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Introduction 

 
   I am presenting translations of my papers originally published in Russian, mainly in Istoriko-
Matematicheskie Issledovania (IMI). Only a fraction of historians of mathematics read Russian and some are 
unwilling to study the contributions published beyond the usual set of periodicals so that my present work 
seems justified. In actual fact, I am putting out most of the items from a microfiche collection of the same 
title published by Hänsel-Hohenhausen in 1999 as Deutsche Hochschulschriften 2621 but hardly examined 
by more than a dozen readers; the copyright to ordinary publication was, and is mine. Some items below are 
translations of publications of materials kept at several Russian archives or newspaper articles and among the 
former is Markov’s critical review of a paper devoted to the treatment of observations.  
    In translating my papers, I corrected a few mistakes and misprints (largely due, in the new series of the 
IMI, to the impossibility of reading the proofs), left out dated material, and  referred not to Russian transla-
tions of classical works but to their original editions.  
    Abbreviations used throughout: 
    AHES  =  Arch. Hist. Ex. Sci.;    
    DHS  =  Deutsche Hochschulschriften;   
    IMI  =  Istoriko-Matematicheskie Isssledovania;        
    L.  =  Leningrad;  
   M.  =  Moscow; 
    MSb =  Matematich. Sbornik;  
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    Psb  =    Petersburg;           
    ( R )  =  in Russian;        
    ZhMNP  =  Zhurnal Ministerstva Narodn. Prosveshchenia. 
 
 

1. Review of Kendall, M.G., Doig, A.G. (1968), 
Bibliography of Statistical Literature pre-1940 with Supplements 

 to the Volumes for 1940 – 1949 and 1950 – 1958. Edinburgh. 
 
    This is vol. 3 of the entire Bibliography covering the period until 1958; the first two volumes appeared in 
1962 and 1965. No further volumes are planned since in 1959 the International Statistical Institute began 
publishing an abstracting journal now called Statistical Theory and Methods Abstracts. According to the 
authors’ aims and methodology as described in vol. 1, the Bibliography includes almost all the articles from 
12 main periodicals and a number of papers from 42 other journals. In addition, the authors made use of the 
bibliographies appended to many papers and of the abstracting journals (although not of the Soviet Mate-
matika). They believe to have covered 95% of the existing articles on statistics and its applications.  
    Each volume of the Bibliography is actually an author index (no subject indices are provided). The litera-
ture published in Russian and in several other languages is described in English, French or German. In all, 
this vol. 3 lists about 10 thousand monographs and articles separated into two time intervals, – before 1900 
and from 1900 to 1939 (2,360 and 7,630 items respectively) as well as 148 sources for 1940 – 1949 and 
about 1,170 for 1950 – 1958. All the books entered here had appeared before 1900. Neither the second part, 
nor the first two volumes include any books which is in line with the practice of the abovementioned quar-
terly. This is an essential setback but the Bibliography is nevertheless very valuable.  
    Vol. 3 is also useful for historians of mathematics since it lists classical works (of Laplace, Gauss et al) 
including writings of such authors for whom probability was a minor subject (Euler), forgotten writings of 
eminent mathematicians, commentaries and essays, translations of various works into any of the three main 
languages.    
    There are some shortcomings. The selected literature, even of the 20th century, was not checked in visu; 
likely because of the general direction of the Bibliography there are hardly any references to collected works; 
of the 14 writings of Euler included in t. 7 of his Opera omnia, ser. 1 (1923) and pertaining to probability and 
statistics, the authors included only seven, and one of these called Wahrscheinlichkeitsrechnung either does 
not exist or wrongly named; the descriptions contain mistakes and inaccuracies (Süssmilch’s Göttliche Ord-
nung first appeared in 1741, then in 1761 – 1762 but not in 1788; the second part of Daniel Bernoulli’s 
“Mensura sortis” (1771) is omitted); and cross-references are lacking. Finally, the spelling Ladislaus von 
Bortkiewicz as given in the second part does not coincide with that in the first part, Vladislav Bortkevich. 
Having emigrated from Russia to Germany in 1901 and being a nobleman, he changed his name accordingly 
but that fact is not explained. 
    In 1962, the authors estimated that about a thousand articles on their subject were being published yearly. 
This means that already now it would be expedient to issue a bibliography of this literature for 1959 – 1970. 
Neither abstracting journals, nor their cumulative author indices are a substitute for bibliographies (to be 
compiled in the first place by scanning such sources). I also believe that a single bibliography for 1900 – 
1970 with books being certainly included is also needed.       
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On the Work of Adrain in the Theory of Errors 

Istoriko-Matematicheskie Issledovania (IMI), vol. 16, 1965, pp. 325 – 336 
 
   In translating my paper I took into account its somewhat revised version appended to my unpublished the-
sis of 1967 (Some Issues …, partly translated in this collection). Adrain’s articles are now reprinted (see 
Bibliography) and I have therefore omitted his original and hardly understandable derivations of the normal 
law (leaving however their modernized reconstruction [ 8 ] ). Their latest discussion is due to Hald [10, pp. 
368 – 373] and Dutka [8a]. Also note that Adrain’s paper [2] apparently appeared in 1809 rather than in 1808 
[13, p. 170]. 
 
*   *   * 
   Robert Adrain is meritorious for his remarkable findings in the theory of errors. He published two deriva-
tions of the normal law of error a year before [or at the same time as] Gauss did and applied it to establishing 
the principles of least squares and arithmetic mean as well as to determining the flattening of the earth’s 
ellipsoid of revolution. 
    Adrain was born in Ireland and died in New Brunswick. He learned mathematics mainly by himself and 
began teaching it at an early age. Then, after participating in the Irish national movement and being wounded 
in the revolt of 1798, he fled to the United States. Adrain resumed there his teaching activities becoming, in 
1809, Professor of mathematics at Queen’s College (now, Rutgers College) in New Brunswick. From 1813 to 
1826 he was Professor at Columbia University, and, from 1827 to 1836, at Pennsylvania (vice-rector from 
1828 to 1836). 
    Adrain delivered lectures in various disciplines. Thus, in 1829 he taught elementary mathematics, geodesy, 
cartography, mathematical analysis, mechanics and astronomy. He and Nathaniel Bowditch (1773 – 1838) 1 
were among the first American mathematicians. In 1812 Adrain was elected to the American Philosophical 
Society, and, in 1813, to the Academy of Sciences and Arts. He actively contributed to the first American 
mathematical periodicals. Coolidge [8] provided a general description of Adrain’s work, but his account of 
the latter’s findings in the theory of errors was not comprehensive. In the 19th century several geodesists and 
astronomers discussed these in more detail (e.g., [1; 9; 26] from among those which I do not mention below) 
but still not sufficiently. At present [in 1965], however, Adrain is forgotten. Neither Struik  [23] 2 nor Strasser 
[22] nor many other authors of general contributions on history of mathematics cite him and Cajori [6, p. 
382] only devoted a few lines to Adrain’s discovery of the law of error. 
     I turn now to Adrain’s paper [2]. He issued from a prize question: A traverse with measured sides and 
bearings did not close ( � � xi  �  0,  � � yi  �  0 ). It is required to determine the most probable corrections to 
the computed increments  � xi  and  � yi. The paper itself contained two derivations of the normal law of 
error; the derivation of the principles of least squares (discovered by Gauss in 1795 or 1794 and offered by 
Legendre in his publication of 1805) and of the arithmetic mean in the one- and three-dimensional cases; the 
determination of the most probable position of a ship calculated by dead reckoning given its observed lati-
tude; and the solution of the prize question. In concluding, Adrain stated that, owing to lack of space, he had 
to postpone his derivation of the most probable flattening of the earth’s ellipsoid which he again accom-
plished [in 1818, see below] on the basis of the normal law. 
    1) His first derivation of the normal law concerned linear measurements  a  and  b whose errors  x  and  y,  
as he presumed, obeyed two conditions  
 
    x/a  =  y/b                                                                                                                      ( 1 ) 
 
(the errors were proportional to the lengths of the lines) 3, and 
 
    x  +  y  =  E                                                                                                                   ( 2 ) 
 
(the total error was constant, but why?). He also tacitly believed that the errors were independent. 
    Denote the unknown density of errors by  �;  then, according to the principle of maximum likelihood, 
 
    [ �' ( x; a ) / � ( x; a ) ] dx  + [ �' ( y; b ) / � ( y; b ) ] dy  =  0                                       ( 3 ) 
 
or, allowing for ( 1 ),  
 
    �' ( x ; a ) / � ( x ; a )  =  �' ( y ; b ) / � ( y ; b ),  or  � ( x ; a ) =  � ( y ; b) 
 
whose simplest solution is, when taking into account ( 2 ), 
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    � ( x; a )  =  mx/a,  � ( x )  =  c exp ( mx2 / 2a),  c  >  0,  m  <  0, 
 
a function with two essential constants. Neither here, nor in his next derivation did Adrain calculate their 
values; moreover, he had not considered it important. 
    2) In his second derivation of the normal law Adrain studied the determination of a station  B  from a given 
station  A  by measured distance  AB  and azimuth of that line. Supposing that the errors  x;  y  along and 
perpendicular to  AB  were equally probable, he also assumed that  
 
    x2  +  y2  =  Const                                                                                                         ( 4 ) 
 
so that relation 
 
    [ �' ( x ) / � ( x ) ] dx  +  [ �' ( y ) / � ( y ) ] dy  =  0 
 
which is similar to ( 3 ) led to 
 
    �' ( x ) / x  =  �' ( y ) / y  =  n  etc. 
 
    Adrain also remarked that, in general, circumferences ( 4 ) should be replaced by ellipses. He did not how-
ever dwell on that point and thus missed the opportunity of introducing the bivariate normal law (or of any 
such term as ellipse of concentration), but at least he considered such a general case elsewhere (see Item 5). 
    Each of Adrain’s demonstrations issued from geodetic measurements; however, he hardly introduced any 
properties of their errors so that his result was not related to them; it is not even seen that the errors were 
random.            
      Merriman [20] and subsequent authors pointed out that the derivation of the normal law by John Herschel 
[12] was similar to Adrain’s second justification, see below. 
    3) Adrain derived the principles of least squares and arithmetic mean in the same way as Gauss did. De-
note the  n  observations of an unknown constant  x  by  a,  b,  c, …, then the logarithms of the probabilities 
of the errors ( x  –  a ),  ( x  –   b ),  ( x  –  c ), … will be 
 

 – ( x  –  a)2,  – ( x  –  b)2,  – ( x  –  c )2, …  
 
and the most probable value of  x  will correspond to 
 
    ( x  –   a )2  +  ( x  –  b )2  +  ( x  –  c )2  + …  =  min 
 
so that 
 
    x  =  ( a  +  b  +  c  + … ) / n.                                                                                     ( 5 ) 
 
    Adrain’s derivation of the principle of least squares (for one unknown) was questioned: Coolidge [8] stated 
that he had Legendre’s book in his library. 4  The derivation of ( 5 ) for the three-dimensional case (also con-
sidered by Legendre) was similar. 
    4) The correction of dead reckoning was similar to the adjustment of the traverse. The observation of only 
one astronomical magnitude, the latitude, leads to only one (a latitudinal) discrepancy between the reckoned 
and the observed positions of the ship. Consequently, this case is indeed similar to adjusting the traverse with 
respect to only one coordinate. 
    5) Adjustment of the traverse. Its measured sides are  a,  b,  c, …, their corrections,  x,  y,  z, …, the meas-
ured bearings,  A,  B,  C, … the corrections to the positions of the vertices of the polygon in the directions 
perpendicular to its sides, X  =  a � A,  Y  =  b � B,  Z  =  c � C, …, corrections to the increments  � xi  and  
� yi,  Di  and  Li,  and the total corrections 
 
    D  =  D1  +  D2  + …,  L  =  L1  +  L2  + … 
 
    Adrain derived the simple formulas 
 
    D1  =  x sinA  +  X cosA,  D2  =  y sinB  +  Y cosB, … 
 
    L1  =  x cosA   -  X sinA,  L2  =  y cosB   -  Y sinB, … 
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and determined the minimal value of the function 
 
    x 2/a  +  y 2/b  + …  + X 2/p2a  +  Y 2/p2b  + …                                                                                  ( 6 ) 
 
The parameter  p  allowed for an unequal precision of measuring the bearings and the sides of the polygon. 
Assuming that  p  =  1,  Adrain got 
 
    D1  =  ma,  D2  =  mb, …;  L1  =  na,  L2  =  nb, …;                                                                     
                                                                                                                                                                            
    m  =  D / ( a  +  b  + …),  n  =  L / ( a  +  b  + …) 
 
and additionally considered the academic cases of  p  =  0  and  p  =  �. 
    The minimal value of ( 6 ) corresponded to adjusting the sides of the polygon corrupted by systematic 
errors (the weights were proportional to the sides themselves rather than to their roots). It is nevertheless 
noteworthy that exactly that principle is still applied for adjusting geodetic traverses of lower precision [7, 
§164]. 5 

      In his next article [3] Adrain determined the flattening of the earth’s ellipsoid  �  =  (a  –  b) / b  with 
semiaxes  a  and  b  ( a  >  b ) 6.  He issued from Laplace’s data [18, §40] on the lengths of the seconds pen-
dulum at various latitudes. The Clairaut formula connecting the latitude  �  with the acceleration of gravity  r  
is, in his notation, 
 
    r  =  x  +  y sin2� 
 
with  x  and  y  determining  � and Adrain solved a system of such equations under the least-squares condi-
tion imposed on the residual free terms (call them  vi) of his (Laplace’s) equations getting �  =  1/319. His 
trivial application of least squares was interesting in that it was the first one in its field7  and, in addition, 
because of the result obtained. Laplace himself got  �  =  1/335.78  which almost coincided with another 
figure calculated at the same time (in 1799). The difference between Laplace’s and Adrain’s results was 
mainly caused by two mistakes made by the former and revealed by the latter. According to Laplace’s 
(Boscovich’s) conditions 
 
     � | vi |  =  min,  � vi  =  0, 
 
Adrain additionally arrived at  �  =  1/316.5  so that the essential difference between him and Laplace was  
1/316.5  –  1/319. 
    I also mention Adrain’s article  [4]. Believing that for some practical purposes it was convenient to con-
sider the Earth as a sphere, he calculated its radius under seven different conditions: equal volume or equal 
surface with the appropriate ellipsoid of revolution; equal masses of bodies restricted by these surfaces 
(sphere and ellipsoid) given a certain law of the decrease of mass with depth, etc. As a first approximation, 
Adrain arrived at one and the same result, r  =  (2a  +  b)/3. He then stated that he had determined the most 
probable values of  a  and  b  by means of meridian arc measurements according to the method published in 
his first paper. The corresponding mean radius, as he added without providing either the initial data or his 
own calculations, was  3,959.36 English miles. With  �  =  1/319  this was equivalent to   
a  =  3,963.50  English miles, or, assuming that 1  meter equals  39.370113 inches,  6,378.629km. Here are 
some later determinations [14]. 
 

1. Delambre,   1800:        a  =  6,375.653km,   1/�  =  334 
2. Walbeck,     1819:                      76.896                    302.78 
3. Krasovsky,  1940:                      78.245                    298.3        

 
    Herschel [12] derived the normal law by considering a free fall of a ball on a horizontal plane and its de-
viations from the point above which it was initially situated. He distinctly formulated the symmetry and the 
decrease of the density sought indicating that those assumptions were a corollary of complete ignorance of 
the causes of error and the manner of their action. 
    Thomson & Tait [24, p. 314], without referring to anyone, offered a similar justification. They considered 
a free fall of a stone. Denoting by  � ( x2 ) � x  the probability of its fall on interval  [ x;  x  +  � x ]  they stated 
that its fall on point  ( x;  y )  had probability  � ( x2 ) � ( y2 ) � x � y.  After rotating the system of coordinates 
they obtained 
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    � ( x2 ) � (  y2 )  =  � ( x' 2 ) � ( y' 2 ) 
 
and it followed (as was already well-known at the time) that 
 
    � ( x2 )  =  A exp ( mx2

 )    
     
with  m  <  0  since the probability of a large deviation had to be very small. 
    Again, both Tsinger [25] and Krylov [17, Chapt. 8] applied the same pattern for deriving the normal law 
by considering shooting at a vertical target. Kemnitz [16] noted that Krylov (and therefore his predecessors 
as well) had not made essential use of the properties of random errors.8  
 
    Notes 
    1.  A mathematician and astronomer, Fellow of the Royal Society. He is mostly remembered for his work 
in navigation and his translation of Laplace’s Mécanique Céleste. 
    2. As stated in the title of his book, that author had indeed restricted his study to the Yankee, rather than to 
the American science. 
    3. This property is characteristic of systematic rather than random errors, cf. Item 5 below. 
    4. Later note: It remains unknown, however, when did Adrain get it [10, p. 371]. More [11, p. 626]: Adrain 
never used the term  least squares, nor did he refer to Legendre’s treatment of meridian arc measurements, 
cf. below. Finally, Adrain had not then directly stated that his principle of least squares might be applied to 
the case of several unknowns. 
    5. Later note: Adrain properly adjusted the directly measured magnitudes rather than the increments  � xi  
and  �yi. 
    6.  Adrain’s definition of the flattening was unusual: the generally adopted formula was and is  �  =  ( a  –  
b ) / a. In some cases, as when comparing his results with those of other authors (below), this is of no conse-
quence. After reading [3], Olbers informed Gauss (24.2.1819; [21, p. 711] ) that ein Amerikaner … schreibt 
sich … die Erfindung der Methode der kleinsten Quadrate zu. Gauss made no comment. 
    7. The first published application of this kind is however due to Biot [5, Additions, pp. 167 – 169].    
    8. Later note: It is generally believed that Maxwell, in his celebrated justification of the normal law of 
velocities of gas molecules which assumed the independence of the three components of the velocities, issued 
from Herschel’s derivation. Kac [15] and Linnik [19] had since revised Maxwell’s proof. Independence is 
still needed but in a weaker form; however, it should in addition persist under any choice of the coordinate 
system. 
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3. On the History of the Iterative Methods of Solving Systems of Linear Algebraic Equations 
Trudy IX Nauchn Konf. Aspirantov i Mladsh. Nauchn. Sotrundn. Inst. Istorii Estestvoznania iTekhniki, 

Sektsia istorii fiz. i mat. nauk. Moscow, 1966, pp. 8 – 12 
 

 
    Gauss [7; 4; 6] was the first to solve linear systems by the method now called relaxation. He described in 
detail its application to adjusting triangulation. Apparently to check each step of his calculations, Gauss 
added up all his initial equations and joined the summary equation to them. When calculating the k-th ap-
proximations of  xi,  he took into account all the previous calculations made at that (at the k-th) step, and he 
did not keep to any fixed order of choosing the index  i; he rather selected that unknown for which the ratio 
of the free term to its quadratic coefficient was maximal in absolute value. He did not leave any indications 
about the convergence of his approximations. 
    Jacobi [10] studied the solution of normal equations with small non-diagonal coefficients 
 

(00) x  +  (01) x1  +  (02) x2  + …  =  (0m) 
 
    (10) x  +  (11) x1  +  (12) x2  + …  =  (1m),  etc 
 
where  (ik)  =  (ki). His formulas were 
 
    x  =  a  +  �  +  �2  + … ,   x1  =  a1  +  �1  +  �1

2  + …,  (00) a  =  (0m),  (11) a1  =  (1m),     
 
etc, and, in general, 
 

(00) �  =  – [ (01) a1  +  (02) a2  + … ],        (00) �i + 1  =  – [ (01) �1
i  +  (02) �2 

i  + … ] 
 
    (11) �1  =  – [ (10) a  +  (12) a2  + … ] etc,  (11) �1

i + 1  = – [ (10) �i  +  (12) �2
i  + … ] etc. 

 
    Jacobi did not prove the convergence of his process, but he additionally considered in detail the case of 
significant non-diagonal coefficients and [9] 1 derived some relations between the different solutions of the 
characteristic system  
 
    [ (aa) –  x ] �  +  (ab) 	  + … +  (ap) 
  =  0, …, 
                                                                                                                                                                     ( 1 )          
    (pa) �  +  (pb) 	  + … + [ (pp)  –  x ] 
  =  0.     
 
    Finally, Jacobi [10] generalized his iterative method onto non-symmetric systems of equations. His find-
ings are well-known (e.g., [5, §81] ) and I shall only sketch them. In order to eliminate, one by one, signifi-
cant non-diagonal coefficients Jacobi effectively introduced rotation matrices and achieved his generalization 
by means of orthogonal transformations. For systems ( 1 ) with normed unknowns  (�2  +  	2  +  … +  
2  =  
1) he proved a number of properties. Thus, it occurred that  �' �"  +  	' 	"  + …  =  0 (orthogonality of differ-
ent solutions);  �' �'  +  �" �"  + …  =  1 (the norming of the components of the solutions having the same 
name); and  �' 	'  +  �" 	"  + …  =  0 (orthogonality of different components). 
    Jacobi also offered working formulas for calculating the unknowns and their weights for a small number of 
normal equations. Nowadays these are hardly interesting, but in those times Bessel [2] expressed his high 
opinion about them. 
    Seidel [16] considered the solution of  m  observational equations in  n  unknowns (m  > n) 
 
    x  –  y  =  �,  x  –  z  =  	,  x  –  u  =  �, … 
 
by consecutive approximations beginning with expressions such as 
 
    x  =  (1/m) [ ( y  +  � )  +  ( z  +  	 )  +  ( u  +  � )  + … ]  etc.2 
 
    In a later memoir [18] Seidel considered the solution of a system of normal equations 
 
    [aa] x  +  [ab] y  +  [ac] z  + …  +  [an]  =  N1  =  0, 
                                                                                                                                                                      ( 2 )   
    [ab] x  +  [bb] y  +  [bc] z  + …  +  [bn]  =  N2  =  0, etc   
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which of course corresponded to the system of observational equations 
 
    ai x  +  bi y  +  ci z  + …  +  ni =   vi 
 
by consecutively minimizing the function 
 
    Q  =  [aa] x2  + … +  [cc] z2  + … +  2 [ab] xy  + … +  2[cn] z  + … +  [nn]. 
 
    Since  Q  =  [vv],  Seidel’s method coincided with least squares. Seidel noted that the greatest decrease of  
Q  at a certain step was achieved by assuming that 
 
    � x  =  – N1 / [aa]  or  � y  = – N2 / [bb]  or …  

 

and several times stressed that iterations should be done not in a fixed order, but in such a way that  | Ni | / [ii]  
=  max. He thus effectively applied the method of relaxation. 
    Seidel noted that approximations might oscillate and even diverge, but connected that possibility only with 
a violation of his rule of determining each unknown from “its own” equation and thought that this fact could 
be “easily proved”. He also remarked that all the main minors of the determinant of the system ( 2 ) were 
positive so that the convergence of the solution was ensured. He did not explain his reasoning which should 
have meant “convergence to the rigorous solution”.  
    Then, Seidel studied a number of points essential for calculation: group iterations; treatment of the so-
called indirect observations with conditions (see especially [17] ); differential change of the weights of the 
unknowns after adding new equations; treatment of observations whose part was already adjusted.3  He also 
published a few papers on the theory of errors peculiar to optical instruments [15]. 
    Nekrasov & Mehmke [11; 12] are known to have studied the Seidel iterative method. In particular, they 
discovered a large number of sufficient conditions for its convergence (restrictions imposed on the coeffi-
cients of the initial equations). Nekrasov [13] also stated that he had chosen his subject on the request of the 
astronomer V.K. Zerassky. Note, however, that Nekrasov’s proof  [13] that the iterative solution of normal 
equations converged was faulty: he only proved that  [vv]  monotonically decreased, not that it reached its 
minimally possible value. It is remarkable that, upon concluding his “justification”, he (p. 192) uttered a 
curious statement: “In the limit, the Seidel method undoubtedly draws us nearer to the solution sought”.4 
    Southwell [19; 14] discovered the method of relaxation anew and applied it to various calculations in engi-
neering. Together with Black [3], he also sketched the possibility of its use for adjusting geodetic networks. 
Nevertheless, he did not see fit to prove that the method converged. Iterative methods have recently been 
widely applied, sometimes without working out the normal equations [1]. 
 
