                                                         (62) 
 
has confidence probability " = 0.9953. In order to ascertain definitively the meaning and the 
practical importance of the notion of confidence probability, let us dwell on this example. 
Suppose that we want to apply the rule (62) in some sequence of cases E1, E2, …, En. The 
values of ak, hk, and nk correspond to each of the cases Ek. However, absolutely 
independently of these values, the probability of the inequality  
 
    | kx  – ak| ≤  2/hk�nk                                                                                   (62k) 

 
in this case is " = 0.9953. If the systems of xi’s which correspond here to the different Ek’s 
are independent one from another, then the events Ak consisting in that the appropriate 
inequalities (62k) are valid, are also independent. Owing to the Bernoulli theorem, given this 
condition and a sufficiently large N, the frequency M/N of these inequalities being obeyed in 
the sequence of cases Ek will be arbitrarily close to " = 0.9953.Consequently, in any 
sufficiently long series of independent cases Ek the rule (62) will lead to correct results in 
about 99.5% of all cases, and to wrong results in approximately 0.5%. For justifying this 
conclusion it is only necessary that the set of the considered cases E1, E2, …, EN be 
determined beforehand independently of the values of the xi’s obtained by observation. 
Bernstein indicated a clever example of a misunderstanding that is here possible if no 
attention is paid to this circumstance 12.  
    After all this, a warning against a wide-spread mistake 13 seems almost superfluous. 
Namely, the equality for the unconditional probability 
 
    P(|a – x | ≤  2/h�n) = 0.9953 
 
follows if 
 
    P(|a – x | ≤  2/h�n|a; h) = 0.9953                                                             (63) 
 
for all possible values of a and h. However, it does not at all follow from (63) that for any 
fixed values of (1)   
 
    P(|a – x | ≤  2/h�n|x1; x2; …; xn) = 0.9953. 
 
    In concluding this section, I note that it is sometimes necessary to consider the rules for 
establishing confidence limits for an estimated parameter � which do not possess any definite 
confidence probability. In such cases, the part similar to that of confidence probability is 
played by the lower bound 
 
    " = inf P(�� ≤  � ≤  ��|�, �1, �2, …, �n) 
 
of the conditional probability for the validity of the inequalities �� ≤  � ≤  �� at various 
combinations of the values of the parameters �, �1, �2, …, �n. Following Neyman, this lower 
bound has been called the coefficient of confidence of the given rule 14. 
 



    6. A Sensible Choice of Confidence Limits Corresponding to a Given Confidence 
Probability. After what was said in §5, the following formulation of the problem of 
estimating a parameter � given (1) becomes understandable. For each " (0 < " < 1) it is 
required to determine, as functions ��" and ��" of (1), and, if necessary, of parameters which 
are assumed to be known in the given problem, such confidence limits for � that the rule 
recommending to assume that ��" ≤  � ≤  ��" has confidence probability equal to ". 
    The problem thus expressed is not always solvable. When its solution is impossible, we 
have to turn to rules of estimating the parameter � lacking a certain confidence probability 
and to apply the concept of coefficient of confidence indicated at the end of §5. On the other 
hand, in many cases the formulated problem admits, for each ", not one, but many solutions. 
From among these, it is natural to prefer such that lead to shorter confidence intervals [��"; 
��"]. I intend to devote another paper to considering, in a general outline, the problem of 
discovering such most effective rules possessing a given confidence probability (or a given 
coefficient of confidence). 
    For Problems 1 – 3 the following simplifications in formulating the issue about 
discovering which sensible confidence limits for a and h are natural.     
    1. It is natural to restrict our attention to considering confidence limits depending, when n 
and " are given, in addition to the parameters supposed to be known, only on the 
corresponding sufficient statistics 15 or sufficient systems of statistics. We will therefore 
assume that, in Problem 1, the confidence limits a� and a� only depend on h and x ; in 
Problem 2, the confidence limits h� and h� only depend on a and S; and, in problem 3, a� and 
a�, h� and h� only depend on x  and S1.  
 
    2. It is natural to wish 16 that the rules for determining confidence limits be invariant with 
respect to change of scale; of the origin; and of the choice of the positive direction along the 
Ox axis, i.e., with respect to transformations 
 
    x* = kx + b                                                                                                 (64) 
 
where b is an arbitrary real number and k is an arbitrary real number differing from zero. 
Under this transformation, a, h, x , S, and S1 are replaced by 
 
    a* = ka + b, h* = h/|k|, x * = k x  + b, S* = |k|S, S1* = |k|S1. 
 
    This demand of invariance is reduced to the fulfilment of the following relations, given 
fixed n and ", for any real k � 0 and b and a�, a�, h� and h� being functions of the arguments 
indicated above in Item 1: 
 
    Problem 1: a�(h*¸ x *) = k a�(h; x ) + b, a�(h*¸ x *) = ka�(h; x ) + b. 
    Problem 2: h*(a*; S*) = h�(a; S)/|k|, h�(a*; S*) = h�(a; S)/|k|. 
    Problem 3: a�( x *; S1*) = ka�( x ; S1) + b, a�( x *; S1*) = ka�( x ; S1) + b, 
                      h�( x *; S1) = h�( x ; S1)/|k|, h�( x *; S1*) = h�( x ; S1)/|k|. 
 
    Issuing from Demands 1 and 2, we may conclude that the confidence limits should have 
the form 
 
    a� = x  – A0/h, a� = x  + A0/h; h� = B�/S, h� = B�/S,                             (65, 66) 
    a1� = x  – C0S1, a1� = x  + C0S1; h1� = B1�/S1; h1� = B1�/S1                   (67, 68) 
 
for Problems 1, 2 and 3 respectively. Here, for a fixed n, A0, B�, B�, C0, B1�, and B1� only 
depend on ". If  



 
    A = h(a – x ), B = hS, C = (a – x )/S1, B1 = hS1                               (69 – 72) 
 
then, as it is easily seen, the inequalities 
 
    a� ≤  a ≤  a�, h� ≤  h ≤  h�, a1� ≤  a ≤  a1�, h1� ≤  h ≤  h� 
 
are equivalent to inequalities 
   

– A0 ≤  A ≤  A0, B� ≤  B ≤  B�, – C0 ≤  C ≤  C0, B1� ≤  B ≤  B1� 
 
respectively. 
    The factor, decisive for the success of all the following, is that the laws of distribution of 
A, B, C, and B1 calculated for fixed a and h by issuing from formula (1), are independent of 
these parameters. The densities of these laws are  
 

    f1(A) = π/n exp (– nA2), f2(B) = 
)2/(

1

n

Bn
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exp (–B2),  

    f3(C) = 
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π/n (1 + nC2)–n/2,                                         (73 – 76) 

    f4(B1) = 
]2/)1[( 

2/
1

−Γ n

B n

 exp (–B1
2).                

 
    Therefore, the probabilities 
 
    P(a� ≤  a ≤  a�|a; h) = P(– A0 ≤  A ≤  A0|a; h), 
    P(h� ≤  h ≤  h�|a; h) = P(B� ≤  B ≤  B�|a; h), 
    P(a1� ≤  a ≤  a1�|a; h) = P(– C0 ≤  C ≤  C0|a; h), 
    P(h1� ≤  h ≤  h1�|a; h) = P(B1� ≤  B ≤  B1�|a; h) 
 
are independent of a and h so that they may be considered as confidence probabilities in the 
sense of the definition of §5. Calculating these probabilities in accord with formulas (73) – 
(76) and equating them to ", we will have 
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    For the sake of ensuring the possibility of directly using the existing tables we have 
introduced here 



 

    �0 = A0�n, �� = B��2, �� = B��2, �0 = C0 )1( −nn , ��1 = B�1�2, ��1 = B�1�2.    

 
When joining formulas (65) – (68) to these relations we obtain 
 
    a� = x – �0/h�n, a� = x + �0/h�n, h� = ��/S�2, h� = ��/S�2, 

    a1� = x – �0S1/ )1( −nn , a1� = x + �0S1/ )1( −nn ,                         (81 – 84) 

    h1� = �1�/S1�2, h1� = �1�/S1�2. 
 
    In this notation the confidence limits of a and h are determined by the following 
inequalities: 
 
    |a – x | ≤  �0/h�n, ��/S�2 ≤  h ≤  ��/S�2, 

    |a – x | ≤  �0S1/ )1( −nn , �1�/S1�2  ≤  h ≤  �1�/S1�2                         (85 – 88) 

 
for Problems 1 – 3 respectively. Here, �0, ��, ��,�0, �1�, �1� should be chosen in a way 
satisfying relations (77 – 80); �0 and �0 are thus uniquely determined given the confidence 
probability, whereas the choice of the other four magnitudes remains to some extent 
arbitrary, see §8. 
 
    7. Practical Conclusions about Estimating the Center of Scattering. The rules below 
follow from the deliberations of §6.  
    1. In Problem 1 we may assume, with confidence probability ", that    
                                                                                                                        
    |a – x | ≤  �0/h�n                                                                                           
                                                                                                                        
where �0 is determined from  
 

    " = (2/��) �
0

0

α

exp (–�2)d�. 