    Notes 
    1. It was Seidel who performed the numerical computations in [9]. 
    2. Also note Jacobi’s memoir [8]. He proved that in order to obtain a solution coinciding with that secured 
by least squares it was sufficient to combine the observational equations in groups of  n,  solve each group 
and assume that  x,  y,  z, … were the arithmetic means of the properly weighted partial solutions over all the 
groups. This method is hardly practical, but its relation with least squares is thus seen. And it had been usu-
ally applied in the 18th century for the case  n  =  2  (when determining the parameters of the Earth’s ellipsoid 
of revolution by means of meridian arc measurements) although without assigning any weights to the sepa-
rate groups. 
    3. Gauss had considered the two last-mentioned issues. 
    4. Or, at the very least, correcting a possible grammatical error, “… approaches the solution …”  
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4. On Selection and Adjustment of Direct Observations 
Izvestia Vuzov. Geodezia i Aerofotos’emka No. 2, 1966, pp. 107 – 112 

 
   Suppose that  x1  �  x2  �  …  �  xn  are direct observations of a constant  X.  It is required to replace the 
entire variational series by a single number. I am describing the history of the main methods of choosing such 
a number. 
    The arithmetic mean. A doctrine of means (and of the arithmetic mean in particular) existed already in 
the Pythagorean school [23, p. 63]. In antiquity, that mean occurred in most various formulas for calculating 
areas of figures and volumes of bodies. An Indian commentary of the 16th century stated that the more meas-
urements of the length, width and depth of an excavation were made, the more precise will the determination 
be of its size and volume [2, p. 97]. In ancient Babyonia, the area of a quadrilateral plot was in two special 
cases considered to be the product of the halfsums of its opposite sides, viz., when the plot was not quite 
precisely a rectangle, and when the measurements of the opposite sides were unequal one to another due to 
the ruggedness of the terrain [32, p. 204]. 
    Thus, the mean should have compensated the inaccuracy of the models, and, possibly, the influence of the 
systematic errors of measurement. During the epoch of meridian arc measurements the arithmetic mean be-
gan to be applied as an universal estimator. Leibniz [21, Book 4, Chapt. 16] testified that it played an impor-
tant part in developing the [classical] definition of probability and that it has been applied in the sphere of 
economic relations. 
    I especially note that even when treating direct observations it was customary to begin by deriving their 
binary combinations and only then taking the mean of these. Thus, Boscovich [22, p. 150], having four val-
ues of latitudinal differences  ��  between the endpoints of his meridian arc measurement, derived the six 
halfsums  ( ��1  +  ��2 ) /2, …, ( ��3  +  ��4 ) /2, and calculated their mean. The scattering of these combi-
nations had apparently served as an indicator of error. 
    Simpson [28; 29] devoted a special memoir to stochastically proving that the arithmetic mean was prefer-
able to a single observation. The immediate cause of his work was to refute the statement of some persons of 
considerable note who had thought that one single observation taken with due care was as much to be relied 
on as the mean of a great number of them [28, p. 82].  
    Such an opinion was possibly occasioned by rapid advances in the technique of observation. Simpson 
proved (his main result) that for a symmetric triangular distribution the probability of a certain error was 
essentially less than that of the same error in a single observation. He thus (indirectly) issued from the prop-
erties of random errors rather than, as it became fashionable later on, from ignorance of the causes and mag-
nitudes of errors [16, §4129]. 
    The arithmetic mean has been applied together with rejection of outlying observations. Galileo [8, Day 
Third] recommended such rejection and Lambert applied it systematically.1 Daniel Bernoulli [3], who did not 
approve of it, mentioned rejection as something usual, as did Euler. Gauss allowed careful rejection of large 
deviations; however, if, as he stated, such a deviation was caused by an unfortunate concurrence of circum-
stances, the pertinent observation ought to be retained [9].Thus, observations might be rejected either if they 
were indeed corrupted by blunders (Gauss), or if their errors were larger than some magnitude. Struve [31, 
1957, §37] and some German authors [10, p. 68; 11, p. 50] sided with Gauss; or, more precisely, they op-
posed subjective rejection. 
    Objective stochastic tests began to be applied to rejection in the second half of the 19th century [25; 5, vol. 
2, pp. 558 – 566]. Contrary to Gauss’ opinion, they did not take intoconsideration the causes of deviation. 
Some participants in the ensuing discussions stressed that it was reasonable to sacrifice a few possibly sound 
observations and to avoid the dangerous influence of large mistakes. That attitude was of course in line with 
modern statistical notions on errors of two kinds. The application of objective tests naturally demanded the 
knowledge of the appropriate distributions (the normal law was almost always presumed). Robust tests, i.e., 
such which hardly depended on deviations of the distributions from their assumed type, remained unknown; 
the only exception was apparently the criterion of three sigma [13]. A number of statistical tests (e.g., [30] ) 
were offered in the mid-20th century, but the state of the issue, as Rider [26, pp. 21 – 22] formulated it, did 
not apparently change.2 
    Posterior weights. Another estimator 
 
    ê  =  � xi p ( ê  –  xi ) / � p ( ê  –  xi )                                                                             ( 1 ) 
 
can be used instead of the arithmetic mean. Here  p ( ê  –  xi )  are the posterior weights assigned to equally 
precise observations  xi  in accordance with the distances ( ê  –  xi ) and  ê  had to be calculated by consecu-
tive approximations. The weights might be discrete or continuous functions of their argument, and, from the 
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18th century onward, mathematicians and astronomers repeatedly proposed estimators ( 1 ). Some authors 
thought that posterior weights can allow for changing conditions of observation over long periods of time. 
    For symmetric distributions estimators ( 1 ) provide a correction to the arithmetic mean due to the devia-
tion of the observations from pairwise symmetry. In addition, at least in the usual case of posterior weights 
decreasing to the tails of the distribution, their use enables to do away with rejection. In some instances ( 1 ) 
is at the same time the maximum likelihood estimator. Suppose indeed  [3] that the density law is 
 
    � ( x )  =  r 2  –  ( ê  –  x ) 2 
 
with an unknown parameter  ê.  Then, according to the principle of maximum likelihood,  
 
    � {( ê  –  xi ) / [ r 2  –  ( ê  –  xi ) 

2 ]}  =  0,  ê  =  � pi xi / � pi,  pi  = 1/ [ r 2  –  ( ê  –  xi )
 2]. 

 
In this case, the weights increased towards the tails. Daniel Bernoulli had not expressly indicated that fact 
and it might have remained overlooked. 
    The median. Possibly the most active partisan of the median was Estienne [7]. 3 Maintaining that random 
errors were only characterized by the symmetry of their density, he calculated the probability that, out of  n  
observations,  m  will be negative, and  ( n  –  m )  positive. The probability was maximal at  m  =  n/2  for an 
even  n  and at  m  =  ( n  –  1 ) / 2  for  n  =  2m  +  1, hence the median. Estienne then formulated several 
properties of the median. In particular, he argued that it was closer to the true value of the constant sought 
than the arithmetic mean [even] if the smaller errors were more probable than the larger ones, and he also 
stated that the median was the most probable estimator if 
 
    � ( x )  =  k exp [– | f ( x ) – f ( a ) | ]                                                                              ( 2 ) 
 
but did not specify  f ( x ). Estienne did not use the decrease of density to prove his first statement (which thus 
failed); moreover, it was formulated in a deterministic rather than stochastic sense.  
    Bervi [4] repeated many of Estienne’s assertions and he also proved by a simple reasoning that  
 
    P ( x1  <  X  <  xn )  =  1  –  2 – ( n  –  1)                                                                              ( 3 ) 
 
where  X  was the constant sought. Kornfeld [15] argued that the estimation of precision of observations 
should be restricted to the use of formula ( 3 ) but this was an anachronism. 
    According to modern notions [14], for some distributions the median is nevertheless preferable to the 
arithmetic mean; and, in particular, in the case of unknown densities. It would therefore be sensible to test the 
use of the median when treating the observations made by modern rangefinders since the densities of their 
errors are hardly known. In concluding, I note that Mendeleev [24] suggested to separate the variational se-
ries into three groups and choose as the estimator of the constant sought the arithmetic mean of the middle-
most third, this being a peculiar combination of the median and the mean.  
 
    Notes 
    1. In the theory of errors, Lambert ([17, §§271 – 306]; and a large part of [18] and [19]) is the main prede-
cessor of Gauss. He was the first to expound systematically many of its main issues, and to offer the very 
term, theory of errors. He also was the first to estimate methodically , but not successfully, the precision of 
observations (by the deviation of the arithmetic mean of all the observations from that of all of them except-
ing the most outlying observation) and even before Daniel Bernoulli he put forward the principle of maxi-
mum likelihood. At the same time, when deriving the law of distribution of certain observational errors, he 
issued not from their real properties, but from an alleged lack of causes for any other law. 
    2. See the passage in [27, p. 113]. The three-sigma test is due to Jordan [12]; the Charlier test, to Czuber 
[6, p. 206]; and the chi-squared distribution, to Abbe [1]. 
    3. Estienne published two pertinent notes in the C.r. Acad. Sci. Paris (t. 130, 1900,           pp. 66 – 69 and 
393 – 395) and returned to to his subject many years later [7a]. The comparison of the median with the 
arithmetic mean with respect to their precision began with Laplace (1818, the Second Supplement to his 
Théorie analytique des probabilités) and he [20] was also the first to introduce density of the type of ( 2 ). 
    Later addendum: The abstract of Estienne’s paper mentioned in [7a] is complemented by a report on the 
ensuing discussion (Lévy, Hadamard). Lévy stated that, contrary to Estienne’s opinion, the precision of the 
results increased with the number of observations (provided that the errors were not systematic); that the 
arithmetic mean was best for the normal distribution but the median might be preferable for other cases; that 
sometimes the mean square error “ne reste pas finie” which is “un argument sérieux” in Estienne’s favor; but 
that it would then be better to reject the extreme observations “dans une proportion determine” and to take 
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the mean of those retained. Hadamard’s remarks were less interesting: Experience proved that precision in-
creased with the number of observations; the increasing precision of astronomical observations revealed that 
previous results obtained in the classical way by less precise measurements were exact [ ? ]. H.L. Harter 
(1977, date of preface), Chronological Annotated Bibliography on Order Statistics, vol. 1. Wright-Patterson 
Air Force Base, Ohio, described this material but omitted Hadamard.  
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5. On the History of the Adjustment of Indirect Observations 

Izvestia Vuzov. Geodezia i Aerofotos’emka, No. 3, 1967, pp. 25 – 32 
 
    The determination of  n  unknowns  x,  y,  z, … from the equations 
 
    ai x  +  bi y  +  ci z  + …  +  si  =  vi,  i  =  1,  2, …, m  >  n,                                  ( 1 ) 
 
where  vi  are the unavoidable residual free terms, was being done from the 18th century onwards when treat-
ing meridian arc measurements by imposing, directly or tacitly, various conditions on the values of  vi. One 
of the first to solve a problem of this type was Euler [7] who determined the figure of the Earth from four 
arcs. Excluding the parameters of the  Earth’s ellipsoid, he got two equations between the vi’s  (between the 
corrections to the lengths of one degree of the meridian), and, without applying any definite algorithm, re-
stricted his efforts to rough estimations. 
    The first classical method of solving systems ( 1 ) was the combination of the equations (in pairs for the 
case of two unknowns). All possible combinations of two equations each were formed and the unknowns 
calculated for each such combination under a tacit assumption that  vi  =  0.  The final values of the unknowns 
were assumed to be the arithmetic means over all the combinations. Boscovich used this method to determine 
the parameters of the Earth’s ellipsoid [22] but he made use of another method as well (below). In 1827, even 
after the introduction of least squares, Muncke [25, p. 872] followed suit. 
    Moreover, Boscovich [26] applied the same method for adjusting direct observations. In general, scientists 
of the 18th century attempted to treat both direct and indirect observations by a single algorithm, and the rela-
tion between the two cases was well understood as witnessed by the coincidence of terminology. Lambert 
[17, §6] applied the same word Mittel to designate both the arithmetic mean and the solution of systems ( 1 ); 
Lalande [15, §2699] used milieu in both these cases. 
    The method of combinations was also used for a qualitative estimation of precision, which, because of 
unavoidable systematic errors, should have hardly been based on deviations from the arithmetic mean. Tycho 
Brahe [5, p. 349] apparently pursued this goal when he, for the first time ever (and certainly before 
Boscovich, see above) applied the method of pairwise combinations for adjusting direct observations (of the 
distance between Venus and the Sun when the planet was to the east and to the west from the latter, and, as 
far as possible, with all other conditions being equal). Recalling the method of measuring angles in all com-
binations, we may ask whether Gauss arrived at it by issuing from the described method. 
    The method of means   
 
    � vi  =  0                                                                                                                 ( 2 ) 
 
was applied by Tobias Mayer [24] who solved a system of 27 equations in three unknowns by forming three 
preliminary summary equations according to condition ( 2 ). Mayer was compelled, as he himself wrote, to 
introduce this method so as to avoid the difficult work of deriving and solving all the possible combinations 
of three equations. More precisely, he thus used a generalization of the method of means (which, in its pure 
form, allows to determine only one unknown).Condition ( 2 ) might be considered as the limiting case of the 
method of combinations with a single subset identical with the entire system. 
    At about the same time Euler [8, §115] actually applied the same method. Having obtained two equations  
 
    x  =  si  +  bi y  +  ci z  + …,  i  =  1,  2, 
 
with pairwise roughly equal coefficients, he assumed that  x  was equal to the half-sum of their right sides.         
    Laplace [19, p. 121] mistakenly attributed the method of means to Cotes: 
 
    Cotes has prescribed that the equations of condition1 be set out in such a way that the 
    coefficient of the unknown element is positive in each of them and that all these equations  
    be then added to form a final equation … 
  
Actually, however, Cotes [4] provided no equations and, in essence, his few lines ran as follows: 
 
    The point  Z  [the center of gravity] will be the most probable position of the thing which  
    with the greatest plausibility may be considered its true position. 
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    My statement does not detract from Cotes, who, incidentally, was well thought of by Newton. In his time, 
there were no quantitative substantiations of any particular method of treating observations. Even Legendre, 
more than 80 years later, did not justify least squares by anything other than qualitative considerations. 
    Like Eisenhart [6], I feel that condition ( 2 ) was understood in the 18th century as following from the equal 
probability of errors of each sign, and, as I shall add, as leading to the arithmetic mean in case of direct ob-
servations. 
    Lambert [17] used a condition of the type of ( 2 ) for fitting empirical straight lines and curves to points, – 
to observations ( xi;  yi ).  He divided the observations into two (for curves, into several) intervals with lesser 
and greater abscissas, determined the center of gravity in each interval and constructed the straight line or 
curve passing through these. Then, Cauchy [3; 21, Chapt. 14, §5] also used condition ( 2 ). 
    Boscovich [22, p. 501ff] pointed out the inadequacy of the method of combinations and proposed a new 
one so as to 
 
    obtain the mean in such a way that it would not be a simple arithmetic mean, but would 
    conform to the rules of random combinations and calculation of probabilities according   
    to a  definite law … 
 
Specifically, he proposed to adjust the results of meridian arc measurements under three conditions, the first 
of which demanding that the dependence between the unknowns be of the type of ( 1 ). The other two were: 
 
    second, that the sum of the positive corrections be equal to the sum of the negative ones;  
    third, that the sum of all the corrections, positive and negative, be minimal among those 
    possible when  the two  first conditions are satisfied. … the second condition is required for  
    an equal degree of probability for the deviations of the pendulum2 and errors of 
    observation  that increase or decrease the length of a degree. The third condition is 
    necessary for a  maximal insofar as possible approximation to observations … 
 
    Boscovich’ requirement of a definite law was legitimate; however, without mastering density functions he 
was naturally unable to say just how the rules of random combinations corresponded with his conditions. 
Later on Laplace [20, §40] used the Boscovich method and Gauss [9, §186] mistakenly attributed Boscovich’ 
third condition to him. 
    Gusak [13] considered the history of the minimax principle  
 
    | vmax |  =  min                                                                                                           ( 3 ) 
 
in which the minimum takes place for all possible solutions of ( 1 ) and traced it to the Chebyshev problem of 
the best approximation of an analytical function on a given segment by a polynomial of a certain degree. 
Euler [7, §§122 – 123], about whom Gusak did not report, was the first to use this principle. Later on Laplace 
[20, Livre 3] and many other scientists applied it. Lambert [16, §420] knew the minimax principle and admit-
ted that he was unable to devise an appropriate algorithm. Cauchy [2] busied himself with this problem. A.K. 
Uspensky had recently recommended the minimax principle for geodetic adjustments whereas in mathemati-
cal statistics it is applied in the theory of decision-making. 
    I shall now dwell on the connections between least squares and the abovementioned principles. The 
solution of ( 1 ) by least squares might be obtained [14] as 
 
    x  =   � �i �i / � �i2,  y  =  � �i 	i / �i

2, … 
 
where �i / �i,  	i / �i, … are the solutions of all the possible subsystems of  n  equations isolated from ( 1 ). 
The least-squares solution differs from the one obtained by the method of combinations in that the weights of 
the partial solutions are there taken into account. In addition, the weights of [the estimators of] the unknowns 
can be calculated in a similar way by issuing from the appropriate partial weights [12]. 
    Then, both Gauss [9, §186] and Laplace [18, §24] noted that the principle 
 
    lim ( v1

 2k  +  v2 
2k  + …  +  vn 

2k )  =  min  as  k  �  � 
 
(which, in the case of large but finite values of  k  may be considered as a generalization of least squares) 
leads to the minimax principle. Indeed, for any sufficiently large  k, the term vi

2k  with  vi
2  =  max (vj

2 )  will 
exert the greatest influence so that the minimax condition will be fulfilled. 
    It is usually thought that Laplace and Gauss approached the principle of least squares from considerably 
differing viewpoints. Tsinger [27, p. 1] asserted that Laplace had made 
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    a rigorous [ ? ] and impartial investigation; it can be seen from his analysis that least 
    squares  provide results having more or less significant probability only when the number 
    of observations is large.[ …] Gauss, on the basis of extraneous considerations, attempted to  
    attach to this method an unconditional significance … it will be easy to see the correctness  
    of Laplace’s conclusion; but with a limited number of observations we cannot count on a 
    mutual cancellation of errors and … any combination of observations can … just as well 
    lead to an increase of error as to its diminution. 
 
Tsinger exaggerated: the arbitrariness of the principle of maximum weight does not yet mean that it is unsuit-
able; practice had long ago refuted such a conclusion. And Markov [23] unreservedly supported this principle 
(without ignoring its arbitrariness). It is hardly proper to set off Laplace against Gauss. Their common inter-
est in the treatment of observations enabled these scholars to imagine better the problem that faced them and 
to approach their goals with clearer understanding of the general situation. And Laplace was no armchair 
scientist. In particular, he actively participated in the introduction of the metric system of measurements and 
in the determination of the figure of the Earth which means that he could have hardly restricted his attention 
to limit theorems. Indeed, he [19, p. 46] pointed out that “it seems natural to use” the method of least squares 
even when the number of observations was small. And (p. 48) 
 
    The optimal procedure is clearly that for which the same error in the results is less 
     probable than it would be under any other procedure. 
 
    In the same chapter of [19] Laplace several times returned to his idea about the principle of maximum 
weight and connected its application with the need for the most rapid decrease of the density function. He 
understood weight as the positive parameter  k  of a law of the type exp ( – kx2 )  and pointed out that the 
weight of the mean result “increased like the number of observations divided [ ? ] by the number of parame-
ters” (p. 45).  
    Again in the same source [19, p. 123] Laplace additionally stated that 
 
    The slight uncertainty that the observations, when there are not very many of them, leave 
    about the values of the constants [ …] causes a slight uncertainty in the probabilities 
   determined by the analysis. But it is almost always enough to know if the probability that  
    the errors in the observed results are contained within narrow limits approaches closely to 
    1; and when this is not the case, it is enough to know just how many more observations 
    should be taken in order to obtain such a probability that no reasonable doubt remains 
    about the quality of the results. 
 
    Much of the above is also contained in [18, Supplements 1 and 2]. Thus, the optimal result corresponds to 
the maximal weight, the weight is inversely proportional to the sum of the squares of the deviations. At the 
same time, weight is a parameter of the normal law and its maximum corresponds to the minimal probability 
of errors or the minimal length of the “confidence interval”. The principle of maximum weight is thus formu-
lated, but actually reduced to “confidence probability” with a “confidence interval” of minimal length which 
makes it impossible to dispence with an assumption of a definite (of the normal) law. Laplace unquestionably 
issued from the theorem now called after De Moivre and him. 
    It might be assumed that these thoughts essentially assisted Gauss, but the latter did not mention them. I 
describe now how he developed the concept of weight. There is no such notion in his Theoria motus [9] 
where we find only Genauigkeitsgrad (§173). … Gauss actually understood it as the root of the weight. 
However, he also introduced the Maass der Genauigkeit  h,  a parameter of the distribution 
 
    � ( � )  =  ( h / � � ) exp ( – h2 �2 ) 
 
but he did not mention the analogy between the Genauigkeitsgrad and this Maass. 
    In [10, §3], issuing from the maximal value of the function 
 
    hm exp [ – h2 ( �2  +  	2  +  �2  + … )] 
 
(where  �,  	,  �, … were observational errors,  m  in number), proportional, as it would be said now, to the 
likelihood, Gauss derived the “most probable” relation  
 
    h  =  { m / [ 2 ( �2  +  	2  + … )]} 1/2.                                                                    ( 4 )   
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    Finally Gauss [11, §6] introduced the mittleren zu befürchtendem Fehler, the mean error to be feared (jac-
tura)  m2, as he called it in §7, and noted (§9) that, for 
 
    � ( x )  =  ( 1 / h �� ) exp ( – x2 / h2 ), 
 
    m  =  h / �2                                                                                                            ( 5 ) 
 
and called the magnitude inversely proportional to  m2  the relative weight (Gewicht). He could have derived 
a formula of the type 
 
    m  =   [ � �i

2 / n )]1/2                                                                                        ( 6 ) 
 
by issuing from ( 4 ) and ( 5 ) but he did not proceed in such a manner apparently because the result would 
have depended on the existence of the normal distribution. This fact is extremely important; Gauss had in-
deed obtained a formula of this type (in §15) but independently of the density. “The rule of least squares was 
already concealed” there [27, §13].  
    In §38 Gauss generalized his finding onto the case of several unknowns. According to the context, he was 
concerned with deriving  m through the deviations from the adjusted values and he obtained 
 
    m  =  [ (�1

2  +  �2
2  + … ) / (� – �)]1/2                                                            ( 7 ) 

 
where the meaning of  �  and  �  is obvious. His working formula was therefore ( 7 ) rather than a generaliza-
tion of ( 6 ). Gauss himself, in his Anzeige of [11], noted that the  �i  in ( 6 ) and in its generalization were 
“always” taken to be the most probable deviations but that it was now possible to apply the more precise 
formula ( 7 ) and thus to observe the Würde der Wissenschaft. I doubt that the formula ( 7 ) should be called 
after Bessel. The only writing where he could have preceded Gauss is [1] but ( 7 ) is lacking there.  
    After Gauss’ lifetime the theory of errors became an engineering discipline with an established sphere of 
solved problems and its development mostly followed a “technological” direction (its application to the 
treatment of various geodetic constructions). However, beginning roughly in the 1920s, the theory became a 
chapter of mathematical statistics although statistical methods (mostly correlation theory and analysis of 
variance) have been until recently only applied in geodetic literature for special investigations. Without 
disparaging these at all, it might be said that they did not touch on the essence of the theory of errors.  
    Quite recently a number of articles on confidence estimation in the theory of errors have appeared; how-
ever, neither did this fact essentially change anything since the classical mean square error is also related to 
such estimation. The basic content of the theory of estimation as applied to the treatment of observations is 
the attempt to use more fully the information provided by each observation by means of order statistics. Ac-
cording to Gauss, the arithmetic mean of equally precise measurements, independently from the appropriate 
(but not “bad”) law of distribution, had minimal variance among linear estimators. This point of view is 
somewhat dated. It is now possible to arrange the observations in ascending (say) order, and to take into 
account the information furnished by each of them. For example, observations might receive weights depend-
ing on their distribution and number. Extreme observations can obtain weights larger than those of the other 
ones, some weights might even be negative. This very approach, entirely different from the classical notions, 
increases the precision of treating observations and actually determines the divide between the classical the-
ory and mathematical statistics. 
     Gauss’ “second method” is now inadequate and methodologically even imperfect. The arithmetic mean is 
the best estimator only under normality; decrease of variance is provided by taking account of the depend-
ence between terms of the variational series. Interestingly, no decrease is possible here for the case of the 
normal law. 
    To what degree is the increase of precision real? Geodesy, characterized by effective and multiform check-
ing of observations, is the proper sphere for verifying this. A final comment: posterior weights had also been 
introduced time and time again in the classical error theory and they were assigned to equally precise obser-
vations depending on their place in the variational series [26]. They were determined almost without taking 
into account the appropriate distributions but at least they also aimed at improving the classical arithmetic 
mean. 
    Notes 
    1. These differ from equations ( 1 ) and correspond to the second main version of adjustment of observa-
tions. 
    2. Pendulum observations provide the possibility of obtaining the flattening of the Earth’s ellipsoid of 
revolution. 
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6. Some Issues in the History of the Theory of Errors 

Abstract of dissertation. Moscow, 1967.  
Published as a manuscript. Inst. Istorii Estestvoznania i Tekhniki 

 
    The rise of the theory of errors as a discipline belonging to experimental quantitative science is connected 
with the spectacular successes of instrumental astronomical observations of the 17th century and with the 
beginning of the epoch of meridian arc measurements (17th – 18th centuries). The advances in, and subse-
quent new problems of astronomy put onto the agenda various issues concerning the treatment and evaluation 
of the precision of instrumental observations; and the calculation of arcs of triangulation and the determina-
tion of the figure of the Earth demanded, furthermore, the ability to treat redundant systems of linear alge-
braic equations. The theory of errors thus naturally included a number of problems pertaining to the treatment 
and estimation of the precision of direct and indirect observations. The treatment of direct observations led to 
the justification, of qualitative, and then of a quantitative, stochastic nature, of the long prevalent arithmetic 
mean. The treatment of indirect measurements demanded the development of a number of algorithms which 
were independent of probabilistic considerations; later, however, Gauss derived the method of least squares 
by issuing from the principle of maximum likelihood. 
    In the process of my work, I became acquainted with a large number of sources in mathematics, astronomy 
and geodesy. A large part of this literature remained little known or completely ignored. This very situation 
can explain to a certain degree why I succeeded in getting unexpected important results and among them 
    1. The description of the work of the forgotten American mathematician, Robert Adrain, who, in particu-
lar, published two derivations of the normal distribution in the theory of errors a year before Gauss [or at 
least not later than he]. 
    2. The establishment of the priority of Ernst Abbe in considering the chi-squared distribution. 
   3. A critique of the derivation of the normal distribution as given by Gauss in 1809. 
   The literature on the theory of errors and the method of least squares paid great attention to the justification 
of the normal law. That problem occupies only a secondary place in my work. Indeed, this is perhaps a sepa-
rate topic in which, first of all, it is necessary to examine the theory of elementary errors and the central limit 
theorem. And a large number of other derivations turned out to be dead ends and today represent only 
mathematical exercises. 
    My work consists of three chapters, an appendix, and an addendum. Chapt. 1 investigates the early appli-
cation of the arithmetic mean in approximate calculations, games of chance, in astronomy and theory of 
probability proper. That it was used in antiquity has been known for a long time. However, the connection of 
this fact with the stochastic nature of the mean was not noted, – and precisely this fact is stressed throughout 
almost the entire chapter. Furthermore, a large amount of factual material is collected there. 
    The science of mean values, including the arithmetic mean, already existed in the Pythagorean school, and 
the latter had been widely applied in antiquity in approximate calculations of the areas of figures and vol-
umes of bodies. The formula for the calculation of the area of a quadrangle as the product of half the sums of 
opposite sides was used in ancient Babylonia either for not exact rectangles or when the opposite sides were 
unequal because of the ruggedness of the terrain (A.A. Vaiman). This means that the arithmetic mean was 
invoked to compensate both for the lack of strict applicability of the formulas (models) and for the systematic 
(not random, as nowadays) errors of measurement. 
    Commercial practice aided the spread of the idea of the arithmetic mean, and claims were even made that 
in this sense the sphere of economics was primary. According to Leibniz, the principle of equal allowance of 
equally tenable assumptions was the fundamental hypothesis in the contemporaneous theory of probability. I 
believe that Leibniz thought about the origin of the first stochastic concepts, probability and expectation, and 
that his idea provided the possibility of the later subjective understanding of probability. 
    The history of games of chance contains evidence of the widespread knowledge of the idea of the arithme-
tic mean which served as an intuitive statistical indicator of the totality of possible outcomes and perhaps of 
the appropriate expectation. During the epoch of meridian arc measurements the arithmetic mean began to be 
used as an universal estimator in all stages of their treatment. In the same period and even earlier the first 
qualitative statements about the benefits of applying it had appeared (Picard, Condamine). 
    In 1809 Gauss postulated the principle of the arithmetic mean and essentially used it in his derivation of 
the normal distribution. This attracted attention to his postulate and a number of authors tried to reduce it to a 
“more obvious” premise. These attempts were, however, of a purely deterministic nature and I do not dwell 
on them. In the first half of the 18th century Cotes applied an analogy from mechanics (the center of gravity) 
for justifying the arithmetic mean, and Lambert tried to substantiate it on a stochastic basis.  
    In Chapt. 2, in connection with the history of the treatment of direct observations, I studied the work of 
Galileo and Lambert, then dwelt on the appropriate memoirs of Simpson and Lagrange. Also there I investi-
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gated estimators with posterior weights, the principle of maximum likelihood and the rejection of outlying 
observations. 
    Galileo was the first to formulate a number of basic theorems in the theory of errors (Maistrov). Lambert, 
who laid the foundation for that theory, was the chief predecessor of Gauss in this direction. When substanti-
ating the advantages of the arithmetic mean, Simpson issued from the objective properties of observational 
errors. His immediate aim was to refute the opinion of “some persons of considerable note” that one careful 
observation can be relied on as much as on the mean of a great number of them, and in this connection I 
studied the works of Flamsteed and Bradley. I concluded that the abovementioned opinion, to which these 
astronomers never subscribed, was the result of the great successes of observational techniques and did not 
have a lasting influence on experimental science. Lagrange, without mentioning Simpson, reproduced his 
results and studied several continuous distributions. 
    Denote the direct observations of an unknown constant  x  by  xi,  i  =  1,  2, …,  n,  then 
 
    ê  =  � xi p ( ê  –  xi ) / � p ( ê  –  xi )                                                                          ( 1 ) 
 
will be an estimator of  x  with posterior weights p ( ê  –  xi ). Such estimators with discrete or continuous 
posterior weights had repeatedly been proposed beginning with the second half of the 18th century (Short, 
Euler, De Morgan, Newcomb, Ogorodnikov). Some authors thought that posterior weights could allow for 
the change over time of the parameters of the appropriate law of distribution. In my opinion, with an even 
law (a natural assumption) estimators ( 1 ) only provide a correction to the ordinary arithmetic mean for the 
deviation of the observations from pairwise symmetry. However, these estimators may be considered as an 
historical analog of some modern statistical estimators. 
    In 1778 Daniel Bernoulli proposed an estimator with posterior weights increasing towards the tails of the 
distribution adopted (an arc of a parabola). He sharply criticized the arithmetic mean considering it suitable 
only for uniform distributions; instead, he proposed the principle of maximum likelihood arriving at estima-
tor ( 1 ). The unusual behavior of the posterior weights would have seemed unacceptable; however, Euler, in 
a companion commentary, mistakenly concluded that the weights decreased to the tails. Incidentally, in such 
“unusual” cases posterior weights are no alternative for rejecting the outliers. 
    I have shown the similarity in the use of the principle of maximum likelihood by Adrain (1808 [or 1809]) 
and Gauss (1809) for deriving the principle of least squares and the arithmetic mean and investigated the 
justification of maximum likelihood by inverse probability (Laplace, Gauss). 
    Rejection of outliers was recommended by Galileo and systematically applied by Lambert. Stochastic 
criteria for rejection were only devised in the second half of the 19th century. Their appearance was inevitable 
both because of the desire to abandon arbitrary rejection and of the expansion of the domain of applications 
of probability. On the other hand, the development of such tests was delayed by the fetish made of the normal 
law according to which any error was possible and perhaps by the opinion of Gauss who allowed rejection 
only in cases of gross errors. 
    The first stochastic criteria for rejecting outliers (Pierce, Chauvenet and others) were based on direct calcu-
lation, according to the normal law, of the odds for and against dubious observations and gave rise to a 
drawn-out polemic where opinions in essence leading to the consideration of errors of the two kinds were 
expressed: better to sacrifice a few possibly reliable observations but get rid of the dangerous influence of 
large errors. Thus, Gauss notwithstanding, these criteria rejected large errors regardless of their origin. The 
errors of these tests resulting from small divergences of the distribution of observational errors from normal-
ity (non-robustness of criteria) were not investigated. 
    At the end of the chapter I mention that a quantitative estimation of precision began to be used relatively 
late. With the exception of Lambert (who, for that matter, did not norm his measure of precison and therefore 
could not directly compare several series of observations), no-one until Gauss (1823) introduced any such 
measure. Incidentally, I found a normed estimator of precision in a work of Delambre written sometime dur-
ing 1818 – 1822. 
    In Chapt. 3 I study the history of the mathematical treatment of indirect observations (the solution of re-
dundant systems of linear algebraic equations with the help of some supplementary conditions imposed on 
the residual free terms  vi ). Above all, for the frequently occurring case of two unknowns (in particular, the 
unknown parameters of the terrestrial ellipsoid of revolution), I investigated the practice of using pairwise 
combinations of measurements (condition:  vi  =  0). A similar method was traced up to 1827. In addition, I 
discovered that the method of pairwise combinations was used while treating direct observations (Boscovich) 
with the subsequent calculation of the arithmetic mean over all the combinations. I assumed that the combi-
nations were applied here for a qualitative evaluation of the precision of observations, and, in addition, so as 
to apply a single algorithm for treating both direct and indirect observations. 
     I also traced the connection of the method of pairwise combinations with the method of means ( � vi  =  
0). Tobias Mayer (1750), while solving a system of 27 equations in three unknowns, grouped them in three 
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summary equations. He justified this procedure (a generalized method of means) by the practical impossibil-
ity of forming and solving all the possible combinations of the equations in threes. The condition of the 
method of means was naturally regarded as resulting from the equal probability of errors of each sign and 
leading to the arithmetic mean in the case of direct observations. 
    I also describe the treatment of meridian arc measurements by Boscovich. Not being satisfied  with the 
method of combinations, he proposed the conditions 
 
    � vi  =  0,  � | vi |  =  min 
 
which were also used later on by Laplace. 
    A.A. Gusak described the history of the minimax method (condition: Max | vi |  =  min with the minimum 
being taken among all possible solutions of the system). I supplemented his account by several remarks and 
indicated, in particular, that Euler had applied elements of this method in 1749 (not in 1778).  
    Gauss (1809) derived the method of least squares on the basis of the normal distribution of random obser-
vational errors. However, their usual properties were only connected with this law through the arithmetic 
mean. In 1823 Gauss published his second derivation of least squares by issuing from the principle of great-
est weight. He thus renounced his previous tacit assumption that the normal law was the only possible law of 
error. The principle of maximal weight for a finite series of measurements was already known to Laplace 
who thought that the optimal result corresponded to maximum weight with the weights being inversely pro-
portional to � vi

2. But at the same time Laplace defined the weight as the positive parameter  k  of the law of 
the type  exp (– kx2 ) and he reduced the condition of its maximum to the least probability of errors, or to the 
shortest length of a “confidence interval”. This point of view did not permit him to renounce the normal law 
as the universal law of error. However, one should recognize a greater similarity of Laplace’s and Gauss’ 
ideas than it is usually recognized; it is hardly opportune to contrast these great men of science to each other. 
Precisely their community of interests in treating observations enabled each of them to formulate better the 
unsolved problems, and, when attacking them, to rely on the results of each other. 
    In the Appendix, I cite short biographical data on the American mathematician Robert Adrain (1775 – 
1843) and investigate in detail his work in the theory of errors. I also trace a number of later derivations of 
the normal distribution. In 1808 [or 1809] Adrain published an article which contained two derivations of the 
normal law of random observational errors; a derivation of the principle of least squares (it was supposed, 
however, that Adrain was acquainted with the work of Legendre) and of the arithmetic mean; a determination 
of the most probable position of a ship from dead reckoning and an observation of its latitude; and an adjust-
ment of a closed compass traverse. 
    In 1818 Adrain published two articles devoted to the derivation of the flattening and the size of the Earth. 
Using the data collected by Laplace, he applied the principle of least squares and obtained 1/319 for the flat-
tening. In his second article, he arrived at a remarkably good estimate of the Earth’s radius. His results were 
wonderful, but of course his work cannot be compared with the achievements of Gauss either directly or even 
less in its significance for the later development of the theory of errors since he remained virtually unknown. 
    In the Addendum I attempted to sketch a general outline of the history of the theory of errors, and, in 
particular, to explain the reason for the existence of two versions of the theory, the mathematical-statistical, 
and the astronomical-geodetic. 
    Having worked without a scientific mentor, I consider it my duty to mention with even greater apprecia-
tion the participants and the heads of the seminar on the history of mathematics and mechanics at the Mos-
cow Lomonosov State University. The atmosphere at the seminar in general, as well as the advice received, 
essentially helped me. 
    Judith A. Behrens and Walter L. Sadowski had translated this piece about thirty years ago; I have revised 
their work.  
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7. On the Work of Bayes in the Theory of Probability 

Trudy XII Nauchn. Konf. Aspirantov i Mladsh. Nauchn. Sotrudn. Inst. Istorii Estestvoznania I Tekhniki, 
Sektsia istorii mat. i mekh. nauk. Moscow, 1969, pp. 40 – 57 

 

    Subsequent note 
    I have examined both parts of the Bayes memoir [2]. Since the first part was reprinted [3] and studied by 
many authors; and since Wishart, whose work [5] I overlooked, had discussed the second part, I am translat-
ing only a few lines from my paper. 
*                                                   *                                                                     * 
    […] In a posthumous note [1] Bayes proved that the series applied when calculating the sum 
 
    log 1  +  log 2  + … +  log n 
 
by the Stirling formula was divergent. He maintained that only a certain number of the terms of that series 
might be taken into account and concluded that non-rigorous methods should not be trusted. Actually, Bayes 
directed all this against De Moivre who had applied the Stirling formula for deriving the “De Moivre – 
Laplace limit theorem”. […] 
    De Moivre proved that 
 

    P {�  �  [( µ – np ) / npq ]  �  	 }  ~  (1 / π2 ) �
β

α

exp (– x2/2) dx                     ( 1 ) 

 
where  µ  was the number of successes in  n  independent Bernoulli trials with probability of success  p,  q  =  
1 – p  and  n  �  �.  H could not have known that  var µ  =  npq. 
    Neither Bayes nor Price considered the case of  n  �  �,  and the latter indicated, in his supplement to pt. 1 
of the Bayes memoir, that the De Moivre formula was only applicable in that case, and, furthermore, only 
when  p  (or  q ) was not small. Nevertheless, Timerding [4] modified the Bayes formula from pt. 2 and effec-
tively obtained 
 

    P { – z  �  [( p  –  a ) / ( pq  / n�n ) ]  �  z }  ~  ( �2 / �� ) �
z

0

exp ( – x2/2) dx. 

 
Here,  p  and  q  were the numbers of successes and failures in  n  trials ( p  +  q  =  n),                   a  =  p/n  

and  p  was the unknown probability of success in a single trial. For my part, I note that  E p  �  a  and  var p 

�  pq/n3.  
    It is remarkable that Bayes, who certainly did not know anything about variances, was apparently able to 
perceive that an elementary and formal transformation of the left side of     ( 1 ) leading to 
 

    P ( �  � { [( µ / n ) –  p ] / npq /  } �  	 ) 

 
would not provide the proper answer to his problem. 
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8. On the History of the De Moivre – Laplace Limit Theorem1 
Istoria i Metodologia Estestven. Nauk, vol. 9, 1970, pp. 199 – 211 

 
     1. Jakob Bernoulli’s Ars Conjectandi greatly influenced the development of the theory of probability and 
was always considered a classic. In particular, Laplace [21, p. 118] highly praised it. I touch on its pt. 4 that 
contains Bernoulli’s law of large numbers (a term due to Poisson) and discuss Karl Pearson’s extremely 
negative opinion about it.  
     The essence of Bernoulli’s law is as follows. At first, he considers the binomial (r  +  s) nt  where t  =  r  +  
s,  n  is a large number and  r  and  s  are natural numbers. He proves that, for a sufficiently large  nt, the sum 
of the 2n  middle terms, even excluding the middlemost one, will become  c  times greater (c  >  0) than the 
sum of its other terms. Bernoulli then makes use of that algebraic fact in his stochastic reasoning.  
    Let  p  =  r / ( r  +  s )  be the probability of success in each of  nt  (independent) trials. Then, given a suf-
ficiently large number of these, the probability that the number of successes  µ  is within the boundaries  n ( r  
±  1 )  can be made  c  times greater than the probability of the contrary event with  c  being fixed beforehand. 
In other words, Bernoulli proved that 
 
    lim P [| ( µ / n )  –  p |  <  �]  =  1  as  n  �  �. 
 
Both Markov [22, pp. 44 – 52] and Pearson [26] described the appropriate mathematical steps in detail. 
    Bernoulli then inverts his problem and maintains, without any special proof, that if some (posterior) prob-
ability of success at any trial  p  =  r / ( r  +  s )  is obtained after  nt  trials, then the probability that the true 
value of  p  lies within  [ p  ±  1 / ( r  +  s ) ]  can also be made  c  times higher than the probability of the 
contrary event. He also provided a somewhat lesser known estimate: for  r  =  30  and  s  =  20  [and, conse-
quently, for  t  =  50  and                           1 / ( r  +  s )  =  0.02]  it occurred that  c  =  1,000 for  nt  =  25,500;  
c  =  10,000  for             nt  =  31,258, etc. Thus, when  nt  increases by 5,758,  c  increases tenfold. It was 
hardly noted that this estimate means that 
 
    nt  =  25,500  +  5,758 lg ( c / 1,000 )  =  8,226  +  5,758 lg c,                             ( 1 ) 
 
or that 
 
    c  =  10 ( nt  –  8,226) / 5,758                                                                                          ( 1� ) 
 
which is not difficult to write down for base  e. 
    Bernoulli did not aim at estimating the change in  c  with the change in the boundaries of the number of 
successes. Expressions ( 1 ) and ( 1� ) are deterministic relations between  nt  and  c  and they show that Ber-
noulli effectively formulated his law as a local limit theorem. 
    In 1913, two hundred years after the publication of the Ars Conjectandi, its pt. 4 was translated into Rus-
sian under Markov’s editorship. The same year Markov put out a third, a jubilee, as he called it, edition of his 
treatise [22] and supplied it with Bernoulli’s portrait. And, again in 1913, the Imperial [Petersburg] Academy 
of Sciences organized a special sitting devoted to Bernoulli’s work in probability with Markov, Vasiliev2 and 
Chuprov reading their reports. However, only in 1924 , in the posthumous edition of his treatise, Markov [22, 
1924, pp. 44 – 52]  improved Bernoulli’s numerical estimate (above) obtaining 16,655 instead of 25,500. He 
ensured the main correction (17,324) by specifying Bernoulli’s intermediate inequalities. He did not apply 
the Stirling formula, apparently because Bernoulli naturally had not known it. And Markov’s residual correc-
tion followed from his abandoning the condition that  nt  be divisible by  r  +  s  =  t. 
    Pearson [26] attained even better results by means of the Stirling formula and secured a practically precise 
coincidence of his estimate with what would have followed from the normal distribution as the limiting law 
for the binomial. He (pp. 202 and 210) concluded that Bernoulli 
 
    adopted a very crude method of inequalities […] He gets most exaggerated values for the 
    needful number of observations, and for this reason his solution must be said to be from the 
    practical standpoint a failure; it would ruin either an insurance society or its clients, if it  
    were adopted. All Bernoulli achieved was to show that by increasing the number of  
    observations the results would undoubtedly fall within certain limits, but he failed entirely 
    to determine what the adequate number of observations were for such limits. That was  
    entirely De Moivre’s discovery. 
 
    After all, I think, we must conclude that it is somewhat a perversion of historical facts to 
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    call the method […] by the name of the man who after twenty years of consideration had 
    not  got further than the crude values[ …] with their 200 to 300 per cent. excesses. 
    Bernoulli saw  the importance of a certain problem; so did Ptolemy, but it would be rather 
    absurd to call Kepler’s or Newton’s solution of planetary motion by Ptolemy’s name! Yet 
    an error of like  magnitude seems to be made when De Moivre’s method is discussed 
    without reference to  its author, under the heading of “Bernoulli’s Theorem”. The 
    contributions of the Bernoullis to mathematical science are considerable, but they have 
    been in more than one  instance greatly exaggerated. The Pars Quarta of the Ars 
   Conjectandi has not the  importance which  has often been attributed to it. 
 
    Pearson’s opinion is hardly correct since the practical uselessness of the Bernoulli estimate is not that 
important (to say nothing about his impossibility of applying the Stirling formula). On the contrary, I stress 
that the very existence of that estimate and of Bernoulli’s law of large numbers was extremely essential. 
Pearson [25, p. 404] also noted that Bernoulli did not provide a measure of precision determined by  n – ½. 
However, we should not fault Bernoulli for that either. Properly praising De Moivre, whose merits had been 
attributed to Bernoulli by all French and German authors known to him, Pearson at the same time profaned  a 
great scholar.        
    2. Niklaus Bernoulli estimated the ratio of the middle part of the binomial series to its other parts and ap-
plied his calculations to a stochastic deduction concerning the sex ratio at birth. He communicated his results 
to Montmort in a letter of 23 January 1713 and the latter included them in his book [24, pp. 388 – 394] pub-
lished the same year, before or at least independently from the appearance of the Ars Conjectandi.  
    Niklaus issued from Arbuthnot’s data3. Denote the sex ratio (boys / girls) by  m / f,  the yearly number of 
births by  n  of which  µ  are boys, the  ith term of the binomial  ( m  +  f ) n  by  ui,  and introduce 
 
    s1  =  u f r + 1 / u f r – l + 1,  s2  =  u f r + 1 / u f r + l + 1,  l  =  o ( �n ),   t  =  min ( s1;  s2 ). 
 
Then, as Niklaus approximately calculated, 
 
    P ( | µ  –  r m |  �  l )  =  ( t – 1) / t,       
 
    t  "  {1  + [ l ( m  +  f ) / mfr ] } l / 2  �  exp [ l2 ( m  +  f ) 2 / 2mfn ], 
 
so that, denoting  p =  m / ( m  +  f )  and  q  =  f / ( m  +  f ), 
 
    P ( | µ  –  r m |  �  l )  �  1  –  exp (–  l2 / 2pqn )                                                      ( 2 ) 
 
where  pqn  =  var µ. 
    Thus, Niklaus indirectly arrived at the normal distribution. It is easily seen, however, that his formula is 
indeed not applicable for large values of  l;  for example,  
 

    P ( | µ  –  r m |  �  0 )  �  �
∞

0

exp (–  l2 / 2pqn ) dl 

 
since this integral is not equal to unity.4 
    3. A French national, De Moivre (1667 – 1754) [2 ; 23 ; 33, pp. 135 – 136 ; 34 ; 8]5  was forced to leave 
France after the revocation of the Edict of Nantes (1685). His mathematical education (his teacher was 
Ozanam) occurred to be patently insufficient but he managed to fill in the gaps in his knowledge all by him-
self and was even elected to the Royal Society (1697). Newton favored and respected him (De Moivre ac-
tively participated in editing the Latin version of Newton’s Optics), and, in his later years, habitually referred 
those, who asked him questions of a mathematical nature, to De Moivre. When the Royal Society appointed a 
commission for deciding the priority strife between Newton and Leibniz with regard to the analysis of infini-
tesimals, De Moivre was elected its member (another member was Arbuthnot). 
    Todhunter [33, §233] correctly noticed that 
 
    In the long list of men ennobled by genius, virtue and misfortune, who have found an 
    asylum in England, it would be difficult to name one who has conferred more honor on his  
    adopted country than De Moivre. 
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This, however, is not the whole truth. De Moivre’s new homeland did not at all secure him a worthy way of 
life. He was never able to take up a permanent position and had to support himself by private lessons and 
consultations. In 1735 De Moivre was elected to the Berlin Academy of Sciences, and in 1754, shortly before 
his death, to the Paris Academy. 
    Todhunter [33, §336] concluded that “the theory of probability owns more to him than to any other 
mathematician with the sole exception of Laplace”.6 However, when listing De Moivre’s concrete achieve-
ments, he only mentioned his investigations of the duration of play, his theory of recurring series and his 
“extension of the value of Bernoulli’s theorem by the aid of Stirling’s Theorem”. Considering that this “ex-
tension” led De Moivre to the normal law, we should estimate his merits much higher.7 His main pertinent 
writings are 
    a) The Doctrine of Chances [13] greatly expanded from its initial version [11]. 
    b) Misc. Anal. [12] with two supplements apparently bound up to the main text at a later date. Pearson [25; 
27] ascertained that not all the copies of the book have the first supplement, and only a few of these have the 
second one dated 1733 [10], reprinted by Archibald [4]. Owing to its importance, I list it separately:  
    c) Approximatio … [14] .8  De Moivre included its English translation in the second and the third edition of 
his Doctrine and introduced it [13, 1756, p. 242] in the following way:  
     
    I shall here translate a Paper of mine which was printed November 12, 1733, and communicated to some 
Friends, but never yet made public …9 

 
    Pearson  [25] stressed that the Approximatio had contained the normal distribution, but he hardly knew that 
this fact was already noticed by Eggenberger  [16] and that Czuber [9] and Haussner [6, No. 108, pp. 158 – 
159] mentioned the latter’s discovery. 
    I shall first dwell on De Moivre’s theological views which he expounded more fully in the second English 
version of his Approximatio [13, p. 253]. There, illustrating his thoughts by a game of dice, he maintained 
that 
    The probability of an assigned Chance, that is, of some particular disposition of the Dice, 
    becomes as proper a subject of Investigation as any other quantity or ratio can be. But  
    Chance, in atheistic writings or discourse, is a sound utterly insignificant: It imports no 
    determination to any mode of Existence […] nor can any Proposition concerning it be 
    either affirmed or denied … 
     
     Arbuthnot clearly formulated the problem of a determinate versus random origin of the observed pre-
dominance of male births over those of females, and concluded that that fact was occasioned by Divine de-
sign, –  but why was it impossible to formulate similar problems “in atheistic writings” with the same clarity?  
    Derham (1657 – 1735), another Fellow of the Royal Society and a clergyman, pronounced a similar and 
vigorous statement [15, p. 313] likely known to De Moivre10: 
 
    Should we be so besotted by the devil, and blinded by our lusts, as to attribute one of the best contrived 
pieces of workmanship [man] to blind chance, or unguided matter and motion, or any such sottish, wretched, 
atheistical stuff? 
 
And already in 1738 De Moivre [14, p. 251] quite definitively wrote: 
 
    Altho’ Chance produces Irregularities, still the Odds will be infinitely great, that in the process of Time, 
those Irregularities will bear no proportion to the recurrency of that Order which naturally results from 
ORIGINAL DESIGN. 
 
    Pearson [27, p. 552] remarked in this connection: 
 
    De Moivre expanded the Newtonian theology and directed statistics into the new channel 
    down which it flowed for nearly a century. The causes which led De Moivre to his 
    Approximatio or Bayes to his theorem were more theological and sociological than purely 
    mathematical, and until one recognizes that the post-Newtonian English mathematicians 
    were more influenced by Newton’s theology than by his mathematics, the history of  
    science in the 18th century – in particular, that of the scientists who were members of the 
    Royal Society – must remain obscure. 
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    Above, I indicated that Newton had respected De Moivre. Here now is a phrase from the Dedication of the 
first edition of the Doctrine to Newton, as reprinted in its third edition [13, 1756, p. 329]: He, De Moivre, 
will think himself “very happy” if he could, by his Doctrine,  
 
    Excite in others a desire […] of learning from yours [Newton’s] philosophy how to collect,  
    by a just Calculation, the Evidences of exquisite Wisdom and Design, which appear in the 
    Phenomena of Nature throughout the Universe … 
 
    In other words, how to choose between Design and Chance. The aim of the theory of probability was thus 
formulated. 
    I conclude here by quoting De Moivre’s answer to a man “who, apparently intending to pay him a com-
pliment, remarked that mathematicians had no religion”. He replied: “I will prove that I am a Christian by 
forgiving you the insult you are offering” (Walker [34, p. 363], repeating an earlier author [2, p. 184]). 
    Book 5 of the Misc. Anal. Is called “De binomio a  +  b  ad Potestatem permagnam evecto”. There, De 
Moivre had provided a long passage from Jakob Bernoulli, described Niklaus Bernoulli’s letter to Montmort 
(above) and solved two problems on expected winnings in games of chance and a few important algebraic 
problems which he applied later on in his Approximatio.  While commenting on Niklaus, he [12, p. 98] cor-
rectly remarked that Niklaus  
 
    Did not investigate the probability that the probability of the number of occurrences or 
    non- occurrences of an event was contained within definite boundaries. 
 
    The two abovementioned problems are also in the Doctrine (1738 and 1756; NNo. 72 and 73 in the latter). 
The second, but not the third edition has a Table of Contents where De Moivre characterized them as tending 
to establish the degree of consent that should be attached to experiments whereas the Approximatio was mod-
estly described as the same subject continued further.11 
    The Corollary to Problem 73 actually states that the statistical probability of an event will be close to its 
theoretical counterpart, and the closer the more observations are made. Still, De Moivre continued,  
 
    Considering the great Power of Chance, Events might at long run fall out in a different 
    proportion from the real Bent …  
 
and he was therefore adducing a translation of the Approximatio so as to solve “the hardest problem that can 
be proposed on the Subject of Chance …” 
    Like the Ars Conjectandi, the Approximatio consists of an algebraic and a stochastic part. In the first sup-
plement to the Misc. Anal.  De Moivre derived, independently from Stirling and at the same time as the latter, 
an approximation for  n!.  It involved a constant  B  such that 
 
    ln B  =  1  –  1/12  +  1/360  – …,  1/12  =  B1 / 1 � 2,  – 1/360  =  B2 / 3 � 4, …  
 
and  B1,  B2, … were the Bernoulli numbers. It was Stirling, however, who informed De Moivre that  B  =  

π2  . Nevertheless, commentators [22; 25] indicate that the Stirling formula should be called after both 
him and De Moivre. This is all the more reasonable since De Moivre, in the same supplement (and also in the 
Doctrine [13, 1756, p. 333] ), published a table of ln n!  with mantissas given to 14 digits for  n  =  10 (10) 
900. When comparing it with a modern table [28, Anhang, Tafel 6, 18-Stellige ln n!] I found out that it is 
correct up to 11 – 12 digits with a single misprint in the fifth digit of the mantissa of  ln 380!. 
    De Moivre distinctly recognized the importance of �n  as a measure of precision and called it “the 
Modulus by which we are to regulate our estimation” [14, p. 248]. True, its first appearance was caused by an 
“algebraic” fact: the value  l  =  �n / 2  was the boundary between two methods of integrating the exponential 
function. 
    De Moivre (p. 247) also maintained that  
 
    The number  n  should not be immensely great; for supposing it not to reach beyond the 
    900th power, nay not even beyond the 100th, the Rule here given will be tolerably accurate, 
    which I had confirmed by Trials.12 
 
He did not elaborate, but the mere fact of checking the precision is remarkable. Walker [34, p. 355] main-
tained that De Moivre had  
 
    Made few practical applications of his discoveries, and he never resorted to physical 
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    experimentation or to induction of empirical law from observed phenomena. He did not 
    weigh and measure and count to secure objective verification of his discoveries in the 
    theory of probability. … he does not set up experimental checks … he would doubtless 
    have exhibited extreme astonishment at the suggestion that his Approximatio, which he 
    thought merely an exercise in pure mathematics, contained a law which would …   
 
    De Moivre’s “Trials” (above) hardly belonged to natural sciences, but they, as well as his Table of  ln n!, 
and his calculations of annuities on lives testify that at least in mathematics he carried his work up to practi-
cally useful results. Consider also his Dedication of the Doctrine to Newton (above), and Walker’s statement 
will be dismissed. As to the Approximatio, it was written to strengthen statistical deductions (see the descrip-
tion of the Corollary to Problem 73 above). 
    Bearing in mind that De Moivre, in concluding his Approximatio, noted that his deductions might be [read-
ily] extended onto the general case of  ( a  +  b)n,  his finding should be interpreted as proving the local and 
the integral theorems on the convergence of the binomial distribution to the normal law, but of course he did 
not know anything about the uniform convergence that takes place there. 
    Independently from De Moivre, Daniel Bernoulli (1770 – 1771) derived the De Moivre – Laplace limit 
theorems, and I hope to discuss this topic elsewhere.13 
 
    Notes 
    1. The appearance of serious studies [18; 19] as well as of a reprint of Montmort [24] made it possible to 
leave out some mathematical transformations originally included here. This paper intersects my previous 
article [29]. 
    2. Aleksandr Vasilievich Vasiliev (1853 – 1929), Professor at Kazan University, a mathematician and 
historian of mathematics, played an active part in popularizing Lobachevsky’s ideas. In 1885 he published a 
course in probability (Kazan, a mimeographed edition). However, in this branch of mathematics he is primar-
ily remembered as Markov’s correspondent. It was in a letter to Vasiliev that Markov expounded his ideas on 
justifying the method of least squares. 
   3. John Arbuthnot (1667 – 1735) [1; 5; 32], a physician and mathematician, Fellow of the Royal Society 
(1704), was well acquainted with Jonathan Swift and Alexander Pope and published a few pamphlets di-
rected against the Whigs. The name of one of his heroes, John Bull (from his History of John Bull) is still 
with us. Arbuthnot also wrote An essay on the Usefulness of Mathematical Learning (1700; reprinted in [1]) 
and Tables of the Grecian, Roman and Jewish Measures, Weights and Coins (1707) and he was the main 
translator of Huygens’ Of the Law of Chance (1692). 
    For my subject, however, the most interesting of his writings is his note [3] where he, for the first time 
ever [17], tested a statistical hypothesis. At present, such a procedure is understood as a test of the realization 
of some law of distribution, or of some value of a parameter of some definite law. Arbuthnot, however, at-
tempted to test whether a phenomenon under his study (the prevalence of male births over those of females) 
was random or determinate, and he decided in favor of the latter, – of Divine design. A number of later 
scholars (Daniel Bernoulli, Michell) including Laplace tested hypotheses in the same sense as Arbuthnot did. 
Newton apparently respected Arbuthbot. Thus, he discussed Flamsteed’s observations with him (letter to 
Flamsteed of 1711 [7, vol. 2, p. 489]). 