 
    2. In Problem 3 we may assume, with confidence probability ", that       
 

    |a – x | ≤  �0S1/ )1( −nn  

 
where �0 is determined from (79). I adduce a table showing the dependence of �0 on " for 
various values of n; it is extracted from a more complete table included, for example, in [1]. 
The last line of the table shows the limiting values of �0 as n � 
 calculated by the formula  
 

    " = π/2 �
0

0

γ

exp (–�2/2)d�.                                                                   (89) 

 
    Note that formula (50) derived in §4 is equivalent to 
 

    P(|a – x | ≤  �0S1/ )1( −nn |x1; x2; …; xn) = 

    π/2 �
γ

0
exp (–�2/2)d� + O(1/�n).                                                         (90) 

 



We can now estimate how dangerous it is to neglect the remainder term O(1/�n) when 
having small values of n. If neglecting it, we would have concluded, for example, as it is 
often done in textbooks, that we may expect the validity of the inequalities  
 

    |a – x | ≤  2.576S1/ )1( −nn                                                                     (91) 

 
with probability 0.99. Actually, however, if, for example, n = 5, this inequality will be 
violated in about 6% of all cases; for ensuring {not more than} 1% of violations, we ought to 
apply, as shown in our table, equality (91) with factor 4.604 instead of 2.576. Only when n > 
30 is it quite admissible, as considered in practical applications, to make use of the limiting 
formula (89).  
    When applying the rules formulated in this section, it is naturally useful to remember the 
remarks made at the end of §5 about the meaning of the concept of confidence probability. 
 
    8. The Choice of Confidence Limits for the Measure of Precision. Conditions (78) and 
(80) still leave some arbitrariness in the choice of ��, ��, �1�, �1�. Given ", it is natural to 
choose these magnitudes so that, allowing for  the abovementioned conditions, the intervals 
[��; ��] and [�1�; �1�] become as short as possible. Under this additional restriction ��, ��, �1�, 
and �1� are uniquely determined by " and n.  
    However, since the appropriate tables are lacking, the actual calculation of the four 
magnitudes as determined by this condition is rather difficult. Therefore, instead of deriving 
the shortest confidence intervals [��; ��] and [�1�; �1�] corresponding to the given confidence 
probability ", practitioners achieve the validity of relations (78) and (80) by calculating ��, 
��, �1�, and �1� from the equalities 
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and applying the available tables (see, for example, [7]) showing the dependence between �2 
and 
 

    Pk(�) = 
)2/(2

1
2/)2( kk Γ− �

∞

χ
�k-1exp(�2/2)d�. 

 
    For n > 30 it is possible to use the limiting formulas 
 

    �� = �n – c, �� = �n + c, �1� = 1−n – c, �1� = 1−n + c                (94 – 95) 
 
where c is determined from the condition  
 

    " = (2/��) �
c

0
exp (–z2)dz.  

 



Note also that (95),(96), (83),(85), (19) and (20) lead to     
 
    h� = h [1 – (c/�n)], h� = h [1 + (c/�n)],                                                    (96) 

    h1� = 1h [1 – (c/ 1−n )], h1� = 1h [1 + (c/ 1−n )].                                   (97) 
 
    When comparing these formulas with (46) and (53) we see that here also for large values 
of n the confidence limits obtained in accordance with the Fisherian method essentially 
coincide with those determined on the basis of the limit theorems of §4. 
 
    9. A Sensible Choice of Approximate Values of the Estimated Parameters. Instead of 
the confidence limits for the estimated parameter � corresponding to a given confidence 
probability ", it is often desirable to have one approximate value θ of this parameter. The 
problem of the most sensible choice of such an approximate value corresponding to the given 
observations (1) can be formulated in many different ways.  
    From the viewpoint of the classical method (§§1 and 4), the most natural way is to assume 
as the approximate value the conditional expectation  
 
    θ  = E(�|x1; x2; …; xn).                                                                              (98) 
 
Indeed, it is easy to show that this choice leads to the minimal value of the conditional 
expectation E[(� – θ )2|x1; x2; …; xn] of the square of the deviation (� – θ ), i.e., that it 
provides the maximal possible value of the measure of precision h(θ |x1; x2; …; xn) as 
determined by formula (36). 
    According to this viewpoint, and under some natural assumptions about the prior 
distributions of a and h for large values of n (or of nh2 in Problem 1), we may consider x as 
the approximate value of a; in Problem 2, h as the approximate value of h; and, in Problem 
3, 1h {rather than h }(§4). However, keeping to the approach of §4, any other magnitudes, 

x *, h * and 1h * obeying the following demands may be assumed as the approximate values 

of a and h instead of x , h  and 1h :  
 
    x * = x  + O(1/nh2), h * =  h [1 + O(1/n)], 
    x * = x  + (1/ 1h ) O(1/n), 1h * = 1h [1 + O(1/n)] 
 
in Problems 1 – 3 respectively. 
    This indefiniteness lies at the heart of the matter when only qualitative assumptions of 
sufficient smoothness are made with regard to the prior distributions of a and h. If the main 
problem when estimating a parameter � is an indication for each " (0 < " < 1) of confidence 
limits ��" and ��" corresponding to the confidence probability (or to the coefficient of 
confidence) ", then these limits are usually obtained in such a way that, for "� > ", ��" ≤  ��"� 
≤  ��"� ≤  ��". Under this condition, it usually occurs that, as "� 0, the lower and the upper 
bounds ��" and ��" tend (from below and from above, respectively) to a common limit θ . In 
this case it is natural to assume θ  as the approximate value of �; indeed, only such a rule can 
ensure the inequalities ��" ≤ θ  ≤  ��" for any ". From this viewpoint, choosing the 
confidence limits for a and h as it was done in §§7 and 8, we should assume x  as the 
approximate value of a; and, in Problems 2 and 3, the approximate value of h will be h * 
determined by equalities    
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and 1h * determined by equalities 
 

    1h * = S1 1χ * �2, 
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respectively. I adduce the values of ( χ *)2 for n ≤  20. {The table, actually for n = 1(1)10, is 
omitted here.} For n > 10 we may consider that, with an error less than 0.01,  
 
    ( χ *)2 ~ n – 2/3.                                                                                      (101) 
 
For n observations 1χ * is equal to χ * corresponding to (n – 1) observations 17. If the choice 
of the approximate values of a and h is considered in itself, then it is nevertheless natural to 
restrict it to the values satisfying the following two conditions 18. 
    1. In each problem, the approximate values depend, in addition to the parameters supposed 
to be known, only on the appropriate sufficient statistics, or sufficient systems of statistics. 
    2. The approximate values are invariant with respect to the transformations of the Ox axis 
of the type (64). 
    It is possible to conclude from these demands that only x  may be taken as an approximate 

value of a; and, as an approximate value of h, we ought to assume, in Problem 2, h  = B /S; 
and in Problem 3, 1h = 1B /S where B and 1B only depend on n. 
    We may apply various additional conditions for determining the most sensible values of 
the factors B and 1B . For example, it is possible to demand that, for any values of a and h, 

the conditions E( h |a; h) = h, E( 1h |a; h) = h be satisfied. These demands can only be met if 
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i.e., if, assuming these values for B and 1B , we will have      
                                                                              
    h  = B /S and 1h  = 1B /S.                                                                         (102) 
 
We shall soon see that the finality of this last result should not be overestimated.  
    The demand made use of above that the systematic error be absent, can be formulated with 
respect to the approximate value θ  of any parameter � under consideration. In a general 
form, this demand is expressed thus: The equality 
 
    E(θ |�; �1; �2; …; �n) = �                                                                         (103) 
 
should hold for all possible values of the parameters �, �1, �2, …, �s of a given problem. The 
approximation x for the center of scattering a satisfies this demand both in Problem 1 and 
Problem 3. Now we will determine approximations devoid of systematic error for the mean 
square deviation (9). It is natural to restrict our attention here to approximations of the form 
σ  = kS (Problem 2) and 1σ  = k1S1 (Problem 3) 19. The demand that the systematic error be 

absent, E(σ |a; h) = �, E( 1σ |a; h) = �, leads then to the necessity of assuming 
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i.e., of choosing σ  and 1σ (see above) in accord with these magnitudes. However, after that 
it is natural to take as an approximation to h 
  

    h  = (1/S)
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in Problems 2 and 3 respectively. 
    If the lack of systematic error is demanded in the determination of �2 (of the variance), and 
if the approximation to �2 is being determined in the form σ 2 = qS2 (Problem 2) and 1σ 2 = 
q1S1

2 (Problem 3), then we have to assume  
 
    q = 1 – n, q1 = 1/(n – 1), σ 2 =S 2/n, 1σ 2 = S1

2/(n – 1).                           (105) 
 
    To achieve conformity with formula (103), it is then natural to assume the approximation 
to h as 
 

     h  = Sn 2/ , 1h  = 12/)1( Sn −                                                        (98ter) 

 
in Problems 2 and 3 respectively. The last approximations are the most generally accepted in 
modern mathematical statistics. We have applied them in §4, where, however, the choice 
between (98), (98bis) and (98ter) was not essential since the limit theorems of §4 persisted 
anyway. 
    From the practitioner’s viewpoint, the differences between the three formulas are not 
essential when only once determining the measure of precision h by means of (1). Indeed, the 
differences between these approximations have order h/n, and the order of their deviations 
from the true value 20, h, is higher, h/�n. Therefore, since we are only able to determine h to 
within deviations of order h/�n, we may almost equally well apply any of these 
approximations which differ one from another to within magnitudes of the order h/n. 
    The matter is quite different if a large number of various measures of precision (for 
example, corresponding to various conditions of gunfire) has to be determined, each time 
only by a small number of observations. In this case, the absence of a systematic error in 
some magnitude, calculated by issuing from the approximate value of the measure of 
precision, can become very essential. Depending on whether this magnitude is, for example, 
h, � or �2, the approximate values of h should be determined by formulas (98), (98bis) or 
(98ter) respectively.   
    In particular, from the point of view of an artillery man, according to the opinion of Prof. 
Gelvikh [10; 11] 21, it is most essential to determine without systematic error the expected 
expenditure of shells required for hitting a target. In the most typical cases (two-dimensional 
scattering and a small target as compared with the scattering) this expected expenditure, 
according to him, is proportional to the product �(1)�(2) of the mean square deviations in the 
two directions. Suppose that we estimate �(1) and �(2) by their approximations σ (1) and σ (2) 
derived from observations (x1