   4. Later note: I indicated that the factor π/2  is lacking in formula ( 2 ). Hald [19, p. 17] did not repeat 
this remark. 
   5. Maty’s memoir proved unavailable. However, an article “Sur la vie et sur les écrits de De Moivre” is 
contained in the J. Britannique (La Haye, t. 18, Sept. – Oct. 1755), a periodical edited by him. 
   6. Later note: This seems to be too strong. 
   7. The Misc. Anal. is not translated into any modern language, and the works of De Moivre are not col-
lected together in any edition. From Lagrange’s letter to Laplace of 30.12.1776 [20] it follows that they both 
thought of translating De Moivre’s Doctrine into French. De Moivre began his Approximatio by stating that 
only Jakob and Niklaus Bernoulli had preceded him. And he continued: 
 
    tho’ they have shewn very great skill, and have the praise which is due to their Industry, yet 
    some things were farther required; for what they have done is not so much an 
    Approximation as the determining very wide limits, within which they demonstrated that 
    the Sum of the terms [of the binomial] was contained.  
 
    8. Later note: In the Approximatio itself [13, 1756, p. 243] De Moivre also stated: “It is a dozen years or 
more since I had found what follows …” These years should be reckoned from 1733 (not 1738) since the 
Latin version of 1733 mentioned “Duodecim jam sunt anni …” In other words, De Moivre made his out-
standing discovery in 1721 or a bit earlier. 
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   9. In a letter of 1714 to Newton Derham [7, vol. 2, p. 520] asked the former to honor his promise of giving 
“castigations” for the third impression of his Physico-Theology. 
  10. Just as it was in several instances above, I do not describe these problems anymore. However, I refer 
readers to my later paper [31, p. 236] in connection with the Spectator introduced here by De Moivre and 
with the role of such outsiders. 
  11. See [30]. 
  12. “Power” likely referred to “binomial to the power of  n”. 
  13. Since then published in 1970, in Biometrika, vol. 57. 
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9. On the Appearance of the Dirac Delta-Function in a Memoir of Laplace 
IMI, vol. 20, 1975, pp. 303 – 308 

 
    In one of his memoirs devoted to the theory of errors Laplace [1] assumed the density of observational 
errors as 
 
    f ( x )  =  (1 / 2a ) ln ( a / | x | ),  a  >  0,  | x |   �  a.                                               ( 1 ) 
 
Without repeating his suppositions [2, esp. pp. 294 – 298], I note that this density was patently unsuitable for 
any practical applications (it was infinite at  x  =   0) and that in case of need Laplace would have undoubt-
edly modified his law.1 Just as in his previous memoir [5], Laplace searched for the “best” estimator of the 
“true value” of an astronomical phenomenon by means of repeated observations 2 choosing the number  e  
determined by the equation 
 

    �
−

e

a

f ( x  –  x1 ) f (x  –   x2 )  …  f (x  –  xn ) dx  =   

 

   �
a

e

f ( x  –  x1 )  f ( x  –    x2 ) … f ( x  –  xn ) dx                                                     ( 2 ) 

 
where   x1,  x2,   …, xn  were the observations. 
    Apparently bearing in mind his memoir [5], Laplace maintained that the rule of the arithmetic mean can be 
deduced from ( 1 ) given that  a  was unbounded. It was there that he effectively introduced the Dirac delta-
function, or, rather, one of its interpretations, a sequence of functions ( 1 ) at  a  �  �. Laplace did not prove 
his statement; instead, he              (p. 480) went on to a “much more general theorem” for the density  
 
    y  =  � (� x)  =   � (– � x)  =  q  if  � x  =  0 ; and  =  0  if  � x  �  0,  �  �  0.   ( 3a; 3b ) 
 
He actually considered a sequence of functions  � (� x);  and the condition ( 3a ) should more precisely be 
written down as 
     
    � (� x)  =  q ( � ),  �  =  { � 1,  � 2 , …,  �n, … }  �  0.                                   ( 4 ) 
 
    Suppose now that  � x  =  t, then the relations ( 3 ) will become 
 
    � ( t )  =  q,  t  =  0,  | x |  <  +  �;  and  =  0,  t  �  0,  | x |  =  +  �,                 ( 5a; 5b ) 
 
and, in accord with stochastic demands, 
 

    �
∞

∞−
� ( t ) dt  =  C  (  =  1, say)                                                                      ( 6 ) 

 
so that in ( 5a )  q ( � )  �  �. The same demands lead to  q ( � )  �   0  in ( 4 ). 
    This interpretation of relations ( 4 ) –  ( 6 ), which are lacking in Laplace’s memoir, allows me to state that 
he introduced the Dirac function. Laplace could have understood the function ( 3 ) or  ( 5 ) as a uniform law 
with an unbounded interval of possible observational errors. In a sense, such a distribution (as, also, the nor-
mal law whish possesses the same property) would have been more suitable than the logarithmic function ( 1 
) with a finite interval             [ – a;  a ] of permissible errors. 
    I repeat that Laplace considered ( 3 ) as a generalization of ( 1 ) which can be understood thus: the deriva-
tive of ( 1 ) is  f � ( x )  =  – 1 / (2a x ). For large values of  a  it decreases very slowly beginning with x  >  c2.  
It is possible to assume here that  c2   is a number decreasing with an increasing  a,  and to discuss only the 
case of  x  >  0. It can even be thought that, at 
x  >  c2 , the function ( 1 ) is almost constant. Finally, at   x  >  c2  it decreases with an increasing  a.  On the 
other hand, the function ( 3 ) is constant excepting the case  x  =  �,  and, on the strength of ( 4 ), it decreases 
with an increasing interval of permissible errors (e.g., with a decreasing �. 
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    Laplace proves a theorem concerning ( 3 ):  e  in an equation of the type of ( 2 ) written down for the func-
tion  � ( � x )  is the arithmetic mean of the observations  xi,  i  =  1,  2, …, n. Here is how he reasoned. For 
any  xi 
 
       � [� ( x –  xi)]  =   � [� ( x –  e)]  +  � ��e [ � ( x –  e)]  ( x –   xi )  
 
so that 
 
    y  =   � [� ( x –  x1)] � [� ( x –  x2)]  … � [� ( x –  xn )]  = 
 
             �n [� ( x –  e)]  + � ��e [� ( x –  e)]  � ( e  –  xi )  =  �n [� ( x –  e)]                  ( 7 ) 
 
and, obviously, 
 

    �
∞−

e

 �n [� ( x –  e)] dx  =  �
∞

e

 �n [� ( x –  e)] dx. 

 
    It was not in Laplace’s manner to explain exactly how did he understand the derivative of          ( 3 )!  
Furthermore, his notation was not symmetric; he denoted the observational errors by  x,  p  –  x,  p�  –  x, …  
where  p,  p�, … were the distances of the observations from each other.3  Second, he identified the variable 
with some constant (which he then varied); third, the expansion in a Taylor series which he made use of was 
unnecessary difficult. Thus, he wrote 
 
     � ( � x  +  � p )  =  � ( � x )  +  � p d� ( � x ) / d ( � x ) 
 
so that 
 
    � ( � x ) � ( � x  +  � p ) � ( � x  +  � p� ) …  = 
 
    �n ( � x )  +  � �n-1 ( � x ) [d� ( � x ) / d ( � x ) ] ( p  +  p�  + …). 
 
    Unlike formula ( 7 ) for which the second term in the right side vanished owing to the definition of the 
arithmetic mean, here the integrals of both terms had to be later taken account of. Fourth, as far as technique 
was concerned, Laplace’s calculations were difficult to follow because of his permanent inattention to detail, 
but I shall not dwell on this point.  
    After denoting 
 

    �
∞

0

 �n ( � x ) dx  =  A,                                                                                              ( 8 ) 

 
Laplace actually assumed that  A  >  0  so that ( 8 ) was his analog of formula ( 6 ). 
    Introducing interpretation 
    � ( t )  =  lim ( � / �� ) exp ( – �2 t2 )  as  �  �  � 
 
for the function ( 5 ) it is possible to prove Laplace’s theorem more rigorously. The product 
 
    � ( t  –  t1 ) � ( t  –  t2 ) … � ( t  –  tn )                                                                      ( 9 ) 
 
with  ti  being the observations will be rewritten as 
 
    lim { ( � / �� )n exp [– �2  [( t  –  t1 )

2  +  ( t  –  t2 )
2  + …  +  ( t  –  tn )

2 ]}  as  �  �  �. 
 
The exponent is here 
 
    – n �2 [ t2  –  ( 2t / n) (  t1   +   t2   + …  +  tn )  +  ( t1

2  +   t2
2  + …   + tn

2 ) / n ]  = 
 
    – n �2  {[t  –  (  t1   +   t2   + …  +  tn ) / n ]2  +  ( t1

2  +   t2
2  + …   + tn

2 ) / n  – 
 



 32

                 (  t1   +   t2   + …  +  tn ) 
2 / n2 }, 

 
    ( t1

2  +   t2
2  + …   + tn

2 ) / n  –  (  t1   +   t2   + …  +  tn ) 
2/ n2  �  	2  �  0. 

 
    The equality  ( 	2  =  0 )  is only attained if  t1 =  t2   =  …  =  tn  in which case the theorem is evident so 
that I assume that  	2  >  0.  The product ( 9 ) can now be written down as  
 
    lim { ( � / �� )n exp (– �2  	2 n ) exp [– �2 n ( t  –  to )

2 ]}  = 
    �  �  � 
 
    �n ( 	 ) �n (t  –  to ) lim ( �� / � )n 
                                    �  �  � 
 
where  to  is the arithmetic mean of  ti. Integrating both sides of ( 9 ) I have 
  

      �
∞

∞−

� ( t  –  t1 ) � ( t  –  t2 ) … � ( t  –  tn ) dt  =  �n ( 	 ) �n (t  –  to ) lim ( �� / � )n   

                                                                                                             �  �  � 
 
but, obviously, 
 

    �
∞−

0t

 �n ( t  –  to ) dt  =  �
∞

0t

�n ( t  –  to ) dt 

 
so that 
 

     �
∞−

0t

 � ( t  –  t1 ) � ( t  –  t2 ) … � ( t  –  tn ) dt  =      

     �
∞

0t

 � ( t  –  t1 ) � ( t  –  t2 ) … � ( t  –  tn ) dt.           

 
    In his later writings Laplace abandoned condition ( 2 ) and did not return to the delta-function. For this 
reason its appearance is connected with Cauchy and Poisson [6, §4 from Chapt. 5], a source indicated to me 
by F.A. Medvedev 

     
    Notes 
    1. I have already stated this [2] and now I can refer to Laplace himself [3, p. xi; 4,  p. 116].  Thus, in the 
second source he argued that hypotheses should be regarded “only as a means of connecting the phenom-
ena together to discover their laws”; no “reality” ought to be attributed to them; and they should “continu-
ally” be corrected by new observations. 
    2. I restrict my description by what is needed for understanding my subject, and I am following the ter-
minology of the classical theory of errors whose cofounder was Laplace. Statisticians would have dis-
cussed the determination of the location parameter  e  of the density  f ( x  –  e ). 

    3. By supposing that the “true value” of the constant sought is at the origin of the coordinates, I have in-
dentified observation  xi  with error  xi. 
 
    Later note. Integrals in equality ( 1 ) have no meaning in the language of generalized functions. Still, even 
an interpretation on a physical level, as attempted above, seems interesting. 
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10. History of the Theory of Probability 

Based on Theory of probability before Chebyshev. IMI, vol. 25, 1978, pp. 284 – 306,  
and History of the Theory of Probability to the Beginning of the 20th Century. Berlin, 2004 

 

 
    This essay is based on my previous writings, about which see General sources below. It is usual to sepa-
rate the development of probability theory into the following periods: [Pascal & Fermat – Jakob Bernoulli]; 
[the 18th century – Chebyshev); and [Chebyshev, Markov, Liapunov]. What followed, at least until the mid-
20th century (but what is not described here), can be characterized by the introduction of the ideas and meth-
ods of the set theory and the theory of functions of a real variable, and of course by the axiomatization of the 
theory and the birth of mathematical statistics. I stress that there existed a prehistory of probability and that 
Jakob Bernoulli, De Moivre and Bayes, taken together, created the first version of the theory. The modern 
stage began with Chebyshev and is characterized by systematic application of the concept of random variable 
and expectation, and by recognition that the goal of the theory of probability is to determine the probabilities 
of some events given the probabilities of other events rather than the discovery of the laws of nature 
(Laplace). 
 

 1. The Prehistory   
    Ancient scholars recognized logical or subjective probability and randomness. ForAristotle, randomness 
implied lack of aim (a sudden meeting of two people knowing each other) or deviation from law (birth of 
monsters or even females or girls). Small causes in the first case could have prevented the meeting so that 
this explanation is close to Poincaré’s idea (end of §4.5). The second example (repeated by Thomas Aquinas) 
is unconvincing insofar as females are concerned since Aristotle himself thought that random events occurred 
seldom. By probable Aristotle meant something occurring in most cases. 
    Randomness in the sense of Aristotle’s first example is mentioned in the Old Testament, e.g., 1 Kings 
22:34, and the Talmud attempted to distinguish between randomness and causality, for example, between 
“usual” deaths and deaths occasioned by an outbreak of plague. The same attempt is evident in the ancient 
Indian Laws of Manu: the witness in a law-suit, who soon suffered a misfortune, was thought to be divinely 
punished for perjury. Hippocrates and Galen reasoned in the spirit of qualitative correlation. The latter knew 
that small causes could essentially influence weak people (unstable equilibrium!). As astrologers, Ptolemy 
and Al-Biruni believed that the influence of heaven on man was a [correlative] tendency rather than a fatal 
drive and Tycho Brahe and Kepler were of the same opinion.         
    Maimonides mentioned expectation on a layman’s level. He noted that there existed a more or less fixed 
expected value of a future possible gain ensuing from a marriage settlement. Life insurance in the form of 
annuities existed in Europe from the 13th century (although it was prohibited for about a century until 1423) 
but it had been connected with expectancies of life only in a most generalized way. A similar situation ex-
isted in marine insurance.    
    When selecting a point estimate for the constant sought, ancient astronomers were reasonably choosing 
almost any number within appropriate bounds. This testifies once again that science in those times was quali-
tative, but it also agrees with modern notions: such an attitude is justified when dealing with observations 
whose errors posses a “bad” distribution. Only Kepler (indirectly) stated that the arithmetic mean had become 
“the letter of the law”. This change had to be brought about by the increase in the precision of observations 
and was likely made easier by the time-honored idea that mean behaviour and moderation possessed optimal 
properties. 
    Galileo formulated the properties of “usual” random errors and Kepler likely knew them as well. When 
deriving his first law, he adjusted observations by corrupting them by arbitrary corrections, which should 
have been selected according to these properties. Kepler’s system of the world had to leave room for ran-
domness: he explained the eccentricities of the planetary orbits by random corruptions of the predetermined 
circular paths (Aristotelian deviation from law!). 
   
    2.1. Probability and Social Life  
   Games of chance provided natural problems whose solution led to the development of the theory of prob-
ability. In a similar way, jurisprudence propagated stochastic ideas. Leibniz thought of including the nascent 
theory within a general system of logic (within a statistical decision theory!) and therefore urged to study 
games of chance.  Descartes re-introduced the ancient concept of moral certainty and connected it with eth-
ics, and Arnauld & Nicole (1662) and then Jakob Bernoulli extended its use onto human activities and espe-
cially onto jurisprudence. Calculations of the cost of annuities compelled De Witt (1671) to introduce a cer-
tain stochastic law of mortality (without justifying it) and to accepting expectation as his criterion. He thus 
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opened up a new field for probability (already studied by Huygens in his then yet unpublished correspon-
dence of 1669). 
    Population statistics originated within political arithmetic (Petty, Graunt). Most influential became the 
latter’s mortality table (1662). He established that both sexes were approximately equally numerous and that 
the sex ratio at birth was 14 boys : 13 girls. He also arrived at important conclusions concerning the causes of 
death. Halley, in 1694, compiled the second mortality table that served as a point of departure for De 
Moivre’s studies of annuities on lives. 
 
   2.2. Pascal and Fermat  
   In 1654 they introduced the concept of expected winning in a game of chance and applied it as a criterion 
for solving the already then venerable problem of points. They used combinatorial methods and tacitly ap-
plied the addition and multiplication theorems (for chances) whereas one of Pascal’s arguments might be 
interpreted in the language of conditional probabilities. Pascal also used partial difference equations. If a 
tabular representation of a function is recognized on a par with its analytic expression, then Pascal’s arithme-
tic triangle might be identified with the application of a generating function for the symmetric binomial dis-
tribution. 
 

    2.3. Huygens   
    In 1657, following after those French scholars, Huygens independently introduced expectation and effec-
tively applied conditional chances for solving similar problems. He did not use combinatorial analysis and, 
when investigating games in which the expectation of winning varied from one round to another, he had to 
make involved calculations. In his correspondence of 1669 (published 1895), he considered problems con-
nected with mortality and life insurance, introduced the notions of mean and probable durations of life, calcu-
lated the expectations of order statistics for a discrete empirical distribution, methodologically applied a 
graph of the function [1  –  F (x)] with  F (x)  being an unspecified distribution function and 0  �  x  � 100. 
 
    2.4. Newton    
    In a manuscript of 1664 – 1666 Newton generalized the concept of chances onto the continuous case and 
remarked on the possibility of using statistically observed chances. He also applied simple stochastic consid-
erations for checking the duration of the rule of a dynasty or of an individual in ancient kingdoms. Most 
important was his general philosophical views. De Moivre devoted the first edition of his Doctrine of 
chances (1718) to Newton and stated that his goal was to discover rules for separating chance and Design in 
nature. 
 
   2.5. Arbuthnot     
   In 1712 Arbuthnot collected the data on baptisms in London during 82 previous years (1629 – 1710) and 
noted that more boys ( m ) had invariably been born than girls ( f ). He declared that the inequality  m  >  f  
was occasioned by Divine design since its random occurrence had “value of expectation”  2 -82. Strictly 
speaking, his argument was unconvincing (any sequence of ten, say, throws of a coin are equally possible) 
althoughut practically correct. He had not, however, thought that the births of both sexes obeyed a (not yet 
studied) binomial distribution but his finding served as a starting point for future important studies. 
 
    3. 1. Jakob Bernoulli    
   The first three parts of Jakob Bernoulli’s posthumous Ars Conjectandi (1713) contained a reprint of Huy-
gens’ treatise of 1657 with essential comments and a solution of interesting problems such as investigation of 
random sums for the discrete uniform and the binomial distributions; a similar study of the sum of a random 
number of terms for a discrete distribution; the derivation of the distribution of the first order statistic for the 
discrete uniform distribution; calculation of the probabilities for sampling without replacement. His analytic 
methods included combinatorial analysis and the calculation of expected winnings in each round of a finite or 
infinite game and their subsequent summing. 
    The last part of the Ars contained the “classical” definition of probability of an event, a formulation of the 
aims of the ars conjectandi (derivation of probabilities of events for optimal decision-making in economics 
and politics), elements of stochastic logic (involving non-additional probabilities whose source is the medie-
val doctrine of probabilism declaring that the opinion of each theologian was probable) and his law of large 
numbers. A fragmentary proof of that law was already contained in Bernoulli’s diary for 1684 – 1690. In 
studying the law of large numbers, Bernoulli proved that the statistical probability tended to its theoretical 
counterpart and estimated the rapidity of that convergence. His law ensured the equivalence of the statistical 
and theoretical probabilities and established, in the context of the stochastic branch of the theory of knowl-
edge, the first accordance between the deductive and the inductive methods. 
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    3.2. Niklaus Bernoulli         
    In 1709 Bernoulli’s nephew Niklaus published a dissertation on the application of the art of conjecturing to 
jurisprudence. Drawing on Graunt’s mortality table, he calculated the mean duration of life for persons of 
different ages, and, assuming a continuous uniform law of mortality, he determined the expected life of a last 
survivor of a group of men. While being important and fostering the public’s interest to probability because 
of these and other findings, Niklaus’ dissertation contained borrowed passages from his uncle’s yet unpub-
lished book and even his diary.                
    In Niklaus’ correspondence with Montmort of 1710 – 1713 published in the latter’s book in 1713, he 
studied the sex ratio at birth and indirectly arrived at the normal distribution as the limiting law for the bino-
mial. He also invented the celebrated Petersburg game involving a random variable possessing an infinite 
expectation. The game was paradoxical since no-one would have paid any considerable sum in exchange for 
that expectation. Many scholars have been studying it since then and it became the reason for the introduction 
of the once famous moral expectation (§4.1). Montmort himself studied many games of chance by applying 
combinatorial analysis, recurrent formulas and infinite series as well as the formula of inclusion and exclu-
sion. Of special interest was the strategic game le her whose investigation only became possible on the basis 
of the theory of games, but Niklaus at least noted that in that game the gamblers should keep to mixed strate-
gies. 
   
     3.3. De Moivre    
    De Moivre’s main finding was the proof, in 1733, of the “De Moivre – Laplace limit theorem” this being 
the first version of the central limit theorem. He greatly influenced Laplace but became forgotten to the turn 
of the 19th century. De Moivre was also the most influential student of life insurance in his time. In accor-
dance with Halley’s table of mortality, he assumed the uniform law of mortality for all ages beginning with 
12 years and a maximal duration of life equal to 86 years.  De Moivre as well as Montmort and Niklaus Ber-
noulli continued to study games of chance; they applied generating functions for solving the problem of 
points and paid special attention to “ruining” problems first introduced by Pascal. Continuing this line of 
research, De Moivre, in 1730, created his theory of recurring sequences. 
 
     3.4. Bayes   
    The so-called Bayes theorem for P (Ai/B ) is absent in Bayes’ memoir of 1764 – 1765. It contains the for-
mula for the posterior distribution of an event given that it occurred  p  times and failed to occur  q  times in  
p  +  q  =  n  trials and that its prior distribution was continuous and uniform. It is methodologically impor-
tant that Bayes’ inverse probability is tantamount to conditional probability given that the stipulated condi-
tion was fulfilled. Beginning with Fisher, the Bayes formula had been denied for about three decades, mostly 
because it was based on hardly known prior probabilities (irrespective of what Bayes actually thought).  
    Bayes studied the case of a large finite  n  whereas Timerding, the Editor of the German translation (of 
1908) of his memoir, additionally examined the transition to  n  %  �. It occurred that the Bayes formula 
became a limit theorem improving on the De Moivre proposition. Without introducing any measure of scat-
tering, Bayes actually proved that De Moivre (and Jakob Bernoulli), who had thought that their theorems 
described both the direct and the inverse cases on a par, were mistaken. The Bayes formula thus accom-
plished the construction of the first version of the theory of probability whose previous most important 
propositions were due to Jakob Bernoulli and De Moivre. 
 
    4.1. The 18th Century before Laplace  
    Together with De Moivre, Daniel Bernoulli was the main predecessor of Laplace. In order to remove the 
infinite expectation involved in the Petersburg game, he suggested, in 1738, that the moral expectation of a 
gambler be introduced as  � pi f ( xi ) / � pi  where  pi  were the probabilities of gaining (or losing)  xi  and  f ( 
x )  =  C ln x/a with a being the initial capital of the gambler. Bernoulli applied his notion to prove that even a 
just game with zero expected losses for each gambler was disadvantageous to each and to suggest that moral 
expectation should be taken into account in hazardous commercial enterprises. His innovation became so 
popular in the theoretical sense, that Laplace re-named the usual expectation calling it mathematical. In 1770, 
Bernoulli considered an urn problem later examined by Laplace. In essence, it coincided with the celebrated 
Ehrenfests’ model of 1907 usually considered as the beginning of the history of stochastic processes.  
    Bernoulli stochastically investigated most important problems of population statistics such as sex ratio at 
birth (independently deriving the local De Moivre – Laplace theorem), mortality (especially mortality from 
smallpox with inoculation as a preventive measure proving that that dangerous treatment increased the mean 
duration of life), and duration of marriages. Lambert studied the number of children in families, and Euler 
was the joint author of a chapter in Süssmilch’s book on the rate of increase and the period of doubling of the 
population. Süssmilch was rather careless in treating his data but he at least paved the way for Quetelet. 
Lambert followed Leibniz in attempting to create a doctrine of probability as a component of a general teach-
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ing of logic. He connected randomness with disorder and heuristically approached the modern notion of 
normal number.  
    Several other scholars ought to be mentioned. Dalembert formulated patently wrong statements but he 
also put forward reasonable considerations; taken together, they meant that the theory of probability should 
be applied cautiously. He also objected to Bernoulli’s conclusions concerning inoculation. Thus, he noted 
that inoculation of children involved moral issues and that an increase in the mean duration of life did not 
remove the fear of immediate death because of that measure. In 1777 Buffon definitively introduced geomet-
ric probabilities so as to “put geometry in possession of its rights”. Many scholars effectively used them even 
earlier when introducing densities. In 1767 Michell attempted to determine the probability that the distance 
between two stars from among all of them uniformly scattered across the sky was not larger than 1°and his 
problem became classical. Condorcet applied the theory of probability to jurisprudence in the tacitly as-
sumed case of independent judgements reached by jurors or judges. His writings were extremely obscure but 
Laplace and Poisson continued his work. 
    Simpson, Lambert, Daniel Bernoulli and Euler contributed to the treatment of direct observations. In 1756 
Simpson, effectively applying generating functions, proved that for the uniform and the triangular discrete 
distributions the arithmetic mean was stochastically preferable to a separate observation and in 1757 he ex-
tended his finding onto the continuous triangular distribution. He, and Lambert, in 1760 – 1765, taken to-
gether, originated the theory of errors and that term itself is due to the latter. Lambert was the first to formu-
late the principle (not yet method) of maximum likelihood for estimating the location parameter of unimodal 
distributions. In 1778 Bernoulli independently introduced maximum likelihood. His considerations resulted 
in recommending posterior weighting of observations of equal precision depending on their position in the 
variational series. For observational errors possessing (as he assumed) an arc of a parabola as density these 
weights increased to the tails of the distribution, a fact that Bernoulli did not explicitly state. In 1780 he stud-
ied the errors of pendulum observations and introduced the normal distribution as the limiting law into the 
theory of errors and formally distinguished between systematic and random errors. In a companion paper to 
Bernoulli’s memoir of 1778 Euler misunderstood the latter’s weighting of observations; for his own part, he 
proposed a principle heuristically reminiscent of the Gauss condition of maximum weight. 
    Several methods for adjusting indirect observations (for solving  n  linear equations in  m  unknowns,  m  <  
n,  under additional conditions imposed on the residual free terms, call them  vi, i  =  1,  2, …, n)  were being 
applied in the 18th century. The Boscovich method of 1770 involved additional conditions 
 
    v1  +  v2  + … +  vn  =  0,  | v1 |  +  | v2 |  + … +  | vn |  =  min. 
 