(1), x2
(1), …, xn

(1)) and (x1
(2), x2

(2), …, xm
(2)) respectively. If the 

xi
(1) are independent of xj

(2), then, for any �(1), �(2), a(1) and a(2) (where the last two magnitudes 
are the centers of scattering for xi

(1) and xj
(2) respectively), we have 

 
    E(σ (1)σ (2)|a(1); a(2); �(1); �(2)) = E(σ (1)|a(1); �(1)) E(σ (2)|a(2); �(2))  



 
for the product σ (1)σ (2) of the approximations σ (1) and σ (2). Therefore, to obtain, 
identically for all possible values of a(1), a(2), �(1) and �(2),   
 
    E(σ (1)σ (2)|a(1); a(2); �(1); �(2)) = �(1)�(2) 
 
it is sufficient to choose σ (1) and σ (2) satisfying the conditions  
 
    E(σ (1)|a(1); �(1)) = �(1), E(σ (2)|a(2); �(2)) = �(2). 
 
    Thus, to obtain without a systematic error the estimated expected expenditure of shells 
under the conditions specified by Gelvikh, we ought to make use of estimates (104) leading 
to �(1) and �(2) devoid of systematic error. Accordingly, issuing from his demands, the 
estimate (98bis) is naturally preferable for h 22. As a rule, in accord with Gelvikh’s point of 
view, the final choice of the most expedient form of the approximate values of h for a small 
number of observations is determined not by some general demands of probability theory, 
but by additional conditions which may differ in various practical problems.     
   
    Notes 
 
    1. This means that the probability of being chosen is one and the same for each soldier.  
    2. The distribution depends on many factors. If, for example, the regiment consists of 
soldiers belonging to two different drafts, it can possess two peaks. 
    3. Fisher introduced this notion otherwise, see [1 – 3]. 
    4. A statistic can depend on some parameters whose values are assumed to be known (for 
example, on h in Problem 1 or on a in Problem 2). It is only essential that it does not depend 
on �1, �2, …, �s which are here supposed unknown. 
    5. Note that in this problem the magnitude x taken alone is not anymore a sufficient 
statistic for a. Indeed, the conditional density of a, given (1), is expressed by the formula 
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    It is easy to find out that the left side is not uniquely determined by �3(a; h) and x but in 
addition essentially depends on S1. It can be shown that, in general, there does not exist any 
continuous function �(x1, x2, …, xn) that, under the conditions of Problem 3, would be a 
sufficient statistic for a. The same is true here with respect to h in Problem 3.  
    For the sake of simplicity of the calculations, we have assumed that the prior distributions 
of a and h are continuous and expressed by densities. However, all the conclusions about 
sufficient statistics in Problems 1 and 2 and about the sufficient system of statistics in 
Problem 3 persist even without this restriction. 
    6. Elsewhere, I intend to offer a precise definition of the term information conforming to 
the Fisherian use of the word. 
    7. All this is valid under normality of the xi’s which we assumed from the very beginning. 
The situation will change once we abandon this assumption. 
    To explain this fact, let us consider the following example. Suppose that the random 
variables (1) are independent and have a common uniform distribution on interval [a – 1/2; a 
+ 1/2]. Then their n-dimensional density will be 
 



    f (x1, x2, …, xn) = 1 if xmax – 1/2 < a < xmin – 1/2 and = 0 otherwise. 
 
Denote the prior distribution of a by �(a), then, by the Bayes theorem, the conditional 
density of a, given (1), will be 
 

    �(a|x1, x2, …, xn) = �
+

−

2/1

2/1

min

max

x

x
�(a)da if xmax – 1/2 < a < xmin – 1/2 and   

                                = 0 otherwise.    
 
    The system of two statistics, xmax and xmin, will obviously be a sufficient system for a. And 
it would be quite natural to assume (10) as the appropriate value of a. It would be possible to 
show that for a large n the difference (a – d) will be here, as a rule, considerably less than the 
difference (a – x ). 
    8. A more precise estimate 
 
    E[(a – x )2|x1, x2, …, xn] = (1/2nh2)[1 + O(1/nh2)]                                   (37�) 
 
can be obtained from (34). We cannot lower the order of the remainder term here by further 
strengthening the demands on the smoothness of the function �1(a). 
    9. A more precise estimate  
 

    P(|a – x | ≤  c/h�n|x1, x2, …, xn) = (2/��) �
c

0
exp(–�2)d� + O(1/nh2)       (40�) 

 
can be obtained from (34). We cannot lower the order of the remainder term here by further 
strengthening the demands on the smoothness of the function �1(a). 
    10. We only obtained this result for unconditional distributions of the parameters given by 
their density �(�; �1, �2, …, �s). It is easy to see, however, that it persists in the general case 
as well. 
    11. In this case the matter consists in assuming the following new axiom of the theory of 
probability: If the conditional probability P(A|�1, �2, …, �s) of some event A exists for all the 
possible values of the parameters �1, �2, …, �s and is equal to one and the same number ", 
then the unconditional probability P(A) of event A exists and is equal to ".  
    Note that when comparing the discussed method with the classical approach the issue 
about the acceptability of this new axiom does not arise since the classical method is 
necessarily based on admitting the existence of a prior distribution of the parameters so that 
the new axiom becomes superfluous. 
    12. See [5, §7]. A curious problem arises in connection with this example: To formulate 
such a rule for selecting boxes which will guarantee the buyer, with a sufficiently low risk of 
error, the purchase of not less than 95% of the boxes satisfying his demand that | ai – a| < 2. 
This problem admits of a quite proper interpretation from the viewpoint of confidence 
probabilities (or, more precisely, of coefficients of confidence, see the end of this section). I 
intend to return elsewhere to this problem and to some similar problems having a serious 
practical importance. 
    13. Commited by Fisher in some of his writings. 
    14. See an example [6] of an elementary problem in which the application of rules having 
no definite confidence probability and only possessing a certain coefficient of confidence is 
unavoidable. 
    15. {Here, for the first time, the author translated the English term sufficient by the 
appropriate Russian equivalent. In §2 he used a Russian term tantamount to the English 
exhaustive which had not stood the test of time.} 



    16. I borrow this requirement from Borovitsky [8; 9]. To avoid misunderstanding, I 
consider it necessary to add that I believe that the main substance of his work is erroneous. 
    17. This choice of the approximate values of h * and 1h * for h is connected with the 
method of determining the confidence limits for h as indicated in §8. It is not the only 
possible one, and neither is it even the best one as considered from any sufficiently justified 
viewpoint.  
    18. Cf. the conditions imposed on a�, a�, h� and h� in §6. 
    19. Such a form of the approximations for � follows from the conditions 1 and 2 above. 
    20. {Note the author’s use of this term of the classical error theory.} 
    21. {Gelvikh later served time in a labor camp as a saboteur and his books had been 
banned but I am unable to supply a reference.} 
    22. This conclusion is made in R.E. Sorkin’s unpublished work which he kindly gave me. 
The same result naturally persists for the cases of one- and three-dimensional scatter. Gelvikh 
himself mistakenly believes that the problem as formulated by him leads to bounds (100ter). 
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and the General Principles of Estimating the Efficiency of a System of Firing 
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    Introduction 
    In the sequel, we shall consider a group of n shots each of which can either hit, or miss the 
target. The number of hits µ will evidently only take values m = 0, 1, 2, …, n, and we denote 
the probability of achieving exactly m hits by Pm = P(µ = m). By means of these probabilities 
the expected number of hits Eµ can be written down as 1 
 
    Eµ = P1 + 2P2 + … + nPn                                                                            (2) 



 
and the probability of achieving not less than m hits is 
 
    Rm = P(µ ≥ m) = Pm + Pm+1 + … + Pn = 1 – (P0 + … + Pm–1).                    (3) 
 
In particular, the probability of at least one hit is R1 = 1 – P0. The expectation Eµ and the 
probabilities Rm are the main indicators for estimating the efficiency of a system of firing 
adopted in the current military literature 2. 
    Both Eµ and the probabilities Rm are determined by the probabilities Pm in accord with 
formulas (2) and (3), i.e., by the distribution of the random variable µ. Therefore, in principle 
it would be essential to examine, above all, under what conditions is the knowledge of this 
distribution (that is, of the totality of probabilities Pm for m = 0, 1, 2, …, n) sufficient for 
estimating the efficiency of a system of firing. 
    Generally speaking, this knowledge is not at all always sufficient. For example, when 
shelling a target occupying a large area, it is often essential not only to achieve a sufficiently 
large number of hits, but to distribute the hit-points over the area of the target in a way 
guaranteeing the hitting of a sufficiently large portion of this area. Here, however, we leave 
such cases aside. 
    In restricting the estimation of the efficiency of the system of firing to considering the 
distribution of the probabilities of the number of hits, that is, of the probabilities P0, P1, P2, 
…, Pn, it is natural to question whether it is possible to replace this totality by some single 
magnitude depending on them, W = f(P0; P1; P2; …, Pn), and to declare it the indicator of the 
efficiency of the system of firing.  
    The expectation Eµ or the probability Rm of achieving not less than m hits, with m being 
the number of hits necessary for destroying the target, is often assumed as such a single 
indicator of efficiency. Considerations widely disseminated in the literature on the 
comparative benefits and shortcomings of estimating by expectation and by probability often 
do not possess sufficient clearness which compels me to devote §1 to this issue. 
    In §§2 and 3 I discuss the purely mathematical topics of precise and approximate 
calculation of the probabilities Pm and Rm and adduce tables of the Poisson distribution with 
corrections which can be rather widely applied, as I think, when solving various problems of 
the theory of firing. In §4, issuing from the deliberations explicated in §1, and the formulas 
derived in §3, I formulate the problem of firing with an artificial scattering in a general way, 
and, in particular, I define the very notion of artificial scattering. I shall develop the ideas of 
this somewhat abstract section elsewhere. In §5 I consider a particular case of determining 
the probability of hitting the target, and, by introducing a reduced target, exonerate to some 
extent the wide-spread method of reducing the problem on the probability of destroying the 
target by several hits to that of the probability of at least one hit.  
 
    1. The Choice of the Indicator of the Efficiency of Firing 
    I begin by considering two typical cases between which exist many intermediate instances. 
The first case. The firing is carried out to achieve a quite definite goal (to sink a ship, to 
shoot down an aircraft, etc) which can only be either accomplished or not; and we are only 
interested in the probability P(A) of success 3. Denote the conditional probability of success 
by P(A|m) if there will be exactly m hits. Then, according to the theorem on the total 
probability, and assuming that P(A|0) = 0, 
 
    P(A) = P1P(A|1) + P2P(A|2) + … + PnP(A|n).                                            (5) 
 
If, in particular, success is certain when µ ≥  m and impossible otherwise, i.e., if 
 



    P(A|r) = 1 if r ≥  m and 0 otherwise,                                                           (6) 
        
the general formula (5) becomes P(A) = Rm. For example, when success is already certain 
after achieving at least one hit, then, obviously, P(A) = R1. For m > 1 the assumption (6) 
becomes rather artificial: it is difficult to imagine such a concrete situation when success is 
guaranteed by ten hits, but would have still been absolutely impossible to achieve in nine 
hits. It is more natural to suppose that the probability P(A|m) gradually heightens with the 
number of hits m. In this connection I consider in §5 the case of 
 
    P(A|m) = 1 – e�m                                                                                          (9) 
 
where � is some constant. I have chosen this type of dependence of P(A|m) on m because in 
many cases it allows to derive sufficiently simple expressions for the probability P(A) which 
is the main studied magnitude.  
    At the same time, formula (9) taken with various values of the constant � seems to be not 
less suitable for approximately depicting the different relations which it is possible to 
encounter in real life than formula (6). It is quite natural to assume, however, that the 
conditional probabilities P(A|m) do not decrease with an increasing m; i.e., that 
 
    Dm = P(A|m) – P(A|m – 1) ≥  0. 
 
Consequently, it is convenient to rewrite the general formula (5) as 4 
 
    P(A) = D1P1 + D2P2 + … + DnPn.                                                             (11) 
 
    If, for example, success is impossible when achieving less than three hits; if it has 
probability 1/3 after three hits, 2/3 after four hits; and is certain when achieving more than 
four hits, then, for n = 10, formula (5) provides 
 
    P(A) = (1/3)P3 + (2/3)P4 + P5+ P6 + … + P10 
 
whereas formula (11) furnishes a simpler expression 
 
    P(A) = (1/3)R3 + (1/3)R4 + (1/3)R5. 
 
The above is sufficient for ascertaining the importance of the probabilities Rm. 
    The second case. The firing is only one of many similar mutually independent firings and 
we are only interested in ascertaining the mean damage inflicted on the enemy. Here, it is 
sufficient to know, with regard to each separate firing, the expectation E� of damage �.  
    Denote the conditional expectation of � by E(�|m) when assuming that exactly m hits were 
achieved. In accord with the well-known formula for the total expectation, and assuming that 
E(�|0) = 0, we have  
 
    E� = P1E(�|1) + P2E(�|2) + … + PnE(�|n).                                               (12) 
 
Supposing that the expectation of damage E(�|m) is proportional to the number of hits; that 
is, that  
 
    E(�|m) = km                                                                                               (13) 
where k is a constant factor, formula (12) reduces to 
 



    E� = kEµ.                                                                                                   (14) 
 
    In many particular cases this assumption, and, consequently, formula (14) which is its 
corollary, may be considered sufficiently justified. Then the efficiency of the firing from the 
viewpoint of the expected damage is indeed determined by the expected number of hits. It 
seems, however, that such particular cases, when a noticeable deviation from proportionality 
(13) is observed, are encountered not less often; when, consequently, the replacement of the 
general formula (12) by (14) is inadmissible.  
    It is quite natural to assume that in any case E(�|m) does not decrease with the increase in 
m; i.e., that  
 
    cm = E(�|m) – E(�|m – 1) ≥  0. 
 
Accordingly, it is convenient to rewrite the general formula (12) as 
 
    E� = c1R1 + c2R2 + … + cnRn.                                                                    (16) 
 
    The above is sufficient for understanding when we may apply the expected number of hits 
E� and when should we turn to the general formula (16) for estimating the expected damage 
inflicted on the enemy by shelling. In each of the two typical instances discussed above it 
was possible to estimate the efficiency of the system of firing by one single magnitude which 
we may call the indicator of its efficiency. In the first case it was the probability P(A); in the 
second instance, the expectation E�; and in both cases the expression of the type    
 
    W = c1R1 + c2R2 + … + cnRn                                                                      (17) 
 
with cm being some non-negative coefficients actually served as the indicator of the 
efficiency of the system of firing. It may be thought that the expression (17) is also 
sufficiently flexible for covering a number of intermediate cases not discussed above. 
    Once the indicator of the efficiency of the system of firing conforming to the concrete 
situation is chosen, it becomes natural to choose the most advantageous system of firing from 
among those possible (and consisting of a stipulated number of shots n), – the one for which 
this indicator takes the largest possible value. In §5, we shall consider such problems on 
determining the systems of firing having the largest indicator of efficiency when the 
expenditure of ammunition is given beforehand. 
    In concluding this section, we note that 
 
    Eµ = R1 + R2 + … + Rn                                                                              (18) 
 
and that the magnitudes Rm are connected with Eµ by the well-known Chebyshev inequality 
Rm ≤  Eµ/m. 
 
    2. The Case of Mutually Independent Hits after Single Rounds 
    Suppose that the numbers i = 1, 2, … n are assigned to the n shots. Denote the random 
event of the i-th shot hitting/missing the target by Bi/Ci and the corresponding probabilities 
by pi = P(Bi) and qi = P(Ci) = 1 – pi. The expectation can be expressed by the well-known 
formula  
 
    Eµ = p1 + p2 + + … + pn.                                                                           (21) 
 



This is the formula that attaches especial simplicity to the expression Eµ. Unlike this 
magnitude, the probabilities Pm and Rm cannot be uniquely represented in the general case by 
the probabilities pi = P(Bi). For determining these, it is necessary, generally speaking, to 
know, in addition to the probabilities pi of each Bi, the essence of the dependence between 
the events Bi. Here, we consider the case of mutually independent random events B1, B2, …, 
Bn so that the probability that hits occur as a result of shots i1 < i2 < … < im and do not occur 
in any other shot is 5 
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    Adding all such products corresponding to a given m, we will indeed determine the 
probability 
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of achieving exactly m hits after n shots. In particular, 
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The number of terms in brackets in (22) is equal to m

nC . Therefore, if 

 
    p1 = p2 = … = pn = p,                                                                                 (23) 
 

we arrive at the well-known formula Pm = m

nC pmqn–m, q = 1 – p.  