In 1809 Gauss remarked that the second condition taken by itself demanded that exactly  m    residuals should 
be zeros which meant that he knew an important theorem in linear programming. The first condition alone 
corresponded to another method of adjustment. 
 
    4.2. Laplace   
   As an astronomer, he was unable to ignore the theory of errors. In his first memoirs devoted to that subject 
he as though sized it up and did not achieve general results because his formulas were too involved. Laplace 
then turned to the case of a large number of observations. Applying characteristic functions of random vari-
ables and the inversion formula for lattice distributions, he non-rigorously proved the central limit theorem 
for sums, linear functions, sums of absolute values and of sums of squares of identically distributed random 
variables with a finite domain of possible values. This approach enabled him to assume normality in the 
theory of errors. Using his criterion, minimal absolute expectation, Laplace thus arrived at the method of 
least squares (already known to Gauss). He also compared the median and the arithmetic mean (this time, 
with variance as his test) and, although without achieving concrete results, introduced the Dirac delta-
function. 
    Laplace’s theory of probability included known issues which he essentially developed (the proof of the 
“De Moivre – Laplace” theorem by the Maclaurin – Euler summation formula; investigation of finite random 
sums; determination of posterior distributions; examination of an urn problem tantamount to the Ehrenfests’ 
model) and new material (study of a pattern of trials connected into a Markov chain and of trials now called 
after Poisson; an effective construction of realizations of random functions and their expectations; introduc-
tion of a partial differential equation, of the “Dirichlet” formula, discontinuity factors and the Chebyshev – 
Hermite polynomials into probability). Sometimes he issued from the principle of insufficient reason but 
stressed that conclusions should be checked by new observations.  
    Laplace applied the theory of probability to a wide range of problems in astronomy and population statis-
tics and to jurisprudence and “moral” issues. His probability was an applied discipline, its level of abstraction 
was not high. He did not define a random variable even on a heuristic level, and was thus unable to consider 
densities or characteristic functions as mathematical objects. After Laplace the theory had to be created anew. 
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     4.3. Poisson   
     In 1825 he formally introduced the notions of random variable and integral distribution function. In the 
field of limit theorems he examined the case of a low probability of the occurrence (or non-occurrence) of an 
event in Bernoulli trials and definitively introduced the “Poisson” trials.  He non-rigorously extended the 
central limit theorem onto sums of non-identically distributed random variables having possible values on a 
restricted interval. Poisson is especially remembered for his law of large numbers that he proved for the 
“Poisson” pattern by means of the central limit theorem. An unclear exposition, severe criticism (Bienaymé, 
Bertrand) and the failure of other scientists to understand the importance of that law led to Poisson’s pro-
tracted oblivion. 
    Poisson invariably determined the statistical significance of discrepancies between empirical magnitudes 
and thus anticipated the theory of stability of statistical series (Lexis) as well as the intentions of the Conti-
nental direction of statistics. By means of the central limit theorem he examined the admissibility of using 
sample parameters of densities. With respect to the domain of problems studied and the applied analytic 
methods Poisson continued the work of Laplace. In particular, he devoted much attention to applications of 
probability to jurisprudence by investigating the stability of the rate of conviction and the probability of judi-
cial errors. In spite of adverse criticisms such applications are useful for perceiving the general picture of 
administration of justice (in the assumed ideal case of independent decisions made by jurors). 
 
     4.4. Gauss   
     In 1809 Gauss justified the principle of least squares which he had applied since 1794 or 1795. He proved 
that, among unimodal, symmetric and differentiable distributions of the observational errors there existed 
only one (the normal) law for which the maximum likelihood estimator of the location parameter coincided 
with their arithmetic mean. Once more making use of maximum likelihood Gauss came to the principle of 
least squares. 
    This elegant reasoning led to the uniqueness of the law of error; and Gauss also reasonably thought that the 
principle of maximum likelihood was inferior to a method based on a minimal integral measure of error. 
Assuming variance as such a characteristic, Gauss, in 1823, proved that among linear estimators the least 
variance was provided by the method (this time, method) of least squares. 
    The Gaussian theory of errors got rid of the Laplacean assumption of a large number of observations, and 
the replacement of the latter’s criterion (minimal absolute expectation) by the variance proved successful and 
fruitful with respect to calculation. Gauss became the creator of the theory of errors which had, until the 
1920s, remained the main field of stochastic applications whereas Laplace’s role, practically speaking, was 
not essential. 
    Legendre, in 1805, was the first to introduce the principle of least squares and to substantiate it by qualita-
tive considerations. Adrain arrived at the same principle by roughly the same way, and at the same time (in 
1809) as Gauss did, but his derivation was not rigorous at all. 
    
     4.5. From Gauss to Chebyshev  
     Among the scientists of this period Cauchy, Bienaymé, Cournot, Quetelet, and Buniakovsky  ought to 
be mentioned as well as Bertrand and Poincaré, whose work, although appearing later, in essence also be-
longed to the pre-Chebyshev stage. Cauchy studied the mathematical treatment of observations, especially in 
connection with his debate with Bienaymé, in 1853, on the application of the method of least squares to 
interpolation of functions. He investigated several approaches to treating observations, proved a theorem in 
linear programming, introduced stable distributions (although the Cauchy distribution was due to Poisson), 
used discontinuity factors for studying functions of observational errors. Referring to Poisson and Fourier, he 
widely applied the Fourier cosine transforms. Also in 1853 he proved the central limit theorem for linear 
functions of identically distributed errors having possible values on a finite interval and estimated the errors 
caused by assumptions made. Still, his proof was not sufficiently rigorous. 
     In 1853 Bienaymé proved the celebrated “Bienaymé – Chebyshev” inequality but had not paid due atten-
tion to it. In 1852 he introduced cumulants and the multivariate Gram – Charlier series and, in 1845, formu-
lated the properties of criticality of a branching process. 
    Cournot proposed a common definition of probability for the classical discrete and the continuous cases 
as the ratio of the “extent” (now we would say “measure”) of the favorable chances to the complete extent of 
all the chances. He attempted to estimate the dependence between the verdicts reached by jurors or judges 
and in general paid much attention to statistics. Chuprov called him “the real founder of the modern philoso-
phy of statistics”.    
    Quetelet directed the attention of the general public to statistics. He introduced the notion of Average man 
(which dates back to Buffon), introduced mean inclinations to criminality and marriage, declared that the rate 
of crime was constant, and exerted all his great influence to standardize population statistics on a worldwide 



 39

scale. As a popularizer, he made serious mistakes; he did not stress that his inclinations did not concern indi-
viduals, that the alleged constancy of crime was only possible under constant social conditions, etc. After his 
death statisticians denounced his findings and, for good measure, rejected probability as a whole. 
    Buniakovsky, along with several European scholars (Lacroix, Cournot, De Morgan), attempted to sim-
plify and explain Laplace’s and Poisson’s writings. He originated a serious study of probability theory in 
Russia and contributed to population statistics. 
    In 1888 Bertrand published a treatise on probability theory written in an excellent literary style and im-
pregnated with its non-constructive negative and often unjustified, sometimes downright wrong attitude to-
wards his subject. It included some interesting findings (for example, a study of the ballot problem) and is 
especially remembered in connection with his paradoxical problem on the probability that a “random” chord 
of a given circle was longer than the side of an equilateral triangle inscribed in the circle. Bertrand proved 
that the expression “at random” (actually, even “uniformly random”) was not definite enough. A sudden 
pertinent result (De Montessus, in 1903) consisted in proving that the Bertrand problem had an uncountable 
set of answers. Bertrand had exerted a strong influence on Poincaré who apparently did not read (at least did 
not refer to) other previous authors, such as Chebyshev and Markov and even Laplace and Poisson. 
    Poincaré’s main merit consisted in examining the notion of randomness. True, he offered several pertinent 
explanations without bothering to provide a single formula, but his main definition that connected random-
ness with instability of motion or position, as well as his statement that randomness always accompanied 
necessity, were extremely important. Poincaré also considered vivid examples showing the effect of random 
causes; thus, by means of his method of arbitrary functions he explained why, in the game of roulette, the 
probabilities of the two main outcomes coincided.    
    Poincaré proved that the existence of several answers to Bertrand’s problem was caused by its actually 
describing various situations differing one from another. His finding made it possible to proceed further in 
the theory of geometric probabilities. 
 
    5.1. Chebyshev  

    He formulated the new and still being recognized aim of the theory of probability in the beginning of his 
essay of 1845: given, probabilities of some events, to find the probabilities of other events, connected with 
the given ones. In 1851 Boole followed suit (true, he thought about propositions rather than events) and he is 
meritorious for having been the first to stress, in 1854, that the theory should be axiomatized. Chebyshev’s 
main findings concerned the law of large numbers and the central limit theorem, and among his numerous 
students were such scholars as Markov and Liapunov.  
    In 1846 Chebyshev rigorously proved the law of large numbers in the Poisson form, and, as was typical for 
him, he also estimated the precision of the appropriate pre-limiting relation. Then, in 1867, Chebyshev of-
fered his derivation of the “Bienaymé – Chebyshev” inequality. He highly praised his predecessor and 
Markov, in several later contributions, kept to the same opinion. Chebyshev’s name is however connected 
with that finding because Bienaymé paid no special attention to that inequality whereas Chebyshev, by issu-
ing from it, developed the method of moments for proving the central limit theorem. 
    Indeed, in 1887, after achieving a breakthrough by formulating his inequalities involving integrals, Cheby-
shev was the first to prove that theorem “almost” rigorously and later on Markov corrected his teacher. 
Markov also preceded the former in publishing the demonstration of those inequalities. 
    For several decades Chebyshev’s work remained largely unnoticed in the West, mostly because the theory 
of probability had still been then considered as an applied discipline not requiring rigor on a par with pure 
mathematics. 
      
     5.2. Markov and Liapunov   
    Markov definitively proved the central limit theorem by the method of moments, and he managed to ex-
tend essentially that method after Liapunov had demonstrated the same theorem under weaker conditions. 
Markov’s second main contribution was the study of dependent random variables. In 1906 he began publish-
ing findings connected with the applicability of the law of large numbers and the central limit theorem for 
such variables connected into various versions of “Markov chains”. He possibly perceived that these chains 
could find wide applications, but had not himself worked in that direction. Among his other achievements 
were the publication, in 1888, of a table of the normal distribution, which, along with a later table of another 
author, had remained beyond compare for several decades. Markov also successfully studied stability of 
statistical series, and, by corresponding with Chuprov, drew him into the domain of mathematical statistics. 
    In 1900 and 1901 Liapunov had proved the central limit theorem by the method of characteristic functions 
and in 1922 Lindeberg highly praised the achievement of his predecessor. 
   
     5.3. Statistics and Natural Sciences   
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     During the middle, and especially the second half of the 19th century, several new scientific disciplines, 
intrinsically connected with statistics, came into being. Among these, the kinetic theory of gases and biome-
try (born at the turn of that century) should be singled out; and Helmert completed the construction of the 
theory of errors. In 1860 Maxwell introduced his famous law of distribution of the velocities of monatomic 
molecules and greatly fostered the statistical approach to studying nature. He, and even to a larger extent 
Boltzmann, originated kinetic theory and statistical physics.  
    Darwinism prompted English mathematicians (Pearson in the first place) to study biological phenomena 
statistically and led to the birth of biometry. Darwin’s hypothesis of evolution can be described as a discrete 
random process. 
    Helmert’s findings include tests for revealing systematic errors (1875 and latter, with an independent 
derivation of the chi-squared distribution first discovered by Abbe in 1863), anticipation of the Student – 
Fisher theorem on the independence of the arithmetic mean and variance for the normal distribution; intro-
duction of the “Helmert transformation”; and investigation of the precision of the sample variance (correcting 
a mistake made by Gauss and preceding the same finding achieved by Kolmogorov and others in 1947), –  all 
of it done in 1876. 
 
     6. The Continental Direction of Statistics and the Biometric School  
     Up to the beginning of the 20th century statistical investigations on the Continent were mostly restricted to 
population statistics whereas in England the main field of statistical applications was biology. The originator 
of the Continental direction was Lexis whose predecessors had been Poisson, Bienaymé, Cournot and 
Quetelet. In 1879 Lexis proposed a test for revealing changes in probabilities of “success” in different series 
of Bernoulli trials; he tacitly dismissed as uninteresting the case of dependent observations. His work was 
really important since previous statisticians tended to restrict their attention to constant probability and inde-
pendent trials.  
    Subsequent scientists (Bortkiewicz, Chuprov, Markov) studied the Lexis criterion deriving its expecta-
tion and variance, extended the investigation to include random variables in general but discovered that the 
Lexian theory had to be reconstructed. In the process, many findings were made, which, regrettably, were not 
taken up by the biometricians. Chuprov also exerted great and only partly successful efforts to unite both 
streams of statistical thought.  
    Karl Pearson, the originator of biometry and leader of the biometricians, developed the principles of cor-
relation theory and contingency, introduced the system of “Pearsonian curves” for describing empirical dis-
tributions and the chi-square test and compiled numerous statistical tables. The methodological difference 
between the work of the two streams consisted in that, for several decades, biometricians kept to empiricism, 
to recognizing only statistical indicators and were paying scant attention to the theoretical patterns underlying 
their studies.         
    General sources 
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11. Liapunov’s Letters to Andreev 

IMI, vol. 31, 1989, pp. 306 – 313 

 
     1. The life of Aleksandr Mikhailovich Liapunov is well known [1; 2]. Konstantin Alekseevich Andreev 
(1848 – 1921) graduated from Moscow University. From 1873 to 1898 he taught in Kharkov, then in Mos-
cow. In 1884 – 1899 he was President of the Kharkov Mathematical Society (KhMSoc) and Editor of its 
Soobshchenia [3]. In 1884 he was elected Corresponding Member of the Imperial (Petersburg) Academy of 
Sciences. 
    Gordevsky published passages from Andreev’s letters to Liapunov [3]1 but provided no commentaries and 
neither did he say anything about Liapunov’s letters to Andreev which I discovered in the Archive of the 
Moscow State University.2 
    Andreev’s first letter (17.2.1899; all dates are given here in the old style) is not connected with the newly 
discovered letters of Liapunov, and I leave it alone. Liapunov’s first letter (11.6.1897) is also left out since it 
was only concerned with his stay in Crimea with one of his brothers and described how useful was it for his 
brother’s health. He did not name his brother, but a paper by Academician Boris Mikhailovich Liapunov  [1, 
p. 11], a philologist, mentioned a trip to the Crimea in May – June 1897  by A.M., his wife, mother-in-law 
and himself (but did not provide any details). 
    Almost all of Liapunov’s subsequent letters are connected with the appearance of his paper [4] as a re-
sponse to Nekrasov’s criticisms [5]. Another subject was the preparation of a new charter for Russia’s uni-
versities. Liapunov participated in the work of the appropriate commission at Kharkov University [1, p. 11]. 
On 29 April 1901 the Ministry of Public Education circulated proposals concerning the new charter [6, pp. 1 
– 4], but even before that some universities had begun to discuss the causes of the then occurring students’ 
unrest and to suggest “measures for putting university life in order” (Ibidem, p. 5).2a 
     2. Pavel Alekseevich Nekrasov (1853 – 1924) was an eminent scholar, a professor at, and for several 
years rector of Moscow University, but at the turn of the 19th century his scientific work underwent a radical 
change. He started connecting mathematics with religion and politics and became unimaginably verbose so 
that his writings of that period are still unstudied. Here is Pavel Youshkevitch’s pertinent opinion from his 
forgotten newspaper article [7]: Nekrasov is 
 
    A great lover of philosophy[ …] but the philosophy of this honorable scholar is of an 
    absolutely special nature. It is a strangest medley of senseless profundity with tedious 
    verbiage and dried up words. 
 
    Nekrasov [5] blamed Liapunov for mistakes and shortcomings allegedly committed in the classical mem-
oir [8]. His considerations were however either unfounded or indefinite, or did not bear any relation to the 
substance of Liapunov’s work. A similar conclusion can be made about Nekrasov’s accusations of Cheby-
shev and Markov which he adduced for good measure. Being blinded by his criticism, Nekrasov even mixed 
up the notions of limit and asymptotic representation of a function. 

3. I reproduce now Liapunov’s letters 
 
    Liapunov – Andreev, 29.3.1901 
 
    Highly respected Konstantin Alekseevich,  
    I am applying to you with a great request. You have probably already received an offprint of Nekrasov’s 
note [5] where he makes charges against me, Markov and Chebyshev. If you had acquainted yourself with 
my papers you certainly noticed that Nekrasov completely perverts the truth and does it with impudence 
beyond any measure. Although I have not the slightest desire to enter into a debate with him, I am compelled 
to answer him. And I am therefore sending you a manuscript of my Answer and am asking you to assist in its  
publication in the Matematichesky Sbornik , – if possible, in the same issue where Nekrasov’s note is to ap-
pear. I would not have troubled you with this request if it were possible to publish my Answer in the Soob-
shchenia.3 But our relations with Silberberg have definitely deteriorated and we are compelled to postpone 
the printing of the Soobshchenia at least for the time being.4 
    This is why I have to apply for help to the Matematichesky Sbornik. I think, however, that I have some 
right to do so since I am a member of the Moscow Mathematical Society [MMS].5 You will perhaps find the 
tone of my Answer rather sharp. But what can I do? I attempted to assuage it as much as possible, but every-
thing has its boundary and I cannot go any further in this direction. It is already sufficient that I do not accuse 
Nekrasov of deliberately perverting the truth  (about which I have no doubt) and that I explain his strange 
attacks against me by his ignorance of the substance of my first paper. 
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    Understanding that my request is putting you to some inconvenience, I am asking you to excuse me after 
taking into consideration that my position with respect to this case is almost desperate: I am unable to publish 
my Answer elsewhere. However, your assistance can be restricted only to passing my Answer to the President 
of the Society6 and to informing him of my desire. You will do me a great favor by fulfilling my request.  
    How are things going on at the University? I heard about your Commission, but it is impossible to obtain 
here any definite information about its purpose. [ … ] 
 
    Andreev – Liapunov, 31.3.1901 [3, pp. 40 – 41] 
 
    Andreev will pass Liapunov’s manuscript to B.K. Mlodzeevsky, the Secretary of the MMS, and will speak 
to Bugaev. He will not undertake to judge the debate between Liapunov and Nekrasov. Nekrasov 
 
    Reasons perhaps deeply, but not clearly, and he expresses his thoughts still more obscurely. 
    I am only surprised that he is so self-confident. In his situation, with the administrative 
    burden weighing heavily upon him,7 it is even impossible, as I imagine, to have enough 
    time for calmly considering deep scientific problems, so that it would have been better not 
    to study them at all. 
 
    Andreev is sceptical with regard to the university reform, and he congratulates Liapunov with his being 
elected Corresponding Member of the Imperial (Petersburg) Academy of Sciences and even with his “future 
fuller entry into the Academy”. 
 
    Liapunov – Andreev, 8.4.1901  
      
    Highly respected and dear Konstantin Alekseevich, 
    I thank you for congratulating me with my election to corresponding membership of the Academy, and for 
your good wishes. As to my fuller entry into the Academy, at which you hint, this is not yet decided, and it is 
impossible to say how will it be decided. But, since we are discussing this subject, I ought to tell you that I 
was asked to stand, and gave my consent. But this will only be definitively decided by autumn. At present, it 
would please me if this business is not spoken about. 
    V.A. Steklov, who had just arrived from Moscow, visited us today. He told us many interesting things 
about your university life. It was very pleasant to find out that the report of our faculty committee is finally 
somewhat on the move and that it is now being used as an initial material by your committee. 
    I asked Steklov to visit you before leaving Moscow and to take the manuscript of my Answer if its publica-
tion was not considered possible. But Steklov informed me that you had already passed it to Mlodzeevsky 
and that he was unable to ascertain whether it will be published. I would therefore ask you, highly respected 
Konstantin Alekseevich, to inquire of Mlodseevsky, while meeting him, how was this business decided. If 
the article will not be published in the Matematichesky Sbornik, I would like to receive the manuscript back. 
In this case I shall publish it in the Universitetskie Zapiski8 (about whose existence, as I ought to add to my 
shame, I had completely forgotten when sending you my manuscript). 
    If, however, it is decided to publish the article in the Matematichesky Sbornik, I would ask you to inform 
those responsible that I certainly desire to read the proofs [ … ] 
    Please excuse me for all the troubles I am inflicting on you. I am very grateful for the assistance rendered 
me in this disagreeable business. [ … ] 
 
    Andreev – Liapunov, 13.4.1901 [3, pp. 41 – 43] 
 
    Bugaev and Nekrasov do not want to publish Liapunov’s manuscript. Nekrasov, however, agreed to its 
being put out, but not earlier than in a year, and with his objections added in a separate note. Andreev consid-
ers it expedient to extend the manuscript and soften its tone. 
 
    Liapunov- Andreev, 21.4.1901 
 
    Dear and highly respected Konstantin Alekseevich, 
    I am grateful to you for sending me the manuscript and for all the troubles encountered when taking it 
back. From your previous letter I concluded that it was hardly possible to count on its speedy return and 
therefore began to edit a new version of the Answer. And, in accord with your advice, I have essentially ex-
tended my article depicting in detail the entire factual aspect of the business without leaving a single objec-
tion of Nekrasov unanswered. And I think that because of this very circumstance my new Answer will cause 
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Nekrasov considerably more annoyance. Perhaps he will even regret (tacitly of course) that he was not quick 
to publish the Answer in its old version. 
    Did you conclude work in the commission? If its results were reported to the University’s Council, it 
would be interesting to know the attitude of that body. [ … ] 
 
    Liapunov – Andreev, no date 
 
    Dear and highly respectable Konstantin Alekseevich, 
    It was extremely pleasant to hear from you. We came to know that the operation essentially benefited you 
and that at present your health is largely restored which greatly gladdened us. It would be nice to meet you. 
However, [ … ] Yesterday I had informed A.N. Krylov over the telephone about your wish to have the book 
that he published,9 and he answered me that it will be sent to you in a few days. 
    This autumn we moved into a kazenny apartment.10 It is small but cosy and sufficiently spacious for the 
two of us. And it is very warm, which is indeed valuable in this severe winter. Its only, but really essential 
defect is that it is somewhat dark: it is on the ground floor and its windows, opening on the street, are di-
rected towards the north-east. [ … ] 
    I am now busying myself far less diligently than before. The occurring international events hold my atten-
tion to such an extent that I do not even wish to think about anything else. In addition, scientific pursuits 
demand a calm mood whereas the events occurring around us are very often so disgusting that they can only 
strongly irritate and embitter. In such cases scientific pursuits can only serve for distracting the thoughts and 
cannot be fruitful.11 [ … ] 
 
    Notes 
    1. These letters are kept at the Archive of the Academy of Sciences of the Soviet Union in Leningrad. 
Fond 257, Inventory 1, No. 29. 
    2. Fond 217, Inventory 1, No. 87. 
    2a. Later note. See Correspondence between P.A. Nekrasov and A.I. Chuprov (translated in this collec-
tion), Nekrasov’s letter of 17 Febr. 1899, concerning the students’ unrest at Moscow University and descrip-
tion of similar events in Kiev directly involving Slutsky [9]. 
    3. Liapunov bears in mind the periodical of the KhMSoc. 
    4. The Soobshchenia were printed in the Kharkov printing office M. Silberberg & Sons. Judging by 
Liapunov’s Imprimatur inscriptions, the appearance of the issues of its vol. 7 had been irregular. The first 
issue even had two such signs, 30.11.1900 and 10.4.1902. 
    5. Liapunov was member of that Society from 1892 (Matematichesky Sbornik, vol. 16, 1891, p. 845). 
    6. The President of the MMS was N.V. Bugaev. 
    7. Nekrasov was then warden of the Moscow educational region and vice-president of the MMS. 
    8. More precisely, in the Zapiski Khark. Univ. 
    9. The sequel proves that the letter was written during World War I. According to the Bibliography of the 
works of Krylov [10, pp. 39 – 41], the only book that he then “published”, was his Russian translation of 
Newton’s Principia. It appeared in 1915 – 1916. 
   10. In this particular instance, the proper translation seems to be: apartment, belonging to the Academy. 
   11. In 1916 Liapunov published two papers, both in the Izvestia of the Petrograd Academy of sciences. The 
same year he submitted one more paper, and it appeared in 1917, in the same periodical [11]. 
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12. On the History of the Statistical Method in Natural Sciences 

IMI, vol. 32/33, 1990, pp. 384 – 408 

 
This is a translation of the Russian résumé of my English articles [1 – 5] devoted to the application of the 
statistical method in separate branches of natural sciences mainly during 1750 – 1870. I omit the beginning of 
my résumé where I discussed the definitions of statistics, statistical method and exploratory data analysis 
since I treated all this elsewhere [6]. 
  
     1. Conclusions Not Formulated in My English Papers 
     1) The statistical method had been developing independently in each branch of natural sciences. From 
1830 that process was going on against the background of a fading interest in probability; indeed, neither 
Darwin nor Boltzmann ever referred to Laplace. 
     2) There existed a permanent contradiction between statistics and the concrete science where it had been 
applied. Statistical data showed the direction for developing the latter, but, after some progress was achieved, 
they usually became useless. 
     3) By the mid-19th century statistical populations requiring examination were revealed in separate 
branches of natural sciences. 
    4) A number of natural-scientific disciplines directly connected with statistics originated in the 19th cen-
tury; furthermore, for a long time statistics determined the development of some other branches of knowl-
edge. 
    5) Most important discoveries in some branches of natural sciences were obtained by studying the col-
lected statistical data without applying any (still unknown) statistical tests.1 
    6) “Tabular” statistics appeared also in natural sciences. 
    7) In some branches of natural sciences the statistical method was initially reduced to deriving mean values 
(or states); then, however, it began to include the study of the pertinent deviations. 
    8) The Darwinian evolution of species can be represented as a discrete stochastic process. 
    9) Humboldt’s theoretical findings in natural sciences were based on his studies of the mean (or averaged) 
states of nature. 
    10) The first quantitative study of a correlation dependence occurred in 1865 (Seidel), and in 1912 Kap-
teyn introduced an “astronomical” correlation coefficient. 
    11) In 1858 Clausius introduced a linear function of an integral law of distribution, and the distribution 
itself was infinitely divisible. 
    12) In 1873 Maxwell anticipated Poincaré’s idea that a random event was present when small causes under 
unstable equilibrium led to essential consequences. 
    13) The prehistory of exploratory analysis should include the works of Halley (1701), Humboldt (1817) 
and Galton (1863).  
    In the sequel, I cite these conclusions by indicating the appropriate numbers in curly brackets. 
 
     2. Medicine 
    2.1. The Numerical Method {6} 
    The statistical method found its way into medicine along several directions. Population statistics was al-
ways closely linked with medical statistics. Epidemiology and public hygiene, that date back to the mid-19th 
century (§§2.4 and 2.5), were based on statistics {4}; even the inoculation of smallpox (from the 1720s to 
Jenner) required statistical data and appropriate investigations. Surgery, also from the mid-19th century, 
needed statistics as an indispensable tool of research (§2.3) {4}. Finally, the numerical method (Louis, 1825) 
of examining the symptoms of various diseases, which amounted to compiling statistical summaries, had 
been in vogue for a few decades. Pirogov (1849) and Davidov (1854) favorably mentioned it although the 
latter perceived its restrictions. Even before Louis physicians and other scientists recommended a similar 
usage of statistical data in medicine (Dalembert, 1759; Black, 1788; Condorcet, 1795), and Pinel (1801) 
published a statistical study of the treatment of mental patients. Neither he, nor Louis demanded estimation of 
the plausibility of their conclusions. 
 
     2.2. Elements of Mathematical Statistics 
    In 1835 the Paris Academy of Sciences debated the problems of applying probability to therapeutics but 
did not decide anything. Poisson, however, declared that, from the angle under discussion, medicine did not 
differ from other sciences. Gavarret, his former student at the Ecole Polytechnique, became a physician and 
published a book (1840) on the principles of medical statistics. Indicating that he had issued from Poisson’s 
ideas, he recommended the estimation of the plausibility of any conclusions by the De Moivre – Laplace 
limit theorem in accord with a previously chosen level of significance (a later term) and the checking of ini-
tial hypotheses by a method due to his teacher. For many decades, authors invariably included Gavarret’s 
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formulas in their treatises and at the very least he thus paved the way for a speedier introduction of statistical 
ideas and methods into medicine. In Russia, Davidov continued this line of development (Ondar, 1971). 
 
     2.3. Surgery 
    The statistical method began to be applied in surgery from 1839 for studying the results of amputations. 
The introduction of anesthesia (that sometimes led to serious side effects) demanded a comparison of mortal-
ity from amputations made with and without it. Simpson published such a study in 1847 – 1848, and Pi-

rogov, in 1849. The latter began practising anesthesia in military surgery. Simpson used heterogeneous data 
mistakenly believing that that approach secured higher plausibility, cf. §5.4. The definitive introduction of 
anesthesia and of the Listerian methods of antiseptics, whose beneficial influence became immediately evi-
dent {5}, made previous data useless {2}. 
    In 1860 the International Statistical Congress adopted Florence Nightingale’s proposals for an uniform 
plan of hospital statistics. She indicated that the conditions in surgical hospitals were better described by 
post-operational complications than by mortality. Nightingale (and Pirogov, Virchow and Simpson) noted 
that mortality in large hospitals was higher than in smaller medical institutions. According to Simpson (1869 
– 1870), it increased monotonically with the number of beds. By then, a steady and practically real change of 
an indicator became a convincing argument in medical statistics {5}. 
    In military surgery, statistical data were unreliable and Pirogov advised to trust only “sober” observations. 
Comparing the conservative treatment of the limbs with amputation, he called his time an “Übergangspe-
riode”. During the first decades of the 19th century, he continued, “die alte, nicht statistische Schule” did not 
allow for the danger of operations; now, however, the old “geheiligten Grundsätze […] sind durch die Sta-
tistik  [comparison of the appropriate death-rates] erschüttert”, but no new principles have yet emerged, and 
cannot emerge in the absence of reliable data. 
    Pirogov did not engage in mathematical statistics, but he widely used the statistical method and came to 
realise that mass phenomena exhibit stable regularities.2 This helped him to solve problems inherent in orga-
nizing military surgery {5}. 
 
    2.4. Epidemiology 
    Modern epidemiology attempts to predict the course of epidemics. In the 18th – 19th centuries scientists did 
not yet aim at such goals; Farr’s investigation (1866) provided an exception, and even it had to do with vet-
erinary science rather than with medicine. Another exception was Enko’s study (1889) of measles.   
    Even in the 1720s inoculation of smallpox led to statistical problems. Daniel Bernoulli (1766) tried to 
examine thoroughly the benefits of that treatment, but neither he, nor Dalembert, who criticized him and put 
forward his own proposals, were able to answer all the necessary questions (Karn, 1931). The Jennerian vac-
cination fared otherwise. From the very beginning, its results were splendid {5}, but even in this case some 
concrete technological issues had risen and Simon (1887) argued that reliable national statistics was needed 
to solve them. 
    In the 19th century, cholera epidemics repeatedly struck Europe. In 1855 Snow compared the data on mor-
tality from cholera in London with the quality of drinking water there. It occurred that the mortality of those 
who drank purified water was eight times lower than of the others and that fact at once indicated the cause of 
cholera epidemics {5}. In 1886 – 1887 Pettenkofer published a review of writings on cholera. He adduced a 
large number of statistical tables but was unable to interpret them adequately. Nevertheless, Pettenkofer ar-
gued that no cholera epidemics was possible “wenn der Ort […] keine locale Disposition besitzt” and his 
opinion is still carrying some weight. The International Statistical Congress repeatedly discussed the statistics 
of epidemics (especially of cholera). In 1872 it recommended to test the Pettenkofer statement statistically, 
but this was not implemented. 
    In 1865, Seidel, an astronomer and mathematician, compared the monthly number of typhoid fever cases 
with the level of subsoil water. Calculating the deviations of these magnitudes from their yearly mean values, 
he found out that their signs for the same months coincided twice more often than not. This meant that the 
investigated dependence was significant. In 1866 Seidel extended his research by additionally taking into 
account precipitation. He thus quantitatively estimated the significance of a correlative relation between two 
and even three variables, although only in a roundabout way connected with loss of information. Soyka and 
Virchow made similar studies but on an elementary mathematical level. 
 
     2.5. Public Hygiene 
    Already Leibniz, in his manuscripts, formulated recommendations pertaining to public hygiene. And, from 
its very origin in the mid-19th century, this discipline began to study statistically a great range of problems 
which were also discussed by the International Statistical Congress and at least some of which nowadays 
belong to ecology. 
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    In 1842 Chadwick described the unsavory sanitary conditions in England. Pettenkofer (1873) estimated 
the financial losses incurred by Munich from such diseases as typhoid fever. The city council adopted his 
recommendations and mortality from that disease fell there from 0.15 to 0.08%. In 1887, his student, Eris-

mann, published a treatise on sanitary statistics. He indicated that “even recently” there had existed a nega-
tive opinion about that subject; turned the attention of his readers to the methods of collecting data; and ex-
plicated Davidov’s ideas about the quantitative tests of the reliability of statistical inferences.3 
 
     3. Biology     
     3.1. Various Problems before Darwin 
    The attempts to apply statistical methods in biology began not later than in the mid-18th century. Botanists 
(Adanson, 1757) desired to use “natural” methods of classifying plants that preserved the “distances” be-
tween species; they had thus searched for an answer to a problem belonging to multivariate statistics. 
    In 1738 Réaumur discovered the law of the “sums of temperatures”; he established that leaves, flowers 
and fruit appeared on plants of a given species after the sum of the mean daily temperatures had attained 
certain values. Aug. De Candolle (1832) qualitatively compared botanical observations with the results cal-
culated according to that law and recommended to standardize the method of such observations. In 1846 
Quetelet proposed to replace the sums of the temperatures by the sums of their squares but was unable to 
estimate quantitatively the advantages of his law as compared with the old one. De Candolle (1832) also 
published vast statistical data on the consumption of oxygen by plants in darkness, on the content of water 
and sugar in fruits, etc. {6}.  
    Not later than in 1833 Babbage began collecting statistical data of the life of animals and compiled a sta-
tistical questionnaire about mammals {6}. A statistical study of fishing in Russia (Baer et al, 1860 – 1875) 
was of direct practical importance {6} and possibly directed Baer towards theoretical problems in animal 
ecology (Valt, 1978). In 1882 Pasteur tested his vaccine against anthrax on many thousands of animals. The 
results were brilliant, and he did not have to worry about their mathematical treatment {5}. 
    Compilation and analysis of statistical data became a most important component of geography of plants, a 
new discipline created by Humboldt at the beginning of the 19th century {4}. In 1858 the International Sta-
tistical Congress published a questionnaire partly devoted to it and to zoogeography. Anthropometry, which 
originated in the second half of the same century {4}, was also directly linked with statistics. Its pioneer was 

Quetelet (1871) but its name was due to Humboldt. 
 
     3.2. Various Problems: Darwin 
    Darwin engaged in various aspects of statistics. His writings include a large number of statistical tables. 
Thus, he compiled data on the sex ratio at birth for a few species of animals; when studying the occurrence of 
six-fingered humans, he formulated and asked Stokes to solve a concrete problem on the realization of rare 
events;4 when investigating the advantages of cross-fertilization as compared with spontaneous pollination, 
he asked Galton to check the significance of his conclusions.5 Darwin’s requests for assistance deserve every 
praise.  
    When studying the life of earthworms, Darwin examined how did they carry away paper triangles into 
their burrows. He considered three possible cases of random dragging and reasonably rejected all of them in 
favor of a non-random process (of some kind of sensible dragging). In 1888 Bertrand proved that the term “at 
random” was not sufficiently precise (cf. §5.2) and he could have well referred to Darwin. 
 
    3.3. Evolution of Species: Darwin 
    Darwin was the main author of the theory (more precisely: hypothesis) of the evolution of species. He 
studied the origin of new varieties, subspecies and species, the nature of the variations between individuals of 
the same generation (“horizontal” variations) and between parents and offspring (“vertical” variations) {3}.  
Darwin made use of such notions as natural and sexual selection, variations, variability, without precisely 
defining any of them and it is sometimes difficult to interpret his pronouncements.6 And, while repeatedly 
reasoning on randomness of varieties, Darwin certainly did not understand that notion in an unique way. 
    According to Darwin, the evolution of a species was caused by the action of small permanent influences or 
by small differences between the probabilities of two or several events. He did not mention any theorems,7 
nor did he provide any quantitative estimates {1} (which would have been very difficult). Indeed, how can 
we determine the probabilities of mating of two individuals having definite qualities, of some vertical varia-
tion, etc.? 
    I represent now the evolution of species according to Darwin in the following way {8}. Introduce an n-
dimensional system of coordinates, of the parameters of individuals of a given species,8 and the correspond-
ing Euclidean space with the usual definition of the distance between two of its points. At moment  tm  of 
discrete time the  ith individual is represented by a point  Ui ( ui 1;  ui 2; … ;  ui n ); at moment  tm+1  the corre-
sponding points are the individuals of the next generation, which, due to the vertical variations, will be in 
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somewhat differing positions. Introduce also a moving point or subspace V ( t )  corresponding to the optimal 
conditions for the existence of the species. Then the evolution of species will become a discrete stochastic 
process in whose course the individuals approach  V  and the set { U }  of the individuals of generation  tm  
constitutes its section. Also required are the appropriate probabilities, but they remain unknown (see above). 
Moreover, Darwin attached great importance to changes in mind and instinct of animals and even mentioned 
the natural selection of spontaneous variations of instinct. But how can we insert such notions in a quantita-
tive model?.. 
    The Darwinian theory led to the appearance of new fundamental problems, and, together with the Mende-
lian theory of heredity (unnoticed until the beginning of the 20th century), for many decades determined the 
development of biology. In addition, Darwin had decisively influenced a group of English scientists who 
created the Biometric school for a mathematical cum statistical study of biology {4}. Mathematical statistics 
itself became a discipline in its own right owing to a large extent to the work of that school headed by Karl 

Pearson. The stochastic essence of the evolution theory was evident both for Darwin’s partisans and oppo-
nents, only Boltzmann (§6.4) thought that it was of a mechanical nature. 
 
    3.4. Statements Made by Biologists 
    In the adduced summary I describe the statements made by several scientists (excepting Darwin) in a gen-
eralized and sometimes formalized way. They, the statements, mostly consider the evolution of species that 
became studied from about the mid-18th century. It may be thought that from then onward variations gradu-
ally became one of the main objects of study in biology {3}. 
     1) Adanson (1757), Aug. De Candolle (1813): natural classification of plants; individuals are points in a 
many-dimensional space. 
    2) Goethe (1790): space forms of plants; same.  
    3) Maupertuis (1745): heredity; vertical variations are random and small. 
   4) Maupertuis (1751), Cournot (1851): randomness; its role in evolution is restricted. 
   5) Lamarck (1809): changes in external conditions indirectly lead to hereditary variations in individuals. 
   6) E. Geoffroy Saint-Hilaire (1822): new species originate due to random mutations. 
   7) I. Geoffroy Saint-Hilaire (1851): restricted evolution of species is due to changes in external conditions. 
   8) Goethe (1831): evolution of species is due to random changes both in the species and  external condi-
tions. 
   9) Cournot (1861): same; vertical variations are random, the evolution of species is restricted. 
 
    4. Meteorology 

    4.1. Stages of Development  
    In 1850 Buys Ballot isolated three stages in the newest (from 1801) history of meteorology: the study of 
mean states (Humboldt); of the deviations from these (Dove); and the future stage “wo wir versuchen kön-
nen meteorologische Begebenheiten voraus zu sagen” {7}. The first two periods were obviously of a statisti-
cal nature {4} whereas the third one apparently started in the 1870s when observations made in different 
countries began to be coordinated, and weather maps applied. Indeed, under these conditions the study of the 
space distribution of meteorological elements became possible and the forecasting of some meteorological 
phenomena could have started. At the same time, the confidence in general conclusions made by issuing from 
observations at separate locations (in particular, the belief that the Moon influenced the weather, see §4.2 
{2}) was shattered. But already the study of the deviations marked the beginning of the investigation of the 
temporal, if not spatial-temporal distribution of the elements. 
 
    4.2. The Influence of the Moon 
    This was studied already in the beginning of the 18th century. In 1777 Toaldo summarized the data per-
taining to 1671 – 1772 on the changes of the weather in different places as compared with the phases of the 
Moon. He concluded that the influence of the Moon had been essential and he could have corroborated his 
reasoning by the De Moivre – Laplace theorem (already known to De Moivre) but did not do so. Toaldo 
certainly made use of heterogeneous observations, and the binomial pattern adopted by him was hardly ap-
propriate (see §4.7). 
    Lamarck thought that the Moon strongly influenced the weather. In 1810 he isolated  25,520 ( ! )  genres 
of that influence depending on the mutual position of the Earth, Moon and Sun and on other circumstances, 
but he did not even hint at a quantitative theory. Schuebler (1830) remarked that the Moon possibly affected 
the weather because of “chemischer Verbindungen und Zersetzungen” of particles in the atmosphere rather 
than owing to the “Gesetzen der Attraktion”. He thus sidestepped the insignificance of the lunar tides proved 
by Laplace and Bouvard. 
    Only two years had to pass before Arago reported that scientists do not anymore believe in the influence 
of the Moon; he himself was then yet at a loss. But in  1845 he declared that “les influences lunaires et 
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cométaires sont presque insensibles”. Nevertheless, Muncke (1837), in an authoritative review, arrived at an 
opposite conclusion. Glaisher (the father), who studied the influence of the Moon on the direction of the wind 
(1867) and precipitation (1869) in Greenwich, agreed with him, but in 1873 Koeppen stated as a self-evident 
fact that the influence of the Moon was insignificant. 
 
    4.3. Observations 
    Networks of meteorological stations began to appear not later than in the mid-17th century. During the 
1730s and 1740s regular observations had been carried out in several Siberian cities and in 1733 Daniel Ber-
noulli compiled a manual for the Siberian stations. In 1780 the Societas meteorologica Palatina (in Pfalz, 
Germany) was founded. It existed for about 20 years and its stations in several European countries had been 
working according to a common set of rules. The Societas was the first to organize field observations (of any 
kind) on an international scale. 
    In 1801 Lamarck compiled a plan of meteorological observations for France. They were indeed com-
menced (with his participation) and continued until 1809 or 1810. Koeppen (1875)  highly praised 
Quetelet’s merit of compiling and systematizing meteorological observations in Belgium “since the early 
1840s”, and in 1850 Faraday indicated, in a letter to Quetelet, that his observations of atmospheric electricity 
were important. Not later than in 1843 Humboldt and Kupffer proposed a plan of observations in Russia to 
the Petersburg Academy of Sciences.9 Unification of observations was the main subject under discussion at 
the International Meteorological Congress in 1873. 
 
    4.4. Mean States 
    In 1818 Humboldt attempted to find out “les mouvements moyens de l’atmosphère”. Later on, in 1845, he 
conditioned the investigation of the totality of phenomena in nature by discovering the appropriate mean 
values (or states) {9}. True, his definition of climate (1831) was not directly connected with mean values, but 
subsequent authors have formulated this tie ever more explicitly, and Chuprov (1922), evidently expressing 
an established opinion, identified climate with a system of certain mean values. 
    In 1817 Humboldt introduced the notion of isotherms and contour lines of equal temperatures for two 
seasons, winter and summer; plotted the isotherms of 0, 5, 10, and 15° on a world map; estimated the fall of 
temperature with altitude; and calculated the mean temperature of the seasons for the belts situated between 
his isotherms. He thus isolated climatology from meteorology {4}. Even in 1811 – 1817 Humboldt turned his 
attention to the importance of generalizing and eliminating the “causes locales” before plotting the isotherms. 
That problem, as also the very introduction of the isotherms (“ganz nach Analogie von Halley’s isogonischen 
Curven [1701] geformt”), belong to the prehistory of the exploratory data analysis {13}.10     
 
     4.5. Deviations from the Mean 
    Dove (1837) came out against the “Herrschaft der Mittel” and maintained that the deviations from the 
mean state of the atmosphere should be studied. In 1848 he argued that a spatial-temporal study of the air 
temperature was necessary {3}. He also published vast data on the weather and it seems that he thought of 
abandoning the monthly isotherms, which he himself introduced, in favor of weekly contour lines or even of 
reducing the study of the weather to compilation of data {6}. 
    Koeppen (1874) indicated that the “Einführung der arithmetischen Mittel” into meteorology enabled an 
orientation in the weather, but that the appropriate causal connections should still be cognized. He added that 
the “allerverschiedensten Zustände” were “zusammen vergraben” in the arithmetic mean which was therefore 
“Nichts Wirkliches sondern eine abstracte Grösse“ {2}. Davidov (1857, not with respect to meteorology) and 
Lamont (1867) indicated that some means were often of an abstract nature. The latter also stated that  
 
    Die unregelmässigen atmosphärischen Änderungen nicht als Zufälligkeiten, im Sinne des 
    Probabilitäts-Calculs, sondern als Schwankungen von ungleicher Zeitdauer auffassen 
    müsse. 
 
    He apparently thought that, for example, the boundaries of these changes remained unknown, but his opin-
ion was too pessimistic: temporal changes (e.g., in the weather, or in the number of sunspots, see §5.1) are 
now considered in the context of time (statistical) series. From about 1837 Lamont abandoned temporal 
changes; instead, he studied the differences of simultaneous observations made at stations situated close to 
each other, but hardly anyone followed suit. 
 
     4.6. Abandoning the Theory of Errors 
    Quetelet (1846) knew that temporal changes in a meteorological element were often asymmetric. He pub-
lished the letters sent him in 1845 by Bravais who had provided examples of asymmetric densities from 
astronomy, anthropometry and meteorology. Nevertheless, in 1853 Quetelet declared that only “causes spé-
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ciales” and anomalies corrupted the [normal] distribution of meteorological elements. In 1891 Meyer, after 
referring to the asymmetry of the temporal changes, declared that “Die Fehlerrechnung ist in der Meteorolo-
gie principiell unzulässig”. It is remarkable that Pearson (1898) applied Meyer’s data for testing the applica-
bility of his theory of asymmetric curves to studying antimodal densities. 
 
     4.7. The Weather Depends on Its Previous States {5} 
    Already Lamarck (1804) knew that fact. In 1793 Dalton studied the influence of auroras on the weather at 
one station. He compared the number of periods of fair weather occurring after an aurora with the number 
expected if that phenomenon was not taken into account. The first number considerably exceeded the second 
one, and Dalton concluded that auroras were advantageous for the weather. He did not however count the 
actual periods of fair days occurring irrespective of the auroras.  
    Quetelet (1852) and Koeppen (1872) studied the tendency of the foul (or fair) weather to persist by apply-
ing the elements of the theory of runs. The first problem belonging to that theory concerned games of chance, 
but the first application of that theory in natural sciences apparently began in meteorology. When, at the 
beginning of the 20th century, Markov created the theory of his chains, he considered the interchange of vow-
els and consonants in the Russian language but did not mention meteorology. 
 
     4.8. Lamarck 
     Lamarck distinguished himself by concrete findings in meteorology in which he had been engaged during 
almost his entire scientific life. He thought, although not consistently, that that science was the “théorie de 
l’atmosphère” (1802), and, in 1802 – 1810, introduced the term “météorologie statistique” and its equivalent, 
“statistique atmosphérique” (the study of the climate and the winds, and of the influence of meteorological 
elements “sur les animaux, sur les végétaux et sur le sol même”). In 1846 Quetelet reasonably argued that 
the statistical part of meteorology should not be included into statistics; indeed, disciplines such as climatol-
ogy nowadays belong to the appropriate branches of natural sciences. 
    Lamarck postulated the existence of statistical meteorology, –  of a somewhat more extensive part of me-
teorology than climatology, –  and urged that the laws governing the variations in the atmosphere be estab-
lished. Without disavowing that standpoint, Humboldt directed his efforts towards the then solely possible 
statistical approach to meteorology. In 1800 – 1810 Lamarck published eleven meteorological Annuaires 
containing hardly successful forecasts of the weather in France as a whole and his theoretical considerations 
about meteorology. 
 
    5. Astronomy 

    5.1. The system of the World     
    Beginning with Kepler, astronomers attempted to discover numerical regularities in the solar system, and 
astronomy to a large extent caused the Laplacean theory of probability. Laplace deductively proved a num-
ber of astronomical facts after establishing their existence by a stochastic analysis of observations (regretta-
bly left out of his writings). Two exceptions are, a statement (due to Daniel Bernoulli) that the coincidence 
of the directions of rotation of the planets and their satellites was unlikely; and a calculation of the expected 
mean inclination of the planetary orbits (1776).  
    In 1869 Newcomb compared the theoretical (calculated according to the uniform distribution) and the 
actual parameters of the orbits of the minor planets, but he was naturally unable to appraise quantitatively his 
results. For him, these planets constituted elements of a single statistical population {3}. In 1900 he com-
pleted a methodologically similar study. Poincaré (1896) estimated the total number of minor planets 
through their known number by applying simple stochastic considerations. Both he and Newcomb confused 
the notions of mean and probable values of a random variable. 
    In 1844, Schwabe, drawing on his observations of 1826 – 1843, established that the number of sunspots 
varied periodically {3}. Without providing any analysis, he noted that the period  ( T ) roughly equalled 10 
years. In 1859 Wolf compiled the observations of the sunspots beginning with the mid-18th century and con-
cluded that  T  =  11.1 years. Then, about 1881, he analysed observations which lasted 120 years by compar-
ing 19 hypotheses concerning the value of the period sought. He calculated the deviations of the mean data 
for the separate periods from the general mean number of sunspots and applied two tests: the range of the 
deviations, and the root of the sum of their squares divided by their number, and he concluded that there 
existed two periods, 10.0 and 11.3. At present, the existence of a precise period is denied, but, anyway, the 
numbers of sunspots constitute a time series, i.e., an object studied by the theory of probability.  
    Sabine (1852) noted that the variations of the number of sunspots were positively correlated with those of 
magnetic declinations {5}. Later, in 1878, this connection was denied, but Sabine’s opinion has eventually 
been found to be true. During 1872 – 1880 the connection between sunspots on the one hand, and cyclones 
and atmospheric pressure on the other hand, was established (Meldrum, Lockyer, Blanford) {5}. It is remark-
able that no-one had then suggested that a mathematical theory (of correlation) would have been desirable. 
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    5.2. Michell’s Problem 
    Supposing that a few thousand stars were scattered “by mere chance” (uniform randomness) over the sky, 
Michell (1767) attempted to determine the probability that two stars were close to each other. His calcula-
tions were wrong, but his problem became classical. In addition, he used geometric probabilities which came 
to be generally accepted in 1777 (Buffon). Many astronomers of the 19th century returned to the Michell 
problem and remarked on the difficulty of its proper solution. Forbes (1849 and 1850) noted that an assump-
tion of a prior distribution was doubtful and that the uniform law was “more inconsistent with a total absence 
of Law or Principle” than the existence of “condensation” and “paucity” of stars. By applying the Poisson 
law Newcomb (1860) calculated the probability that some surface with a diameter of 1° contained  s  stars 
out of  N  scattered “at random”. In 1904 he reasoned (as Boole did in 1851) about the difference between a 
“chance” and a uniform distribution. F.G.W. Struve, who essentially contributed to the study of double stars, 
applied stochastic reasoning for a preliminary proof that a connection of two stars was physical rather than 
purely optical. In 1827 he calculated the probability that two or three stars were close one to another. 
     A related problem on the distance between two random points on a sphere dates back to Laplace (1812), 
Cournot (1843) and Newcomb (1861). Each of these scholars formulated it in his own way. Without refer-
ring to anyone, Bertrand (1888) solved it just as Laplace and Cournot did. Among other problems, Bertrand 
used it for proving that the term “randomly” should be defined more precisely (cf. §3.3). He called the 
Michell problem insufficiently determined. 
 