    The general formula (22) is too complicated for application without extreme necessity. 
When the probabilities pi of hit for each separate shot are sufficiently low, it can be replaced 
by much more convenient appropriate formulas. These are the more exact, the lower is the 
upper bound 	 = max (p1; p2;…; pn) of the probabilities pi. The simplest 6 among them is the 
Poisson formula  
 
    Pm = (am/m!)e–a + O(	), a = p1 + p2 + + … + pn = Eµ.                              (27) 
 
    This formula represents the probability Pm to within the remainder term O(	). The 
published tables 8 of the function �(m; a) = (am/m!)e–a make its practical application simpler. 
    A more complicated but at the same time a more precise formula 7 can be recommended: 
 
    Pm = �(m; a) – (b/2) ∇ 2�(m; a) + O(	2)                                                    (30)   
 
where 
 
    b = p1

2 + p2
2 + + … + pn

2,                                                                          (31) 
    ∇ 2�(m; a) = �(m; a) – 2�(m – 1; a) + �(m – 2; a). 9 
 
The remainder term in (30) has order 	2.  
    When all the probabilities are identical (23), 



 
    a = np, b = np2 = a2/n, 	 = a/n 
 
and formulas (27) and (30) are reduced to 10 
 
    Pm = �(m; a) + O(1/n), Pm = �(m; a) – (a2/2n) ∇ 2�(m; a) + O(1/n2).  (33; 34) 
 
    To show that the refined formulas (31) and (34) are advantageous as compared with (27) 
and (33), let us consider the following example: n = 5, p1 = p2 = … = p5 = 0.3, a = 1.5 and b 
= 0.45. The corresponding values of P)m = �(m; a), P+m = �(m; a) – (b/2) ∇ 2�(m; a) and Pm 
are given in Table 1 {omitted}. 
    Since the probabilities pi are here still rather large, the Poisson formula (27) or the formula 
(33) only offer a very rough approximation P)m to the true values of Pm but the refined 
formulas (30) and (34) already provide the approximations P+m which differ from Pm less 
than by 0.015. 
    Let us also consider the case n = 50, p1 = pi = 0.03, i = 1, 2, …, 50, a = 1.5, b = 0.045. The 
corresponding values of Pm, P)m and P+m are adduced in Table 2 {omitted} to within 0.00001. 
Here, even the usual Poisson formula provides admissible results (the deviations of P)m from 
Pm are less than 0.005) whereas the refined formulas (30) and (34) furnish Pm with an error 
less than 0.0001. 
    For the probabilities Rm of achieving not less than m hits, formulas (27), (30), (33) and 
(34), when issuing from (3), lead to 
 
    Rm = H(m; a) + O(	), Rm = H(m; a) – (b/2) ∇ 2H(m; a) + O(	2),         (35; 36) 
   Rm = H(m; a) + O(1/n), Rm = H(m; a) – (a2/2n) ∇ 2H(m; a) + O(1/n2) (38a; b) 
     
where, assuming that H(m; a) = 1 for m < 1, 
 
    H(m; a) = 1 – �(0; a) – �(1; a) – … – �(m – 1; a). 
 
The tables of  
 
    H(1; a) = 1 – e–a and H(2; a) = 1 – (1 + a)e–a  
 
are available in a number of treatises on the theory of firing 11. The values of H(m; a) and  
 
    ∇ 2H(m; a) = – ∇�(m – 1; a)                                                                    (41) 
 
for m ≤  11 are adduced in Tables 1 and 2 of the Supplement to this book {to the original 
Russian source} and also there see Fig. 1. By means of these tables the probabilities Rm are 
determined in accord with formulas (36) and (38) with a very small work input. Suppose for 
example that n = 24 and     
                             
    p1 = p2 = … = p6 = 0.20, p7 = p8 = … = p12 = 0.10, p13 = p14 = … = p18 =  
    0.15 and p19 = p20 = … = p24 = 0.05.      
                                                                     
It is required to determine the probability R3 of achieving not less than three hits. We have a 
= �pi = 3.00, b = �pi

 2
 = 0.45. According to the tables, for m = 3 and a = 3, H = 0.577 and 

∇ 2H = 0.075. Substituting these values in formula (36) results in 
 
    R3 � 0.577 + (0.45/2)�0.075 = 0.594. 



 
To compare, we adduce the elementary calculation {omitted} by means of formula (22): 
 
    R3 = 1 – (P0 + P1 + P2) = 0.59503.  
 
    Let us return now to justifying the formulas (27) and (30). They are derived from the 
expansion of the probabilities into Charlier series 

    Pm =�
∞

=0k

Ak ∇ k�(m; t)                                                                               (42) 

where 

    Ak = et�
m

∇ k�(m; t) Pm, ∇ 0�(m; t) = �(m; t),                                (43; 44a)  

    ∇ k+1�(m; t) = ∇ k�(m; t) – ∇ k–1�(m; t).                                                (44b) 
 
The coefficients Ak can also be represented as 
 

    Ak =�
=

k

i 0

(– 1)i(t i/i!)[Fk–1/(k – 1)!]                                                             (45) 

where Fs are the factorial moments of the random variable µ, i.e., 

   F0 =�
m

Pm = 1, F1 =�
m

mPm = a, Fs =�
m

m(m – 1) … (m – s + 1)Pm. (46)  

    Formulas (42) – (46) are applicable not only to our special case in which the probabilities 
Pm are represented by (22) but to any probabilities Pm = P(µ = m) for an arbitrary random 
variable µ only taking a finite number of integer non-negative values m = 0, 1, 2, …, n 12. 

    The parameter t is here arbitrary. It is usually assumed that t = a, and then the formulas for 
the first coefficients become somewhat more simple. Namely, if t = a, we will have  

    A0 = 1, A1 = 0, A2 = (F2/2) – aF1 + (a2/2),  
    A3 = (F3/6) – aF2/2 + (a2/2)F1 – (a3/6). 
 
For our particular case, assuming that 
 
    a = p1 + p2 + + … + pn, b = p1

2 + p2
2 + + … + pn

2, 
    c = p1

3 + p2
3 + + … + pn

3, d = p1
4 + p2

4 + + … + pn
4, 

 
we have, again for t = a, 
 
    A0 = 1, A1 = 0, A2 = – b/2, A3 = – c/3, A4 = – d/4 + (b2/8).                       (50) 
 
    Since b, c, d, … are magnitudes of the order not higher than 	, 	2, 	3, … respectively, A2 = 
O(	), A3 = O(	2), A4 = O(	2). It can be shown that, for any k ≥  1,     
 
    A2k–1 = O(	k), A2k = O(	k). 
  
    A more subtle analysis shows that not only the terms of the series (42) having numbers (2k 
– 1) and 2k are, in our case 13, of an order not higher than 	k; the same is true with regard to 
the sum of all the following terms. Thus, in our case, when curtailing our series by the term 



with number (2k – 2), we commit an error of the order not higher than 	k. Assuming k = 1 
and 2, we arrive at formulas (27) and (30) by means of (50). 
    In applications, the order of error with respect to some parameter (in our case, to 	) 
selected as the main infinitesimal only offers most preliminary indications about the worth of 
some approximate formula. To appraise the practical applicability of an approximate formula 
for small but finite values of the parameter, it is necessary either to calculate a sufficient 
number of typical examples, or to derive estimates of the errors in the form of inequalities 
satisfied even for finite values of the parameter.  
    Until now, I have only obtained sufficiently simple estimates for m = 1, and I adduce them 
without proof 14 directly for formulas (35) and (38). For m = 1 they provide 15 
 
    R1 = 1 – e–a + O(	), R1 = 1 – [1 – (b/2)]e–a + O(	2).                            (52; 53) 

The respective estimates in the form of inequalities are 
 
    1 – e–a ≤  R1 ≤  (1 – e–a){1 + [	/2(1 – 	)]},  
    1 – [1 – (b/2)]e–a ≤  R1 ≤  {1 – e–a[1 – (b/2)]}{1 + [	2/3(1 – 	)]}. 
 
   Table 3 {omitted} shows the values of the expressions [	/2(1 – 	)] and         [	2/3(1 – 	)] 
for some values of 	. It is seen for example that for 	 = 0.2, when determining R1 in accord 
with formula (52), we run the risk of being mistaken not more than by 12.5%, and not more 
than by 1.7% when applying formula (53). It would be very desirable to obtain equally 
compact estimates in the form of inequalities for the probabilities Rm at m > 1. 
 
    3. Classification of the Factors Conditioning the Results of Firing and the Importance 

of the Dependence between Hits after Single Rounds  
    When considering some problems concerning the choice of a sensible system of firing, it is 
convenient to separate the factors from which the result of firing depends into the following 
four groups. 
    1) Factors assumed to be known beforehand. 
    2) Factors at our disposal. These are usually the number of shots and their distribution 
over time (between the limits allowed by the number of artillery pieces available, their rate of 
fire, the stock of shells), and, mainly, the aim of the pieces at each shot (azimuth; sight; time 
of detonation for explosive shells). 
    For the sake of definiteness we will now consider the case of percussion firing with a fixed 
number of shots n fired at fixed moments of time. In this case we still generally have at our 
disposal the choice of two parameters for each shot, the azimuth and the sight (the range), 
and we denote these, for the i-th shot, by �i and �i respectively. Mathematically speaking, the 
choice of a sensible system of firing under these conditions is then reduced to selecting the 
most advantageous combination of the values of 2n parameters, �1, �2, …, �n and �1, �2, …, 
�n. 
    3) Random factors influencing the results of all the shots, or of some of them. Such are, for 
example, the errors in determining the location of the target if the aiming of the piece 
depends on them for several shots 16; the manner of the maneuvering of a moving target, etc. 
When mathematically studying the issues of firing, it is admitted that all the factors of this 
group are determined by the values of some parameters �1, �2, …, �s obeying a certain law of 
distribution usually defined by the appropriate density f(�1; �2; …; �s). For the sake of brevity 
we denote the totality of the parameters �r (r = 1, 2, …, s) by a single letter �.  
    4) Random factors not depending one on another or on the factors of the third group with 
each of them only influencing some single shot. These are the factors leading to the so-called 



technical scattering and to errors in training a piece when this is done independently for each 
separate shot. 
    The probabilities Pm, Rm and pi and the magnitudes Eµ and W connected with them and 
considered in §§1 and 2 are calculated under the assumption that all the factors of the first 
two groups are fixed. It is senseless to discuss, for example, the probability of achieving three 
hits when the conditions of firing are absolutely unknown or when the external conditions are 
known but the aiming of the piece is not. We shall therefore suppose that these probabilities 
and magnitudes are functions of the parameters �i and �i (whose dependence on the factors of 
the first group is not necessary to indicate because these factors are always assumed 
constant).  
    In addition to unconditional probabilities Pm, Rm and pi and expectations Eµ we will 
consider the conditional probabilities 
 
    Pm(�) = P(µ = m|�1; �2; …; �s), Rm(�) = P(µ ≥  m|�1; �2; …; �s), 
    pi(�) = P(Bi|�1; �2; …; �s) 
 
and the conditional expectations E(µ|�1; �2; …; �s) for fixed values of the parameters �1, �2, 
…, �s. All these magnitudes are connected with the unconditional probabilities and 
expectations by the well-known formulas 
 

    Pm = � � … � Pm(�) f(�) d�1d�2 … d�s),                                               (60) 

    Rm = � � … � Rm(�) f(�) d�1d�2 … d�s), 

    pi = � � … � pi(�) f(�) d�1d�2 … d�s), 

    Eµ = � � … � E(µ|�) f(�) d�1d�2 … d�s). 

 
    For the magnitudes 
 
    W(�) = c1R1(�) + c2R2(�) + … + cnRn(�),  
    W = c1R1 + c2R2 + … + cnRn                                                                                                         (65) 
 
we have a similar formula 
 

    W = � � … � W(�) f(�) d�1d�2 … d�s.                                                  (66) 

 
    From the viewpoint of the here adopted classification of the factors determining the results 
of firing, it may be said that, when assuming, in §2, that the events Bi (achievement of hits 
after single rounds) were independent, we neglected the existence of the factors of the third 
group. Generally speaking, however, the random events Bi should only be considered 
conditionally independent for fixed values of the parameters �1, �2, …, �s. Therefore, 
generally speaking, all the formulas of §2 should be applied not to the unconditional 
probabilities Pm, Rm and pi but to the conditional probabilities Pm(�), Rm(�) and pi(�). For 
example, when applying formula (22) to conditional probabilities Pm(�) and pi(�) and 
calculating the unconditional probability Pm in accord with formula (60), and denoting 1 – 
pi(�) = qi(�), we obtain for it (i1 < i2 < … < im) 
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                                                                                                                       (67) 
which is suitable even without the special assumption about the unconditional independence 
of the events Bi. 
    All the conditional probabilities Pm(�), Rm(�) and pi(�) and the expectation E(µ|�) here 
introduced certainly depend, in addition to the explicitly indicated parameters �1, �2, …, �s, 
on the parameters �i and �i which is also true for the unconditional probabilities Pm, Rm and pi 

and for the unconditional expectation Eµ. 
 
    4. The General Formulation of the Problem about Artificial Scattering 
    We turn now to considering the problem already sketched at the end of §1: Determine the 
system of firing that, given the number of shots n, leads to the maximal value of the indicator 
of the efficiency W. This problem consists in determining the maximal value of the function 
 
    W = W(�1; �2; …; �n; �1; �2; …; �n) 
 
and the corresponding combination (�1*, �2*, …, �n* and �1*, �2*, …, �n*) of the values of 
the parameters �i and �i.  
    Supposing that the probability pi of achieving a hit at the i-th shot only depends on the 
corresponding azimuth and range, but not on these magnitudes for the other shots 17, i.e., that 
pi is only a function of two variables, �i and �i, pi = pi(�i; �i). Assume also that, as it most 
often happens, this function attains its maximal value max pi = pi( ii βα ; ) for some quite 

definite, single combination ( ii βα ; ) of the values of the azimuth �i and the range �i. Then a 

natural question is, whether or not  
 
    max W = W( nn βββααα ;...;;;;...;; 2121 ),                                                    (71) 

 
i.e., whether it would be sufficient, for achieving maximal efficiency of firing, to attain 
maximal probability of hitting at each separate shot. 
    In two special cases the answer is yes. First, equality (71) is valid if W =Eµ. Second, it is 
valid for indicators of efficiency of the type (65) with non-negative coefficients cm (in 
particular, if W = Rm for any m) if the events Bi are mutually independent; that is, when 
assuming that the factors of the third group may be neglected. 
    The first proposition directly follows from formula (21). To become convinced in the 
correctness of the second one, it is sufficient to notice here that, for independent events Bi, 
the probabilities Rm will, on the strength of formulas (3) and (22), be quite definite single-
valued functions 
 
    Rm = Fm(p1; p2; …; pn) 
 
of the probabilities pi; and it is easy to prove that these functions will be non-decreasing with 
respect to each of their arguments. 
    In the next section we will see, however, that no less important are those cases in which  
 
    W = W( nn βββααα ;...;;;;...;; 2121 ) 

 
is considerably less than the max W; i.e., that the system of firing leading to the maximum 
probability of hits for each single round will not be the most sensible. In such cases, to attain 
maximal efficiency of the firing as a whole, the aiming of separate shots should deviate from 
those for which maximal probability of hitting is attained at each shot. Such firing is called 



firing with artificial scattering. The two special cases described above can now be 
formulated thus: 
    1) Artificial scattering cannot be useful if the measure of the efficiency of firing is the 
expected number of hits Eµ. 
    2) Artificial scattering is useless if the hits by single rounds are mutually independent 
events. 
    As a rule, in both these cases artificial scattering is not only useless, but also damaging, 
that is, leading to a decrease in the efficiency of firing. A typical situation when artificial 
scattering can be advantageous is such when 
    1) It is most essential to achieve even a small number of hits, – considerably smaller than 
the total number of shots, n. 
    2) From among the random factors conditioning the achievement of some number of hits 
most important are those that influence all the firing (i.e., those of the third group). 
    The first condition  is realized in an especially sharp form in such cases in which one hit is 
sufficient for fulfilling the formulated aim; that is, in cases in which it is natural to assume 
that W = R1. 
 
    5. The Probability of a Hit in the Case in Which P(A|m) = 1 – e

–m 

    Suppose that, as m � 
, lim P(A|m) = 1. Then, as the number of hits increases 
unboundedly, the target will certainly (with probability = 1) be hit sooner or later. If the hits 
occur one after another rather than several at once, the expected number of hits after which 
the target is destroyed is  
 

    " =�
∞

=1r

rDr =�
∞

=1r

r[P(A|r) – P(A|r– 1)] 

 
where Dr is the probability of destroying the target at exactly the r-th hit. For the 
deliberations below, it is also useful to write this down as 
 

    " =�
∞

=0r

[1 – P(A|r)].                                                                                 (77) 

 
In brief, we will call " the mean necessary number of hits. Obviously, " ≥  1 and " = 1 is 
only possible if 
 
    P(A|r) = 0 at r = 0 and 1 at r ≥  1, 
 
that is, when the target is certainly destroyed by the first hit. For an integer m, " = m,   
 
    P(A|r) = 0 at r< m and 1 otherwise.                                                          (80) 
 
    Above, I indicated, however, that for " > 1 the case (80) is exceptional: more often P(A|r) 
gradually increases with r. Here, we consider the case of 
 
    P(A|r) = 1 – e–�r                                                                                                                                     (81) 
 
where � is some positive constant. The assumption (81) is not less arbitrary (but not more 
either!) than (80) but it leads to considerably simpler results.  
    From (81), because of (77), it follows that 
 



    " = 1/[1 – e–�], � = – ln [1 – (1/ ")].                                                   (82; 83) 
      
    Let us dwell on the case of mutually independent hits by single rounds considered in §2. 
Here, for the probability 
 
    P( A ) = 1 – P(A) =� pi [1 – P(A|i)],  

 
we obtain in accord with formulas (22) and (81) and after some transformations the relation 
 
    P( A ) =∏

i

[pie
–� + qi].                                                                            (85) 

 
    Denoting 
 
    pi� = pi/" = pi[1 – e–�], qi� = 1 – pi�   
 
we have from (85)  
 
    P( A ) =∏

i

qi� =∏
i

[1 – (pi/")], P(A) =  1 – ∏
i

[1 – (pi/")].       (87; 88) 

 
    Formula (88) shows that, under the assumptions made, the probability of hitting the target 
P(A) is equal to the probability P(A) existing had the destruction of the target been already 
certainly achieved by one hit, but with the probabilities pi replaced by pi) = pi/". The same 
conclusion is also true when the hits after single rounds depend one on another in a way 
considered in §3 if we take pi�(�) = pi(�)/".  
 
    Notes 
    1.{Kolmogorov numbered almost all of the displayed formulas; I deleted the numbers 
which were niot really necessary.} 

    2. Here and below I understand firing as a group of shots made in pursuing some common 
aim. It can be done either in one volley, in several volleys, or in a sequence of single rounds. 
Then, a system of fire is its order established in advance; it can envisage a fixed number of 
shots (as assumed in this paper) or a ceasefire after achieving the contemplated goal, the 
distribution of shots among different ranges; the order of the ranging fire, etc.  
    The result of each actual firing is to a considerable extent random. Hence, the efficiency of 
a system of firing cannot be characterized by the result of some isolated firing carried out in 
accord with it. The estimation of the efficiency of a system of firing can only depend on the 
distribution of probabilities of the possible results of separate firings carried out in accord 
with it. Any magnitude that is uniquely determined by this distribution may be considered as 
some characteristic of the given system of firing. In our case, when the firing consists of n 
shots, each of them resulting in a hit or a miss, such characteristics include, in particular, 
magnitudes Eµ, Pm and Rm. On the contrary, the number of hits µ may only be considered as 
such a characteristic in the case which does not interest us, when one from among the 
probabilities Pm is unity and all the other ones are zero. 
    3. Here, A is the random event signifying success. 
    4. Formula (11) is derived from (5) by means of the Abel transformation that I apply here 
in the following slightly unusual form: If a0 = 0, ∇ m = am – am–1, Rm = Pm + Pm+1 + … + Pn, 
then 
 
    a1P1 + a2P2 + + … + anPn = ∇ 1R1 + ∇ 2R2 + … + ∇ nRn. 