     5.3. William Herschel: the Sidereal System {6; 3} 
    From about 1784 Herschel began to count the number of stars seen in the field of view of his telescope in 
various regions of the sky. Supposing that the stars were distributed uniformly and that his telescope pene-
trated to the boundaries of the finite ( ! ) starry system, he thus attempted to determine the relative distances 
to those boundaries. He did not apply sampling, but for him the stars were elements of a single population 
{3}. 
    Later Herschel abandoned these premises, and, in 1817, he introduced a model of the distribution of the 
stars according to their distances. He placed the stars of each given magnitude  i,  i  =  1, 2, …, 7, between 
two appropriate concentric spheres (i  +  1  and  i ) but inside the rings thus obtained the stars were allowed 
to be randomly distributed, a feature also present in Struve’s study (§5.5). Herschel calculated the differ-
ences between the actual number of stars of each of the seven magnitudes and the number corresponding to 
his model. The sum of these differences for the first four magnitudes was small and he concluded that his 
model provided for them a fair approximation. Nevertheless, the individual discrepancies were too large so 
that his opinion was hardly warranted.   
     Herschel’s criterion (small value of the sum of deviations) , which he also applied indirectly when deter-
mining the direction of the sun’s motion through the proper motion of stars (1805),11 resembled the main 
condition of the Boscovich method of solving redundant systems of linear equations (1770). When determin-
ing the velocity of the sun’s motion (1806), Herschel had to choose between the arithmetic mean and the 
median. Apparently following Laplace’s early considerations, he decided in favor of the median.  
 
     5.4. Herschel: an Instructive Mistake 
    In 1817 Herschel indicated that the size of a star, “promiscuously chosen” out of the 14 thousand stars of 
the seven first magnitudes, “is not likely to differ much from a certain mean size of them all”. Since then, it 
became known that the sizes of the stars differ enormously so that the notion of their mean size is nonsensi-
cal.12 
    Herschel apparently based his reasoning on a heuristic idea which became formalized (and specified in a 
way unforeseen by him) and is now known as the Bienaymé – Chebyshev inequality. His mistake illustrates 
the fact that, in order to establish some proposition, the theory of probability, just like any other scientific 
discipline, has to issue from definite data, and that it is powerless otherwise. 
 
     5.5. F.G.W. Struve 
    In 1847 he statistically studied the linear and angular (reckoned from a certain plane) distances of the stars 
{3}. He did not indicate that his findings were of a statistical nature; true, at that time empirical distributions 
in natural sciences were hardly mentioned. He also provided a formula with statistically determined parame-
ters for calculating the maximal distances of stars of a given magnitude. Finally, drawing on statistical data, 
he argued that the interstellar space absorbed light. His proof was based on essential assumptions, but the 
existence of that phenomenon was subsequently confirmed. 
 
    5.6. The Proper Motion of Stars {3} 
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    The study of these motions for hundreds of stars (for the time being, only in the directions perpendicular to 
the appropriate lines of sight) began in the 1830s – 1840s. The results obtained (Argelander, 1837) enabled 
to determine the direction of the sun’s motion much more reliably. In 1842  O. Struve calculated the mean 
proper motion for the stars of each of the first seven magnitudes , and in 1852  F.G.W. Struve analyzed an 
even more extensive material. The middle of the 19th century can be considered as the beginning of stellar 
statistics {4}; Herschel’s merits in that field are unquestionable but his statistical calculations did not lead to 
any real results.  
    When studying the sun’s motion, astronomers, beginning with Herschel, assumed that the peculiar motions 
of the stars were random. In 1902 Newcomb assumed that the projections of the stellar motions on an arbi-
trary axis were distributed normally and determined the distribution of the motions themselves and of their 
projections on an arbitrary plane. Both of these occurred to be connected with the chi-squared distribution. 
    Already in 1843 Cournot declared that “la statistique des astres […] doit servir un jour de modèle à toutes 
les autres statistiques”, but only 40 years later Hill & Elkin (1884) stated that a general statistical study of 
stellar populations was more important than a precise determination of the parameters of some star.  
 
     5.7. Is a Statistical Analysis Needed? {6} 
    A large number of astronomical catalogs and yearbooks as well as star charts had been published in the 
19th century. Their compilation may be attributed to the tabular direction of statistics, which was contrasted 
with theoretical studies. Thus, Proctor (1873) compiled charts of 324 thousand stars and claimed that he did 
not need any theories on the structure of the stellar system. He did not find followers and the subsequent 
development of astronomy (§5.8) refuted his opinion.  
 
     5.8. A Statistical Description of the Stellar System {3} 
    Kapteyn (1906 and 1908) vividly depicted the stellar universe describing it by means of the laws of distri-
bution of parallaxes and proper motions of the stars. The (almost) determinate models of the starry heaven 
(Herschel, F.G.W. Struve), as well as the mean proper motions of stars of a given magnitude, were since 
forgotten {7}. Kapteyn (1906) also initiated a sample study of the stellar universe and until our time the char-
acteristics of faint stars are being determined in some areas uniformly distributed over the sky and addition-
ally at places of special interest, i.e., by stratified sampling. Kapteyn did not mention sample surveys of 
population that had come into practice at the turn of the 19th century. 
 
     5.9. An Astronomical Version of Correlation {10} 
    Kapteyn (1912) was not satisfied with the Galton definition of the correlation coefficient and offered 
another one that enabled to estimate the connection between the errors of two functions some of whose 
measured arguments were common. He had not referred to Gauss although his proposal was in the spirit of 
the latter’s thoughts. Kapteyn’s innovation could have been applied in geodesy if not astronomy, but it re-
mained unnoticed. 
 
     5.10. Karl Pearson 
    In 1905 – 1910 he published (partly as coauthor) several papers on the application of statistics to stellar 
astronomy. He was mostly interested in the relations between the parameters of the stars. He applied non-
Gaussian frequency curves and noted that statistics was able to indicate the directions for further astronomi-
cal research but his attempts remained unsupported partly because he was insufficiently acquainted with the 
astronomical literature. 
 
     6. Physics 

     6.1. Introduction 
     Already Daniel Bernoulli qualitatively justified the elements of a kinetic theory by statistical considera-
tions. In essence, that discipline originated in the mid-19th century after the statistical method had penetrated 
physics {4}. True, the kinetic theory had then been developing on a low stochastic level and mechanical 
discourses occurred side by side with probability-theoretic arguments (Khinchin, 1943), which was inevitable 
because probability theory “was still in an infantine state” {1}. 
 
     6.2. Clausius 
    In 1857 he introduced the notion of mean velocity of molecules and in 1858 he went on to study the distri-
bution of their free paths. Denote the random free path by �, then, in modern notation, Clausius calculated  E 
�  and determined [1  –  F ( s )]  where  F ( s )  was the distribution function of the free paths. Poisson (1832 
and 1837) was the first to introduce distribution functions and Davidov (1884 – 1885) followed him, but 
these functions had not been essentially applied until the 20th century so that Clausius’ merit is here obvious. 
Moreover, the function  F ( s )  occurred to be infinitely divisible {11}. Clausius had also applied stochastic 
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considerations for solving concrete problems and it was largely under his influence that Maxwell turned his 
attention to probability. Gibbs (1869) contrasted Clausius to Maxwell and Boltzmann and stated that Clau-
sius was concerned with mean values of random variables rather than with distributions. This is not alto-
gether true, see above, but the general picture of proceeding from means to distributions is correct {7}. It 
would have been possible to contrast, in the same way, Daniel Bernoulli to the three later scholars. 
 
     6.3. Maxwell 
    In 1860 he established his celebrated distribution of the velocities of monatomic molecules and effectively 
applied the chi-squared distribution for three (n  =  3) degrees of freedom.13 His derivation assumed that the 
components of the velocity were independent. It was repeatedly criticized and Kac (1939) and Linnik (1952) 
weakened the Maxwellian conditions.  
    In 1879 Maxwell introduced fictitious physical systems and became able to consider the probability of a 
system being in a certain phase. Actually both he and Boltzmann (§6.4) made use of an infinite general 
population (indirectly introduced by Laplace). Maxwell left many pronouncements on the statistical method. 
Physicists, he maintained, were “compelled” to adopt it (1871); it “opened up new views of nature” and is 
quite sufficient “for all practical purposes” (1873). Without directly mentioning randomness, he (1873) actu-
ally connected it with an unstable behavior of physical systems {12}. In 1875 he noted that the motion of a 
molecule could not be predicted and thus abandoned Laplace’s opposite statement, but he did not add that the 
statistical populations of molecules should therefore be studied {3}. Prophetically declaring that in future 
physicists will possibly study “singularities and instabilities”, he illustrated this opinion by the randomness 
connected with refraction in biaxial crystals (1873). 
 
     6.4. Boltzmann 
    With respect to separate molecules Boltzmann offered two definitions of posterior probability: 1) If  m  
molecules out of  M  possess property  A, then the probability that some molecule possesses it is  m/M;  and 
2) If, during time period  T, some molecule possesses property  A  for time  t,  the probability that it possesses  
A  is  t/T. Note that the second definition is based on geometric probability. In 1872 Boltzmann declared that 
the two definitions were equivalent; with respect to gas as a whole this statement is nowadays formulated as 
the ergodic hypothesis. 
    When studying the distribution of the kinetic energy of a gas among its separate molecules, Boltzmann 
(1877, 1878) employed the “classical” definition of probability. Finally, in 1899 he introduced fictitious 
systems, and, accordingly, the phase probability (cf. §6.3). In 1871 Boltzmann defined the probability of the 
state of polyatomic gas by the product such as  f d
  where  f  was some function (varying in time) of the 
coordinates and velocities of the separate molecules and  d
  was the product of the differentials of these 
parameters. Boltzmann’s arguments were mostly concerned with the case of invariable  f,  but he did not 
reason them out: he understood  f  as the number of molecules whose parameters satisfied certain restraints, 
and, at the same time, as the distribution of the states of motion among the molecules. When examining sto-
chastic processes such functions determine the distribution of a system of random variables at the appropriate 
moment  t.  Boltzmann’s writings are verbose, sometimes poorly organized and make difficult reading.14  
Khinchin’s negative opinion (§6.1) about the early kinetic theory was perhaps partly caused by that circum-
stance. 
    Already in 1871 Boltzmann began to connect the proof of the second law of thermodynamics with stochas-
tic considerations; his fundamental relation between the probability of the state of a system with its entropy is 
generally known. However, he could have illustrated the stochastic meaning of the second law by the Daniel 

Bernoulli – Laplace urn problem, independently devised, in 1907, by the Ehrenfests {1}. In 1886 Boltz-
mann declared that the 19th century will be called “das Jahrhundert der mechanischen Naturauffassung, das 
Jahrhundert Darwins” and in 1904 he stated that the evolution theory was of a mechanical nature. Similarly, 
Boltzmann (1902) argued that it would perhaps become possible to explain electricity and heat by “ver-
bogene mechanische Bewegung” whereas entropy and irreversibility will possibly be reduced  
 
    Durch Anwendung der Wahrscheinlichkeitsrechnung auf das Verhalten sehr zahlreicher 
    materieller Punkte.        
         
He also noted that the mechanical picture of the world could not yet be abandoned, owning, however (obvi-
ously bearing in mind Gibbs’ achievements) that it was changing. Thus, although Boltzmann began to re-
view somewhat his standpoint, he was not prepared to leave mechanical philosophy behind, possibly because 
he, unlike Maxwell (§6.3), did not perceive the existence of objective randomness.                                                                                 
    Even in 1872 Boltzmann understood that the main difficulty in applying the theory of probability was in 
expediently defining probability, and he unintentionally rejected the Laplacean explanation of that notion as 
incomplete knowledge. Zermelo (1900) agreed with Boltzmann in this respect, and, also in 1900, Hilbert 
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suggested that the probability theory should be axiomatized (his Problem No. 6), but he did not mention 
physics in this connection. 
    Notes 
    1. Some statistical data compiled in the 19th century led to conclusions now either forgotten or rejected 
(§§2.4 and 4.2). It would perhaps be opportune, at least in the methodological sense, to treat the available 
material anew. 
    2. Thus, he thought that the differences in the physicians’ skill led only to a “kaum bemerkbares 
Schwanken” in the overall results of treating a given surgical disease. 
    3. A more detailed description of public hygiene should have included a study of mortality in the army and 
prisons (data on morbidity were then fragmentary). I adduce now Farr’s statement (ca. 1857) which testified 
to the importance of statistics in this field): 
 
    Any deaths in a people exceeding 17 in 1,000 annually are unnatural deaths. If the people 
    were shot, drowned, burnt, poisoned by strychnine, their deaths would not be more 
    unnatural than the deaths wrought clandestinely in excess of […] 17 deaths in 1,000 living. 
 
   4. Stokes had indeed solved it, apparently by applying the Poisson distribution. 
   5. Without providing a rigorous analysis, Galton had confirmed that the former was more advantageous, 
and Fisher corroborated that opinion. 
   6. Ruse (1971) studied the first of those concepts with the express purpose of clarifying it. 
   7. He could have mentioned Laplace’s appropriate general statement: 
 
    L’action des causes régulières et constantes doit l’emporter à la longue sur celle des 
    causes irréguliéres. 
 
    8. Males and females can be considered separately. 
    9. Kupffer thought about that in 1829 whereas Humboldt had even earlier considered it desirable [7, pp. 94 
– 95]. 
    10. In 1863 Galton proposed a system of symbols for weather maps and was immediately rewarded for his 
efforts by ascertaining the existence of anticyclones. 
    11. Such determination lead to the necessity of correcting the proper motions. This is an example of a mild 
settlement of the contradiction between astronomy and statistics {2}. 
    12. Mean proper motion of stars of a given magnitude became another meaningless concept (§5.6).  
    13. Boltzmann used the same law for  n  =  2 (1877),  n  =  3 (1873) and in the general case (1881). 
    14. In 1873 Maxwell complained that Boltzmann’s “length” was “a stumbling block” for him, and, accord-
ing to Klein (1973), after about 1870 Maxwell “apparently never read” any of Boltzmann’s papers. In turn, 
Boltzmann, even in 1868, remarked that one of Maxwell’s deductions “wegen ihre grossen Kürze schwer 
verständlich ist”. 
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14. Markov’s Report on a Paper of Galitzin 

IMI, vol. 32/33, 1990, pp. 451 – 467   
 

    1. Debates among Academicians [13] 
    In 1902, Prince Boris Borisovich Galitzin (1862 – 1916), 1 a Corresponding Member of the Imperial (Pe-
tersburg) Academy of Sciences, established that a center of an earthquake can be determined from data ob-
tained at one seismological station and thus solved an important problem of seismology. Together with his 
other scientific merits, this fact prompted seven academicians, including the astronomer F.A. Bredikhin, to 
nominate Galitzin for effective membership at the Academy. The ensuing discussion was published in 1903 
[13]; this source shows that Markov, and then Liapunov, negatively spoke about some of Galitzin’s investi-
gations. The proposal of the seven academicians was not carried. Liapunov criticized one of Galitzin’s works 
belonging essentially to applied mechanics, whereas Markov destructively reported on the latter’s paper [2], 
and, not being content with the debates, expounded his views in a special article which remained however 
unpublished until now. 
    Galitzin [2] treated some theoretical material but his main goal was to publish and adjust the results of 
some of his experiments. His article [2] did not by any means belong to the central sphere of Galitzin’s scien-
tific interests and some other scholar could have well agreed with those nominating him (but perhaps admon-
ished the author for his lame publication). Markov, however, owing to his peculiar straightforward nature, 
was unable to do so. Indeed, mathematical treatment of observations was (and still is) an important step in the 
work of natural scientists, and the appearance of a weak paper on that subject in a periodical of the Academy 
could have additionally annoyed Markov, the more so since this happened just before the nomination of its 
author. 
    Markov [13, p. 5] justly declared that 
 
    Having no scientific importance, the article […] [2] hardly offers anything essential for 
    practical purposes because of the large disagreement between the results of the 
    observations reported there.  
 
He added that Galitzin’s seismological achievements had not yet stood the test of time. 
    Neither Galitzin, nor Bredikhin, who supported him, were able to object meaningfully to Markov. They 
stated that large errors were inevitable when investigating the solidity of substances, but that argument was 
ill-founded since Galitzin had apparently put forward precise numerical conclusions. One fact additionally 
characterizes his article. Markov noted that his graph did not agree with his own tabular values. Galitzin 
argued that the graph was nothing but a sketch; Markov, however, refused to accept that strange statement 
(and repeated his opinion in the paper here published). Indeed, Galitzin did not say so in his article, and his 
“sketch” showed the scales adopted for each of the coordinate axis. 
 
     2. Markov’s Paper 
    The Izvestia of the Imperial Academy of Sciences (ser. 5, vol. 18 for 1903, p. xix) announced that Markov 
had presented his paper “On the solidity of glass” and that it will indeed be published there. Nevertheless, it 
did not appear either there, or, as it seems after studying general bibliographic sources, in any other periodi-
cal. However, the manuscript of the paper was being kept in Markov’s family, and several years ago Andrei 
Markov, Junior, had given it for some time to Grodzensky who mentioned it in his book [3, p. 65], turned it 
over to the Archive of the Soviet Academy of Sciences and informed me about its existence. 
    I say manuscript; however, Markov’s work was set up in a printing office in a format used by the Izvestia 
(in particular, his name was given in an oblique case). The first page of the manuscript carries a typographic 
stamp “Printing office of the Imp. Academy. 3 [i.e., third] proof. Sent 9.IX.903. Returned …” with the num-
ber 3 and the date written down by hand. It follows that the manuscript is a proof (corrupted by a large num-
ber of insignificant misprints which I have corrected without any special notice). 
    It may be supposed that Markov did not return that proof ; in other words, that he suppressed his work. A 
natural reason for this could have been the hardly suitable form of his paper (not an original contribution but 
a review; and a detailed review at that, difficult to read without having Galitzin’s article [2] at hand). Another 
possibility is that the Debates [13] were (perhaps suddenly) to be published, or had already appeared. And, 
finally, it cannot be ruled out that by the end of 1903 Galitzin had a change of heart and at least essentially 
agreed with Markov’s criticisms. 
 
    3. Mathematical Treatment of Observations 
    Reviewing the Galitzin’s article demanded, in particular, accurate and punctilous calculations and Markov 
definitely had to spend much time on them. He was always interested in treating observations. In that area he 
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is mostly known as a staunch supporter of the then almost forgotten Gaussian definitive justification of the 
method of least squares by the principle of maximal weight (minimal variance). He included a chapter de-
voted to that method in his celebrated treatise [6] and combined it with investigation of statistical series, 
interpolation and the Lexian theory of dispersion. Such an approach is controversial, especially from the 
standpoint of methodology, but at least it reflected an attempt (then proved unsuccessful) to include directly 
the method of least squares into theoretical statistics. 
    Markov paid due attention to estimation of the plausibility of observations. Here is his hardly known pro-
nouncement […]2 
 
     4. The Theory of Correlation  
    Markov remarked that the main quantity interesting Galitzin depended not only on many variables, but in 
addition on unknown variable circumstances. At present, that correct indication would have meant that 
Galitzin’s results should have been adjusted in accordance with correlation theory that by that time (1903) 
had only taken its first steps. I ought to say that Markov did not recognize it either then, or even later. Here is 
his pertinent opinion [8,    p. 200]: The positive side of the “fashionable” correlation theory 
 
    Is not significant enough and consists in a simple usage of the method of least squares in 
    order to discover linear dependences. However, not being satisfied with approximately 
    determining various coefficients, it also indicates their probable errors, and enters here the 
    realm of imagination, hypnotism and mathematical formulas that actually have no sound 
    scientific foundation. […]   
  
    5. Some Subsequent (after 1903) Events 
    Galitzin naturally continued his scientific work and in 1908 he was indeed elected effective member of the 
Academy. This time, without recalling his previous misgivings, Markov benevolently mentioned him.3  In 
1911 Galitzin was elected President of the International Seismological Association, and, in 1916, Fellow of 
the Royal Society. He is justly considered as cofounder of modern seismology. 
    Galitzin’s relations with Markov remained (or at least once more became) normal. Indeed, in 1913, in a 
letter to Chuprov, Markov [12, p. 70] wrote: 
 
    I have not dwelt on the question of the importance of the law of large numbers to physics. It would be 
appropriate to talk about this with Prince Galitzin.4 
 
Nevertheless, in 1916 Markov [8] again, although this time indirectly, came out against Galitzin: he ex-
pressed his negative opinion about correlation theory (§4) while criticizing a paper [16] that appeared in a 
publication of the Main Physical (now, Geophysical) Observatory, and Galitzin was then both the Director of 
the Observatory and the Editor of the pertinent periodical. Markov [8] reported  at the Academy during 
Galitzin’s lifetime, but it was published after the latter’s death. 
 
On the Solidity of Glass 

A.A. Markov 

 
    Many physicists will perhaps be surprised that a mathematician who did not carry out experiments brings 
himself to speak about the solidity of glass. I hope, however, that their surprise will blow over when they find 
out that the matter under discussion is the evaluation of the conclusions made on the basis of experimental 
data by the method of mean numbers.5 The data and the conclusions on them are provided in [2].6 
    Without dwelling on whether it is necessary, for scientific or practical purposes, to search for a new for-
mula expressing the limiting pressure sustained by a glass tube instead of the Neumann formula [11, p. 145] 
 
    400 ( n2  –  1) / ( n2  +  1); 
 
without discussing whether the theoretical part of the article should have been devoted to describing the con-
clusions made in a certain manual [1] concerning an earlier solved problem [5]7; and, finally, without touch-
ing upon the issue on the extent of the agreement between the circumstances of the experiments and the as-
sumptions made in the theoretical part, I shall appraise the conclusions reached in this article. 
    First of all, however, I ought to raise a number of questions about the data there provided. Table 1 gives 
the values of eight magnitudes 
 
    Vm,  V,  R,  R�,  d,  n,  Pm,  Tm 
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three of which  ( d,  n,  Tm ) are not furnished by direct observations but determined from their connections 
with  R,  R�,  Pm.8 In order to estimate the errors of  n  and Tm  under such circumstances it was necessary to 
estimate beforehand the possible errors of these last-mentioned magnitudes, which is not even hinted at in 
[2]. From a mathematical point of view, it cannot be denied that, when  Pm  is given only to two significant 
digits, the calculation of  Tm  to three digits is a mistake.  
    It would have been very simple to estimate the influence of the error of  Pm  on  Tm  by means of Table 1, 
at least for such cases in which, for one and the same  n, we find a number of values of  Tm  corresponding to 
different values of  Pm  provided that the values of  Tm  were       
calculated quite correctly in accord with the formulas accepted by the author and issuing from the values  n  
and  Pm  indicated by him. We are obliged, however, to point out the opposite. 
    Formulas ( 25 ) and ( 26 )9  show that for a constant  n  the increment of  Tm  should be proportional to the 
increment of  Pm,  whereas in Table 1 we find for  n  =  1.12 
 
    Tm   =  3.22  at  Pm  =  40  (No. 49)10 

3.50 42  (NNo. 51 and 54) 
3.55 44  (NNo. 48 and 50)  

 
Thus, when  Pm  is increased by 2,  Tm  increases at first by 0.28, then by 0.05. In the same table, for  n  =  
1.15 we have 
 
      Tm  =  3.44  at  Pm  =  52  (No. 57) 
                3.76                  55  (No. 58) 
                3.86                  58  (No. 61) 
 
Here, when  Pm  is increased by 3,  the increment of  Tm  is at first 0.32, then only 0.10. 
    It certainly would not have been difficult to estimate the influence of the errors of  R  and  R�  on  n  in 
accord with the formula  n  =  R / R� ; however, it is not worthwhile to dwell on this until the problem about 
the errors of  R  and  R�  is ascertained. The importance of these errors increases when we turn over to the 
magnitude  Tm  which is calculated from  n  and  Pm.  In Table 1 for  Pm  =  42  we find 
 
    Tm  =   3.28  at  n  =  1.13  (No. 36) 

3.50 1.12  (No. 54) 
3.90                      1.10  (No. 86)11 

 
This clearly shows that the errors in the first digit of  n  influence the second digit of  Tm. 
    Under these conditions the problem about the errors of  R  and  R�  becomes very important, if, like the 
author of [2], we shall not restrict our attention to the first approximation, i.e., to determining the mean value 
of  Tm  over all the observations, but shall rather try to determine some dependence between  Tm  and  n  ex-
pressed by empirical formulas. Otherwise all conclusions might be corrupted by constant errors different for 
the inner and the outer sections of the tube since the influence of these errors on  n  and  Tm  varies with  R  
and  R�. 
    Concerning  R  and  R�  it is necessary to take into acccount that they do not persist for different parts of 
one and the same tube; thus,  R  =  4.37  for No. 48, and  4.50  for No. 51 whereas both these numbers, as 
shown by the bracket that combines them,12 denote parts of the same tube. This fact can be caused to some 
extent by errors of measurement, and, in part, by the form of the tube deviating from a right circular cylinder. 
However, there are no indications in [2] that the magnitudes  R  and  R�  were measured repeatedly, and in 
various directions. Furthermore, only the arithmetic means of both  R  and  R�  are given rather than their 
values at the end of the tube. 
    One of the conclusions in [2] is that  Tm  does not depend on the rapidity of the increase in pressure […] 
This inference, however, cannot be considered as well-founded. The magnitude Tm   defined by equality ( 25 ) 
and multiplied by a constant factor13 represents a function not only of many variables, but, in addition, of 
unknown variable circumstances, and these latter, as it may be presumed, play a very important part. 
    Under such conditions  Tm  cannot be considered as a function of one variable, be it  Vm  or  n  or some 
other magnitude. At the same time, it is very difficult to decide whether  Tm       depends on some quantity. In 
such cases only the method of mean magnitudes can offer some indication which will however be fairly un-
certain, especially if the experiments are not methodical but rather of a random nature, and the variables on 
which the studied quantity can depend are changing all at once.14 
    In order to prove that  Tm  does not depend on the rapidity of the increase in pressure the author of [2] 
indicates that identical values of  Tm  were obtained at different rapidities and that larger values of the rapidity 
were sometimes accompanied by lesser, and, sometimes, quite to the contrary, by greater values of  Tm.  At 
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the same time, the author considers it possible to allege that  Tm  depends on  n,  although, taking as an exam-
ple the Thüringen glass, Table 1 shows that for very different values of  n  there occur values of  Tm  equal or 
near to 4.21, 15  and that when  n  increases the magnitude  Tm  increases in some cases, and, quite to the con-
trary, decreases in other instances (and, moreover, in complete disagreement with  either Table 21 or Table 
23).16 It was thus possible to conclude that  Tm  does not depend on  n,  and, admitting (as is done in [2]) 
deviations of 50%, 17 to obtain  Tm  =  5.4  or  5.5. Thus, it was apparently possible to consider that, in the 
first approximation, in accord with the theoretical assumption,18  Tm  was constant. 
    Had the author restricted his attention to this first approximation, and omitted the conclusion of the manual 
[1], he would have compiled a short note perhaps suitable for some technical periodical and I would have left 
such a note without notice. But the author had not stopped there, he believed it possible to state that  Tm  de-
pended on  n,  and even attempted to represent that dependence by a table, or a graph, and I consider it neces-
sary to indicate that we have the same or even more right to state that  Tm  depends on  Vm, the mean rapidity 
of the increase in pressure.  
    To this end, I have compiles the following table19 from which  
    
   N       Vm       Tm        N     Vm      Tm        N     Vm      Tm 

    
  89      1.0     4.21      21    2.2     8.03     75    2.9     7.04 
  73      1.1     4.78      71    2.2     7.03     94    3.3     5.50 
  84      1.2     4.57      91    2.2     5.87     96    7.2     6.29 
  86      1.3     3.90      95    2.2     3.70     22    7.3     8.03 
  79      1.4     6.73      93    2.5     5.14     83    7.4     6.28 
  19      1.4     7.07      81    2.7     4.23     80    8.8     7.79 
  92      1.5     5.56      99    2.7     6.67     74    15.8   7.83 
  97      1.5     3.57      82    2.8     6.79 
                                   85    2.8     6.08 
 
 Sum            40.39                       53.54                     48.76 
 Mean            5.05                         5.95                       6.97 
 
it is possible to conclude that for the Türingen glass  Tm  increases with  Vm.  I have borrowed   
all the numbers from Table 1 [2] concerning that glass excepting those which either characterize the thick-
walled tubes (NNo 12 – 18) or are not accompanied by indications of  Vm.  I have omitted the thick-walled 
tubes because the author himself thought it necessary to reject three out of his seven pertninent results. 
    Going on to compare this table with Tables 20 and 21 [2] which serves its author for conclusions about the 
dependence of  Tm  on  n,  I note first of all that a large part of the numbers in these tables are arithmetic 
means of three, four or five numbers. Then, in order to ascertain the matter, we shall estimate, in accord with 
the usual method, the possible errors of the difference (6.97 – 5.05) in my table and of some differences in 
[2] which serves as the basis for the conclusions there made.  
    Simple calculations20 provide a magnitude less than 0.21 for the square of the mean error of 5.05, which, in 
my table, is  Tm  for the Thüringen glass if  Vm  <  1.5. For 6.97, which is  Tm  if  Vm  �  2.9, the same magni-
tude is less than 0.14. Therefore, applying the known formula21, we find that the mean error of the difference 
(6.97 – 5.05)  = 1.92  is less than (0.21  +  0.14)1/2  <  0.6  and does not amount to 1/3 of the derived number 
1.92.22 

    If, however, first considering the Jena glass, we take the difference (6.53 – 5.50)  =  1.03 of the two values 
of  Tm  in Table 20 corresponding to n  =  1.46  and 1.33,  we shall find by  means of just as simple  calcula-

tions that the mean error of this difference is greater than   38.0   >  0.6  and is therefore greater than one 
half of the obtained number  1.03.  Yet the   author brings himself to say (p. 23) that  Betrachten wir nun 
näher die Zahlen der Tabelle 20, so sehen wir, dass für Iennäer Glas  mit wachsendem  n  innerhalb der 
Beobachtungsdata  Tm  stetig wächst und zwar ist die Abhängigkeit fast eine lineare.    
    Finally, for the Thüringen glass (Table 21) we have for the difference (6.84 – 5.16)  =  1.68  of the values 
of  Tm   for  n  =  1.36  and  1.18  the mean error greater than                                 (0.81  +  0.13)1/2  >  0.95;  
and for the difference  (6.84 – 5.59)  =  1.25  of the values of  Tm     for  n  =  1.36  and 1.51  the mean error is 
greater than (0.81  +  0.25)1/2  >  1. Nevertheless, the author ventures to say that 
 
    Für Thüringer Glas wächst am Anfang  Tm  mit n  bis zu einem gewisser Maximum (etwa 
    bei  n  =  1.36)  um dann allmählich abzunehmen. 
 