 
In a similar way, (16) will be derived from (12) and (18) from (17). 
    5. In this section, if additional restrictions are not indicated, symbols � ∏ and extend 

over all the integer values of the appropriate subscript from 1 to n. 
    6. The proof of this generalization of the Poisson theorem is provided below in this 
section. As usual, O(	) denotes a magnitude of the same order as 	. 
    7. Pearson, K., Editor (1914), Tables for Statisticians and Biometricians. London, 1924. 
    8. The proof is offered below in this section. 
    9. For m < 0 we assume that �(m; a) = 0 so that 
 
    ∇ 2�(0; a) = �(0; a), ∇ 2�(1; a) = �(1; a) – �(0; a). 
 
    10. The estimates of the remainder term here indicated, O(1/n) and O(1/n2), are correct for 
a constant a, or for a bounded a changing with n. 
    11. See, for example, Gelvikh, P.A., �������� (Firing), vol. 1. 
    12. If µ takes an infinite number of values m = 0, 1, 2, …, then, for the applicability of 
formulas (42) – (46), it is necessary to impose some restrictions on the probabilities Pm. It is 
sufficient, for example, to demand that the series 
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converges. 
    13. That is, the case in which Pm is represented by formulas (22) and t = a. 
    14. Cf. Mises, R. Wahrscheinlichkeitsrechnung, etc. Leipzig – Wien, 1931, p. 149. 
    15. Because, for m < 1, H(m; a) = 1 and we have 
 
     ∇ 2H(a; 1) = H(a; 1) – 1. 
 
    16. And, in general, the so-called repeated errors. 
    17. This assumption can be wrong, if, for example, the maneuvers of the target depend on 
the system of firing. 
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Foreword by Translator 
 
    Only the Abstract, translated below, of Kolmogorov’s report at a statistical conference (see 
this book) was published. The author’s views about theoretical statistics were not being 
generally accepted, see Sheynin, O. (1999), Statistics, definitions of, in Kotz, S., Editor, Enc. 
of Stat. Sciences, Update vol. 3, pp. 704 – 711.  

*   *   * 
    1. It is customary to separate mathematical statistics into its descriptive and theoretical 
parts. Taking account of the structure of courses in this discipline, we will, however, 
distinguish, as a rule, not two, but rather three components: a descriptive part; an exposition 
of the necessary body of facts on probability theory; and theoretical statistics. 



    Such structures are entirely appropriate. If mathematical statistics, as justifiably accepted, 
is a science of the mathematical methods of studying mass phenomena, then the theory of 
probability should be considered its organic part. Since this theory took shape as an 
independent science much earlier than the two other parts of mathematical statistics did, and 
since many of its applications do not demand any developed tools belonging to these other 
components, I do not at all intend to make any practical conclusions, for example about the 
expediency of mathematical statistics taking over probability. For me, this remark was only 
necessary for ascertaining the position of theoretical statistics among other sciences. 
     
    2. Descriptive statistics is mostly an auxiliary discipline studying technical issues of 
systematizing mass data, rational methods of computing their various characteristics (means, 
moments, etc) and the relations existing among these. Problems about a rational choice of 
summary characteristics of statistical populations are somewhat more interesting, but they 
can only seldom be solved in the context of descriptive statistics itself 1. Be that as it may, the 
subject-matter of this narrow discipline can be considered more or less formed. Its 
subsequent development will probably consist by small additions to its arsenal, insofar as 
these become necessary for the branches of science serviced by descriptive statistics, and, 
above all, for theoretical statistics.  
 
    3. An explanation of mass regularities and a rational monitoring of mass phenomena are of 
course those exclusive aims, for whose attainment statistical data are collected and treated 
according to the rules of descriptive statistics. The solution of both these problems in each 
special field of mass phenomena (physical, biological or social) is based on concrete 
investigations of the specific properties of the given field and entirely belongs to the 
appropriate special science. In those cases, however, in which the notion of probability can 
be applied to the mass phenomena under study (which is not at all their unconditional 
property) 2, the mathematical machinery for solving these problems is provided by 
probability theory. It is not at all accidental that the two higher sections of mathematical 
statistics, overstepping the boundaries of descriptive statistics, issue from this notion: 
Leaving aside the elementary, purely arithmetical properties of large populations studied by 
descriptive statistics, the rich in content general regularities of mass phenomena of any nature 
(from physical to social) are as yet only stochastically known to us. 
 
    4. The theory of probability teaches us, in its main chapters, how to calculate, issuing from 
some assumptions about the nature of the law of distributions, the probabilities of some 
compound events whose probabilities are not directly given in the initial suppositions. For 
example, the initial assumptions in the modern theory of Markov random processes relate to 
the probabilities of transitions from one state to another one during small elementary 
intervals of time, whereas the probabilities wanted relate to integral characteristics of the 
behavior of the studied system over large intervals of time. 
 
    5. The testing of stochastic assumptions (hypotheses), like the testing of scientific 
hypotheses in general, is achieved by observing the conformity of inferences following from 
them with reality. In the case of very large populations, where the law of large numbers 
sometimes acts with a precision even exceeding the possibilities afforded by observation, 
such testing does not demand the development of any special theory of hypothesis testing. 
This is the situation existing, for example, in the kinetic theory of gases, and, in general, in 
most of the physical applications of probability theory; thus (in the sense interesting us at this 
conference) the so-called physical statistics is weakly connected with theoretical statistics.  
 



    6. When the stock of observational and experimental data is restricted, the problem of their 
sufficiency for making theoretical conclusions, or for rationally directing our practical 
activities, becomes critical. Exactly here lies the domain of theoretical statistics, the third 
section of mathematical statistics. Understood in this sense, it has developed from the part of 
probability theory devoted to inverse problems that were being solved on the basis of the 
Bayes theorem. Soon, however, theoretical statistics developed in volume into a vast 
independent science. It became still more independent when it was found that one of its main 
aims consisted in discovering invariant solutions of its problems equally suitable for any 
prior distribution of the estimated parameters 3. This fact does not tear theoretical statistics 
away from the general sections of probability theory, but creates for it, all at once, a very 
peculiar field of research.  
    The system of the main concepts of theoretical statistics is still, however, in the making. 
Only gradually does this discipline cease to be the applied theory of probability in the sense 
of consisting of a collection of separate applied stochastic problems unconnected with each 
other by general ideas. 
 
    7. Of special importance for the shaping of theoretical statistics as an independent science 
were 
    a) The classical theory of estimating hypotheses on the basis of the Bayes theorem. 
    b) The Fisherian notion of information contained in statistical data and the connected 
concepts of an exhaustive 4 system of statistical characteristics, etc. 
    c) The modern theory of statistical estimators based on the notion of the coefficient of 
confidence in a statistical rule. 
 
    8. From among the latest directions of research in mathematical statistics, the following 
are of a fundamental importance for understanding the general logical nature of its problems: 
the extension of the concept of confidence limits 5 onto estimating random variables rather 
than only parameters of the laws of distribution; works on sequential analysis; and, 
especially, many contributions on statistical methods of product control and regulation (in 
particular, on rejection of defective articles). 
 
    9. These new directions do not conform in a natural way to the idea, prevalent in the 
contemporary Anglo-American school, according to which theoretical statistics is a theory of 
purely cognitive estimators (hypotheses, parameters, or, in the case of non-parametric 
problems, distributions themselves) determined by a stock of statistical data. It occurs that 
the search for a rational direction of practical activity on the basis of a given set of data 
should not be split into two problems, those of extracting theoretical information from the 
statistical data, and of its further practical usage. To ascertain directly the most rational line 
of practical activities by means of the data is often more advantageous, since the separate 
solution of the two abovementioned problems involves a peculiar loss of some information 
contained in the statistical data. In addition, the very collection of data should in many cases 
be flexibly planned so as to depend on the results being obtained. Neither of these remarks 
can claim to be fully original; they completely conform to long-standing traditions of 
practical work. However, the means for their organic inclusion into a systematic construction 
of a mathematical theory of statistical methods of investigating and regulating industrial 
processes are only now being outlined. 
 
    10. The tactical point of view expounded in §9 will perhaps also help in terminating the 
discussion on the justification of the statistical usage of fiducial probabilities and of their 
generalization, the coefficients of confidence.  
 



    11. As a result of its historical development which is sketched above, the position of 
theoretical statistics among other sciences is perceived by me in the following way. Both the 
investigation of any real phenomena, and a practical influence on their course is always 
based on constructing hypotheses about the regularities governing them which can be either 
rigorously causal or stochastic. The accumulation of a vast statistical material is only 
essential in the case of regularities of at least a partly stochastic nature 6.  
    Problems involving direct calculations of probabilities of some course of phenomena that 
interest us, given hypothetically assumed regularities, do not yet constitute the subject-matter 
of probability theory. The problem of theoretical statistics, however, consists in developing 
methods in the required direction, viz, in 
    a) The use of a restricted stock of observations for 
      testing the assumed hypotheses; 
      determining the parameters contained in the hypotheses; 
      rationally monitoring the processes under study; 
      subsequently evaluating the results thus achieved. 
    b) The rational planning of the collection of observational data for attaining the aims listed 
under a) in a most successful and economical way. 
 
    12. I believe that, according to the point of view indicated in §11, it is possible to construct 
a harmonious system of theoretical statistics embracing all its main sections, both developed 
and appearing at present. 
    The decisive importance of the Russian science during the first stages of its development 
(Chebyshev, Markov); Bernstein’s fundamental work on the applications of probability 
theory; the enormous work done by Romanovsky and his school in mathematical statistics; 
the creation of statistical methods of studying stationary series of connected variables by 
Slutsky; and the founding of the elements of the theory of non-parametric estimators by 
Glivenko, Smirnov and myself, pledge that this aim is quite up to Soviet scientists. 
 
    Notes 
    1. A.Ya. Boiarsky, in his theory of means [1], indicated an interesting case in which the 
problem of a rational choice of a summary characteristic admits a simple and quite general 
solution. 
    2. See for example my paper [2]. 
    3. See my paper mentioned in Note 2. 
    4. {This term is not anymore used in Russian literature. Cf. Note 15 to the author’s 
previous work on p. 000 in this book.}     
    5. In this instance, the American school is using a new term, tolerance rather than fiducial 
limit. {The author thus translated fiducial as confidence, see just above. Cf. my Foreword to 
the same previous work (see Note 4).}  
    6. Sometimes, however, such stochastic regularities are only superimposed on rigorously 
causal ones as errors of observation. 
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at that Conference, also see an abstract of his report at a conference in 1948 translated in this 
book.  

 

15a. Anonymous. Account of the All-Union Conference on Problems of Statistics 

(Extract) 
Moscow, 1954 (extract). Vestnik Statistiki, No. 5, 1954, pp. 39 – 95 (pp. 46 – 47)  

 

At first Kolmogorov dwells on the causes that led to the discussion of the problems of 
statistics. It became necessary, he said, in the first place, to reject sharply those 
manifestations of the abuse of mathematics in studying social phenomena that are so 
characteristic of the bourgeois science. Its representatives make up, for example, differential 
equations which allegedly ought to predict the course of economic phenomena; apply without 
any foundation hypotheses of stationarity and stability of time series, etc. The discussion was 
also called forth by the need to surmount in the statistical science and practice, once and for 
all, the mistaken aspiration of some {Soviet} statisticians to guide themselves by chaotic 
processes and phenomena 1. And, finally, the last fact that makes the sharp discussion 
necessary, Kolmogorov indicated, consists in that we have for a long time cultivated a wrong 
belief in the existence, in addition to mathematical statistics and statistics as a social-
economic science, of something like yet another non-mathematical, although universal 
general theory of statistics 2  which essentially comes to mathematical statistics and some 
technical methods of collecting and treating statistical data. Accordingly, mathematical 
statistics was declared a part of this general theory of statistics. Such views, also expressed at 
this Conference, are wrong. 
    It cannot be denied that there exists a certain set of methods and formulas united under the 
name of mathematical statistics, useful and auxiliary for each concrete science such as 
biology or economics. Mathematical statistics is a mathematical science, it cannot be 
abolished or even made into an applied theory of probability. Not all of it is based on this 
theory. The contents of mathematical statistics is described in detail in Kolmogorov’s article 
[2]. 
    The study of the quantitative relations in the real world, taken in their pure form, is 
generally the subject of mathematics. Therefore, all that, which is common in the statistical 
methodology of the natural and social sciences, all that which is here indifferent to the 
specific character of natural or social phenomena, belongs to a section of mathematics, to 
mathematical statistics. […] 3    
   

15b. Anonymous. On the Part of the Law of Large Numbers in Statistics (Extract) 
Uchenye Zapiski po Statistike, vol. 1, 1955, pp. 153 – 165 (pp. 156 – 158) … 

 
    While dwelling on the law of large numbers in statistics, Kolmogorov indicates that 
attempts were made in our {Soviet} literature to declare this law altogether senseless or 
pseudoscientific. However, considering, for the time being, indisputable examples bearing no 
relation to social science, the fact that this lamp remains motionless, and does not fly up to 
the ceiling, is the result of the action of the law of large numbers. Air molecules move 
according to the kinetic theory of gases with great velocities, and if their collisions were not 
equalized according to this law, we probably would have been unable to confer here. This 



exaggeration towards a total denial of the theory of probability possibly belongs to the past. I 
did not hear such pronouncements at our Conference that the theory is not needed at all. 
    Kolmogorov then dwelt on the role of the theory of probability and mathematical statistics 
in social-economic sciences. He considers it undoubtedly true that the more complex is the 
studied sphere of phenomena, the more it is qualitatively diverse, the less applicable becomes 
the mathematical method. He referred to his previous article [1] where he ordered sciences 
beginning with astronomy (where everything sufficiently obeys mathematics), going over to 
the flight of projectiles (where everything also seems to obey mathematics sufficiently well, 
but where, actually, the situation is opposite), then to biology and to social-economic 
sciences (where mathematics remains subordinate). As to stability, it is indeed true that the 
concept of a certain stability, and, more precisely, of the stability of frequencies, underpins 
the very concept of probability. It is required that, when experiments are repeated many times 
over, the frequencies tend to one and the same number, to the probability.  
    Stability of this kind indeed occurs in inorganic nature, although even there this is not 
exactly so. The probability of radioactive decay, of the emission of one or another particle 
from an atom during a given interval of time, was until recently believed to be absolutely 
stable. Only lately was it discovered that even this is not exactly so, that even for a 
spontaneous decay this probability is not a completely stable magnitude either. Here, the 
matter depends on the degree of stability, but the qualitative difficulty of applying this 
concept also depends on this degree.  
    Kolmogorov offers an example. It is impossible to formulate the concept of climate 
without mentioning stability since climate is the very frequency of the repetition of different 
individual kinds of weather. This year, there was little snowfall, but the climate in Moscow 
did not yet change. Although climate consists of a series of probabilities (to have so many 
fine days in March, etc), it nevertheless changes gradually; however, during a restricted 
period of time, it is possible to apply conditionally the concept of stability. Otherwise the 
concept of climate will disappear (just as temperature will disappear in physics). 
    The further we advance towards more animated and more complex phenomena, the more 
restricted is the applicability of the concept of stability, and this is especially true in the case 
of social phenomena. However, the applicability of the concept of statistical, of stochastic 
stability is not completely done away with here either. Recall, for example, Kolmogorov 
went on to say, one of the fields of the work of Soviet mathematicians, where the technical 
results are indisputably good, the stochastic methods of calculating {predicting?} the work of 
automatic telephone networks. We are completely justified in considering that the 
distribution of calls is a chaotic phenomenon. No-one prohibits any citizen to ring up on 
personal business {anyone else} at any hours of the day or night. From the social point of 
view, the cause of the calls are random, but, nevertheless, during a usual day a definite 
statistical distribution of calls establishes itself here in Moscow. Normally, it is stable from 
day to day (of course, during a restricted interval of time). This is the foundation of a 
workable technical science closely adjoining the phenomena of social life, and stochastic 
calculations are applied here with unquestionable success.   
    The role of mathematics, of the theory of probability and mathematical statistics in social-
economic sciences proper is the least significant, but it does not disappear altogether. All the 
machinery of the so-called descriptive statistics, the technical methods of statistical calculus, 
remain intact. Sampling, which, after all, belongs to mathematical statistics, also remains. Its 
mathematical aspect is the same in all fields and we apply it with great success. 
    Investigations of stochastic chaotic processes are much less important, especially for us, in 
our planned State system. Nevertheless, there exist certain fields, for example insurance, 
where we have to encounter chaotic phenomena. It is for overcoming the {effects of} chaotic, 
unordered {disordered} circumstances of life that insurance exists; and studies of these 
circumstances are only possible by means of the theory of probability. 



    The theory of probability is now also applicable to the sphere of servicing the mass needs 
of the population. For a given city, the provision of goods, the requirement for which is 
conditioned by various circumstances of personal life, will be stable for a restricted period of 
time, whereas a small store should have some surplus of stocks. This is a typical area for 
practically applying the law of large numbers and investigating the deviations from this law 
in insufficiently large collectives4. 
 
    Notes 
    1. {This term, chaotic, also appears several times below. Had Kolmogorov himself really 
applied it?} 
    2. {Kolmogorov himself had kept to this viewpoint, see p. 000 of this book.} 
    3. {I omitted the last paragraph whose subject-matter is included in more detail in the 
second account, see below.} 

    4. {When listing several applications of the statistical method in social-economic sciences, 
Kolmogorov omitted demography. This subject was dangerous: the census of 1937 
(proclaimed worthless and followed by a decimation of the Central Statistical Directorate) 
revealed a demographic catastrophe occasioned by arbitrary rule, uprooting of millions of 
people, mass hunger and savage witch-hunts, see Sheynin (1998, pp. 534 – 535). And the war 
losses of population during 1941 – 1945 were being hushed up.} 
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