    These conclusions can by no means be admitted as well-founded either for the Jena, or still less for the 
Thüringen glass, and not only because of the considerable magnitude of the mean error which indicates a 
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large disagreement between the main numbers, but also in virtue of the reasons explained above. So as to 
eliminate misunderstanding, I remind readers that [2] provides no information for deciding whether  Tm  
depends only on  R / R�  =  n  rather than on both  R  and  R�  separately. 
    In concluding, I believe it worth noting a number of facts characterizing [2]. For the Jena glass it offers a 
formula 
 
   Tm   =  A  +  Bn, 
 
and it furnishes even two formulas for the Thüringen glass, 
 
   Tm   =  A  + Bn  +  Cn2, 
 
  Tm   =  A  +  B / n  +  C / n2  +  D / n3                                                                     ( 1 ) 
 
which are alleged to serve for differing values of  n.  The coefficients of these formulas are however lacking. 
Not knowing them, we naturally cannot ascertain to what extent do these formulas agree with Tables 20 and 
21 on which they were based; or, how much are Tables 22 and 23 and the curves on the appended figure 
concordant with the formulas. We can only note that, for the Thüringen glass, the number of measurements 
recorded in Table 21 is equal to the total number of the coefficients of the empirical formulas, but that in  
spite of such an abundance of coefficients, some numbers in Table 23 essentially deviate from the corre-
sponding numbers in Table 21: for  n  =  1.10,  Tm  =  3.64 (Table 21)  and 3.9  (Table 23);  for  n  =  1.18,  Tm   
=  5.16  and between 4.5 and 5 respectively. 
    And, when comparing Tables 21 and 23 with the appended figure, I found out that the line for the Thürin-
gen glass on the figure does not agree with either table: for  n  =  1.20, Table 23 provides  Tm   =  5.0,  
whereas, according to the figure,  Tm   is essentially greater and approximately equal to 5.5; for  n  =  1.26, 
Table 21 furnishes  Tm   =  5.44, but, according to the figure, it is about 6.  From among the numbers in Table 
23 more than a half are in the interval from  n  =  1.55  to  2.30  for which there are no measurements. Fi-
nally, the author’s attitude towards the empirical formulas and tables compiled by him can be judged by the 
calculation of the maximal pressure sustained by a thick-walled tube (n  =  �).  In this calculation (p. 28),  Tm   
is taken to be 8.03 although such a number is lacking both in Tables 22 and 23 and, at  n  =  23, the latter 
gives  Tm   =  4.4.23  We certainly do not know what value of  Tm  at  n  =  �  is provided by formula ( 1 ), but 
we cannot forget the author’s statement on p. 29 that 
 
    Bei wachsendem  n  wächst am Anfang auch die Festigkeit  Tm  (Ienaer und Thüringer 
   Glas) um später bei fortgesetztem Wachsen von  n  mehr oder weniger langsam 
   abzunehmen (Thüringer Glas).   
 
    On p. 28 the author assumes, as an example, that  n  =  10.  I do not know to what extent are the conclu-
sions from the experiments with tubes, for which the values of  n  are several times less than 10, applicable to 
such thick-walled tubes, but I think that in any case it would have been more interesting to choose for an 
example such a value of  n  as occurred in the author’s experiments. At  Tm   =  8.03  and  n  =  2.30  the for-
mula ( 26 ) gives  Pm  �  469;  in Table 1 (No. 13) we find  Pm   =  448  which is somewhat lesser, but it con-
cerns a tube that was eliminated from consideration, whereas Table 25 provides, for  n  =  2.3,  Pm   =  258. 
    The final judgement about [2] should naturally be made by physicists. 
 
    Notes 
    1. The Russian spelling of his name was Golitzin. 
    2. Together with my commentary, it is now included elsewhere [15, p. 351]. 
    3. Archive of the Soviet Academy of Sciences, Fond 1, inventory 1a – 1908, delo 155,     pp. 118 – 118 
reverse. I am indebted to Dr. Natalie Ermolaeva for this information. 
   4. Markov discussed his future report [7] concerning Jakob Bernoulli’s Ars Conjectandi. Nothing is known 
about his (possible) conversation with Galitzin and in any case he [7] did not say anything about physics. 
   5. Markov called the method of means “the method of mean numbers” (or, below, “the method of mean 
magnitudes”). It was Condorcet, who, in a posthumous publication of 1805, introduced the term “theory of 
means” but he did not indicate its connection with probability theory. Not later than in 1830 the term became 
established. Later on Quetelet applied it and Humboldt mentioned the “einzig entscheidende Methode, die 
der Mittelzahlen”. In 1857 Davidov published a work entitled Theory of Mean Magnitudes (in Russian), and 
even in 1901 Hilbert, in his celebrated report on the problems of mathematics, maintained that, hand in hand 
with axiomatization of probability, 
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     eine strenge und befriedigende Entwicklung der Methode der mittleren Werte in der 
     mathematischen Physik, speciell in der kinetischen Gastheorie,    
 
should go on. 
     The term “Theorie der Fehler” was introduced in 1765 by Lambert, but neither Laplace nor Gauss ever 
used it. True, Bessel had several times applied it, and in 1845 – 1861 it became current. For several decades 
both terms had been existing on a par although the theory of means considered any means (e.g., the mean 
stature of male adults) whereas the theory of errors concentrated on observations of constants. Davidov was 
the first to stress the common character of treating any observations. See [14, pp. 310 – 312]. 
    6. Markov never mentioned the author of [2] by name. 
    7. Galitzin referred to [1]. Markov’s remark was far from self-evident. Indeed, Galitzin did not consider 
the history of the subject, and in general his article was mainly concerned with treating observations rather 
than with theory, also see §1 of my general commentary above. Incidentally, Markov himself (below) re-
ferred in similar circumstances to contemporaneous authors rather than to Gauss. I also note that Mendeleev 
[9; 10,  pp. 481 – 490] investigated the solidity of tubes but did not explain his method of treating the perti-
nent measurements. He determined the resistance of tubes against rupturing under pressure from within. 
    8. In Table 1 Galitzin compiled the results of investigating the solidity of glass under pressure from within. 
He had experimented on 99 tubes of different kinds of glass, mainly of the Jena and Thüringen varieties. 
Markov mentioned the following magnitudes:  Vm, mean velocity of the increase in pressure just before rup-
ture of tube;  R  and  R� ,  outer and inner radii of a tube;  d  =  R  –  R.;  n  =  R / R�;  Pm, maximal pressure 
sustained by a tube; and  Tm,  measure of solidity of glass.    
    9. Formula ( 25 ) theoretically deduced by Galitzin was 
 
    Tm  =  ( 1/4 ) ( 5Pm  +  7{ [ (Pm  –  1 ) / (n2  –  1 ) ]  –  1}). 
 
His formula ( 26 ) derived quite simply from ( 25 ) determined  Pm  through  Tm;  however, Galitzin had mul-
tiplied the latter magnitude by a constant factor thus allowing for transition from one unit of measurement to 
another one. 
    10. Markov naturally kept to Galitzin’s numbering, and, for example, No. 49 meant experiment No. 49. 
    11. Experiments NNo. 36 and 54 concerned Jena glass, and experiment No. 86 was done with Thüringen 
glass. 
    12. In his Table 1 Galitzin used brackets to denote experiments which concerned one and the same tube cut 
into parts. 
    13. See Note 9. 
    14. In those times natural scientists tried their best to exclude the possibility of several arguments (factors) 
changing all at once in their experiments. The theory of experimental design originated by Fisher in the 
1920s – 1930s, being based on a more effective statistical treatment of observations, was able to abandon that 
restriction. 
    15. Such for example were experiments NNo. 18, 20, 81 and 89. 
    16. Galitzin’s article carried 25 tables. I explained Table 1 in Note 8. Each of the Tables      2  – 19 is an 
extract from Table 1 and is concerned with one single kind of glass, and, furthermore (with a single exception 
not important for me), with a small interval of values of  n.  Each of them shows  n  as well as  d  and  Tm. 
Tables 20 and 21 are summaries for the Jena and Thüringen glass respectively. Here, for example, is Table 
20. The three numbers in the first line show the weighted mean values of Tables 5 and 6 which were con-
cerned with almost 
the same value of  n  (n  =  1.12  and  1.13); just the same,  the left part of the second line is a combination of 
Tables 7 and 8; and the other lines are connected in the same way with Tables 
     n           Tm        d          G          9 – 11. Thus, the last line repeats the mean                                                        
  1.12      3.67     0.55       12         values previously calculated for Table 11. The last column 
  1.33      5.50     1.04        7          shows the number of experiments (12 is the total number of  
  1.36      5.53     0.80        4          them represented in Tables 5 and 6 taken together). 
  1.39      5.96     1.25        4              Tables 22 and 23 provide the results of Galitzin’s  
  1.46      6.53     1.36        4          calculations of  Tm  by his empirical formulas for the two 
                                                      mentioned above kinds of glass respectively, see below. Finally, in Tables 
24 and 25 he summarized the magnitudes  Pm  calculated for given values of  n  and for values of  Tm  taken 
from Tables 22 – 23. 
    17. Markov bears in mind the relative error of  Tm. 
    18. It is unclear which assumption is mentioned here since one of Galitzin’s formulas connected  Tm  with  
n,  see Note 9. 
    19. In this table,  N  denoted the number of the experiment. 
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    20. Here and below Markov calculated the square of the mean square error of the arithmetic mean. He 
referred to [4, p. 244] and [17, Chapters 5 – 7]. 
    21. Here and below Markov bore in mind the formula for the mean square error of a sum of several inde-
pendent terms. 
    22. Markov could have mentioned here his test of significance, see §3 of my commentary. 
    23. Number 8.03 is the maximal value of  Tm  in Table 1. The tube with the thickest wall in Table 23 has  n  
=  2.35  and the corresponding value of  Tm  is 4.4. 
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14. Markov’s Letters to the Newspaper Den, 
1914 – 1915. IMI, vol. 34, 1993, pp. 194 – 206 

  

 1. Introduction 

    1.1. General Explanation 
    Markov wrote a large number of letters to several newspapers. His sharp statements on burning social 
issues are indeed interesting, and Grodzensky, who reprinted some of them in his book [1], rendered an es-
sential service to his readers. However, a number of letters, addressed to the newspaper Rech and found by 
Grodzensky in several archives, never appeared in print [1, p. 100]. Apparently, they were considered auda-
cious or impudent. Markov’s social activity and certainly his newspaper articles in particular resulted in that 
the press nicknamed him Militant Academician [2, p. 9]. Neyman [3, p. 486] reported that he had a second 
nickname as well, Andrew the Furious. Later Neyman also attributed to Markov a “limerick” about a Duke 
Dundook [4, p. v], but it was Pushkin who had composed a satiric verse (not a limerick) about Prince (not 
Duke) Dundook.1 
    I am reprinting three newspaper letters written by Markov and devoted to the methodology and teaching of 
mathematics. All of them were published in a leftist newspaper Den (Day)2. Minkovsky [5] briefly described 
Letter No. 1, Nekrasov [2, p. 8] referred to Letter No. 3, and I discovered Letter No. 2 making use of 
Markov’s obscure indication in No. 3. 
    Pavel Alekseevich Nekrasov (1853 – 1924) [6], who will be prominently mentioned below, graduated 
from Moscow University. He taught there from 1885 as Privat-Dozent, then as Professor and became Rector 
in 1893. He published important investigations in algebra and probability theory; his dissertation, “The La-
grange series” (1886), is a noteworthy writing. Regrettably, his work is hardly studied. Youshkevich insuffi-
ciently described it in his book [7], and he was not even included in the well-known biographical dictionaries 
compiled by A.N. Bogoliubov or A.I. Borodin & A.S. Bugai. This was certainly caused by Nekrasov’s reac-
tionary political views and his activities as Rector of Moscow University, warden of the Moscow educational 
region, and, from 1905, in Petersburg, high-ranking official at the Ministry of Public Education. 
    Archival documents [8, p. 378] testify that Nekrasov pursued a tough policy towards the revolutionary-
minded students. An anonymous author [9] vaguely corroborated this and expressed his hope that Nekrasov, 
in his next position as warden, will continue to educate young people “in the spirit of duty to God, Czar, and 
Fatherland”. At the turn of the 19th century Nekrasov’s activities underwent a sudden change and it may be 
supposed that his long-term work as an administrator coupled with failure to understand the spirit of the 
times was at least partly responsible for this fact. The writings of this eminent scientist became unimaginably 
verbose and hardly intelligible; he began to connect his mathematics with religion and politics and for this 
reason alone neither Markov, nor Liapunov perceived there any word of truth. Furthermore, mathematicians 
concluded that no scientific debate with Nekrasov were possible. Here is Liapunov’s opinion [10, p. 62] 
about his pronouncements on the limit of function: 
 
    All of Nekrasov’s objections are based on various misunderstandings. Then, some of 
    them are not more than unsubstantiated declarations […] whereas the other ones either 
    do  not at all relate to the subject-matter of the criticized papers, or are distinguished by 
    extreme vagueness.[ …] If Nekrasov will see fit to put forward objections of the same 
    kind, I shall consider myself free from answering them. 
        
Similar statements were due to Markov [11, p. 77] and Posse (also see Note 14). 
    Nekrasov’s unpublished letters (1916) to P.A. Florensky testify to his political views. Here, for example, is 
a passage from his letter of 26 November: 
        The Moscow school put forward the principles of the language of Christian science and 
        repulses the language in the style of Karl Marx, Markov, Ya.I. Lintsbach. The 
        comparison of the books of Lintsbach, Markov[ …] with those of the representatives of 
        the Moscow philosophical-mathematical school clearly shows the crossroads to which 
        the German-Jewish culture and literature are pushing us. 
 
It is hardly amiss to note that Lintsbach [12] did not discuss either Marxism or religion. 
       So it happened that Nekrasov joined hands with the Black Hundred, as stated in plain terms by Markov 
Jr. [13, p. 89]. But, to repeat, Nekrasov’s scientific achievements should not be forgotten. As an additional 
point, I note that Zhukovsky [14, p. 639] indicated that Nekrasov had helped him in solving a certain mathe-
matical problem. Seneta [15, §§6 – 7] described Nekrasov’s findings in probability and put on record that he 
had definitely influenced Markov (who sometimes referred to Nekrasov without criticizing him [16]). 
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      1.2. The Teaching of Probability Theory in Schools (Letter No. 1) 
      In 1914 Nekrasov made an attempt to introduce probability theory into the school curriculum. He distrib-
uted a memorandum written by P.S. Florov; then, in 1915, he published an extensive article [17] containing 
Florov’s pertinent program, comments made by many mathematicians during a discussion organized by the 
Ministry of Public Education and carried out by correspondence, the appropriate materials of the Second All-
Russian Congress of Teachers of Mathematics (1914) and his own considerations in favor of the Florov’s 
program. 
    Many participants in the discussion overstepped its limits by insisting on the inclusion of the fundamentals 
of mathematical analysis and analytic geometry in the school curriculum, but all of them understood the 
additional difficulties of any changes caused by war conditions. Markov apparently was not invited to take 
part in the discussion but he expressed his opinion on the subject in an ad hoc paper [18]. “The leading idea” 
of the Florov and Nekrasov project, he indicated (p. 33), consisted in “the need to acquaint the school stu-
dents with their works”. In essence, he (p. 26) stated that his viewpoint was close to the opinions of A.V. 
Vasiliev and B.M. Koialovich (his student, an author of textbooks, including those on probability theory, 
which had been appearing at least until 1931). Vasiliev in principle approved Nekrasov’s project, and he, like 
Koialovich, was mainly objecting to Florov’s program. Vasiliev also remarked that the theory of probability 
provided apt illustrations for combinatorial analysis and fostered logical reasoning, and that Kraevich, al-
ready in 1864, had included a felicitous section on probability in his celebrated collection of problems for 
school students [19]. Thus, Markov favorably commented on Nekrasov’s idea but had not said so directly, 
nor did he offer his own program.3 
    Nekrasov appealed to the Vice-President of the Imperial (Petrograd) Academy of Sciences with a request 
to consider the possibility of implementing his proposal [20, pp. 96 – 97], and, on Markov’s initiative, the 
Academy established an ad hoc commission , which included him, to study the Florov project. The commis-
sion agreed with Markov’s negative opinion about the project and accused Nekrasov of aiming “to turn pure 
science into an instrument for bringing religious and political pressure to bear on the rising generation” [21, 
p. 105 – 106]. The commission did not examine in essence the teaching of probability, but “some” of its 
members (p. 102) were in principle against including that discipline into the curriculum. In itself, the theory 
of probability is certainly not a weapon of religion or politics, and it may be thought that the conclusion of 
the commission was conditioned by Nekrasov’s well-known ideological views (§1.1). 
    Nekrasov continued to advocate his proposal (which was never implemented).Thus, he published a letter 
received from B.V. Stankevich (1916), the Head of the Physical Institute at Moscow University. There 
Stankevich [22, pp. 27 – 29] testified that probability “is only taught to senior students, and solely at the 
Mathematical Department” and that he felt himself “greatly strained in that the […] listeners are not ac-
quainted even with the elements of probability”. He therefore cannot help wishing “the introduction of a 
short course in the theory of probability in the school curriculum”.4 It seems that in 1914/1915 probabilty was 
not taught even at the Mathematical Department in Moscow, and this very fact makes Stankevich’s opinion 
hardly convincing.5 
    Nekrasov devoted a special booklet [2] to the described episode, and, what is more important, to his rela-
tions with Markov. It is still unstudied and I shall only indicate that Nekrasov, first, published six of 
Markov’s letters/postcards to him (1915/1916, pp. 56 – 62) 
and alleged that they had contained swear-words (which he omitted before publication); and, second, main-
tained (not, however, for the first time) that Markov had without due acknowledgement made use of some of 
his findings. Finally, back in 1898 – 1899 Nekrasov asked A.I. Chuprov to assist him in introducing a course 
in probability theory at the Law Department in Moscow. No practical consequences ever followed, see the 
translation of their correspondence in this collection. 
 
    1.3. Seminarists (Letter No. 2) 
    For at least many decades a considerable part of the graduates of theological seminaries had been entering 
universities. Thus, at Petersburg in 1875, 45.7% of the students at the Department of Natural Sciences were 
former seminarists; at the Department of Mathematical Sciences they amounted to 11.5%; and there were 
29.2% of them at the University in general [23, p. 90]. The same source (p. 93) stated that the seminarists 
were much worse prepared for studying in universities than the recent alumni of gymnasiums, and that, for 
Russia as a whole, 53.3% of those who entered the universities in 1875 were such alumni whereas former 
seminarists comprised the “main” part of the rest 46.7%. 
    I have no such data for the turn of the century, but in any case by the beginning of the 20th century the 
secular education at the seminaries undoubtedly worsened. In 1911 The Most Holy Synod, “in executing the 
Imperial will”, had worked out new regulations for the theological academic institutions “in the spiritual 
direction” [24, p. 3]. Before those regulations came into effect, “many members of the scientific staff” had 
abandoned the theological academies, and “cases became possible when figures absolutely unknown in sci-
ence, but sufficiently noted in the arena of political struggle within the Church, were appointed to be profes-
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sors” [25, p. 209]. And we may assume that a similar process had been going on in the seminaries, so that 
Markov’s opinion that seminarists, when entering universities, should not be preferred to the “realists”, was 
quite justified. 
 
     1.4. Infinitesimals (Letter No. 3) 
    An infinitesimal is a variable whose limit is zero. Citing that definition due to Cauchy, Markov added that 
he did not reckon zero among the values of an infinitesimal, see however Note 19. Nekrasov [26, p. 459] 
declared that Markov [11, pp. 11 – 12] “was apparently restoring” the Eulerian terminology. Euler, however, 
is known to have considered an infinitesimal as equal to zero [27, p. 267]. Youshkevich [27] traced the de-
velopment of the concept of infinitesimal in the 18th century, and, since the difference between actual and 
potential infinitesimals had not affected Markov’s scientific work, I leave this subject alone. Note, however, 
that Markov [11] did not treat infinitesimals and that the page numbers (11 – 12) as given by Nekrasov did 
not belong there. On the other hand, Markov [11, p. 81] quoted Nekrasov who had declared [28, pp. 49 – 50] 
that a variable  ( P )  should be considered as equivalent to its limit ( L ),  i.e. that the ratio  P / L  should tend 
to zero. He then ascribed that trivial statement to the case of a variable ( ? )  L  and for some reason accused 
Chebyshev, Liapunov and Markov in that they had believed that condition ( P – L )  �  0  was sufficient for 
such a value of  L  to be the limit of  P.  Thus, as Nekrasov continued, quite logically following his own 
ideas, his opponents had thought that, for example, with  n  >  0  xn  tended to sin x  as  x  �  0! 
    Markov indicated in his Letter No. 3 that Nekrasov had attempted “to direct the teaching in schools to a 
wrong track”. Posse [29, p. 72] was of the same opinion: 
 
    Nekrasov attempts to discredit an entire school of mathematicians whose representatives 
    are all the Petrograd  (and not only Petrograd) professors in the eyes of the teachers and 
    students of high schools, and to direct the teaching of mathematics in these schools to a 
    wrong track. I do not consider it possible to pass that attempt over in silence the less so 
    since Nekrasov published it on the pages of an official periodical of the Ministry of Public 
    Education …   
      
   2. Markov’s Letters 
   2.1. Letter No. 1. Newspaper Den, 30 Jan. 1914, p. 4 
   A question for the Ministry of Public Education 
    I have recently found out that the Min. of Public Education is occupied with the problem of introducing the 
teaching of the elements of the theory of probability into high schools. I even have in my hands a printed 
memorandum on this subject written by P.S. Florov with comments by P.A. Nekrasov, a Member of the 
Council of the Minister of Public Education. Concerning its substance, I shall only say that it is very contro-
versial and cannot serve as a foundation for establishing the teaching of probability theory in high schools; if 
required, I shall analyse it in detail at a later date.6 
    At present, I ought to indicate that the Min. of Publ. Educ. did not yet ask the representative of the “theory 
of probability”7 at Petersburg University, i.e., me, to submit his conclusion about that subject. I think that no 
serious business can be done without the participation of appropriate specialists, provided there is no deliber-
ate intention to do it pell-mell and badly. I ought therefore to ask the Min. of Publ. Educ. whether it is really 
seriously engaged in the problem of teaching the “theory of probability” in high schools or considers it as an 
amusement of Professor Nekrasov now idling away his time?8 
 
     2.2. Letter No. 2. Seminarists and Realists. Newspaper Den, 11 Aug. 1915, p. 3 
    As stated in the newspapers, the seminarists are allowed to enter the physico-mathematical department9 
without any special examination, whereas the issue about admitting realists10 to the department is left open. It 
is difficult to say that such a situation is normal. There is no sharp contrast between the schooling11. Latin, 
that distinguishes the first from the second, is not necessary for the physical and mathematical education. As 
to the seminarists, they are getting accustomed by their schooling to a special kind of reasoning. A seminarist 
must subordinate his mind to the indications of the Holy Fathers and replace it by the texts from the Scrip-
ture. The seminary’s wisdom can be very deep as is shown by the fundamental writing [30],12 but it is far 
from real science and is only able to establish religious truth for the believers. Such wisdom easily leads to 
the desire to place “the religious – scientific – political experience under the educational coat of arms” above 
science. Referring the readers to Nekrasov’s article [32] where they will find not only the senseless verbiage 
quoted just above, but also specimens of sage statements of special subtlety, I cannot help expressing great 
doubts about the suitability of the seminarists for the physical and mathematical department. In any case, they 
should not be preferred to the realists. 
 
     2.3. Letter No. 3.  Newspaper Den, 28 Oct. 1915, p. 3 
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    Dear Mr. Editor, – Allow me to raise two questions for lawyers through your respected newspaper. What 
measures can be taken, in the hope of succeeding, against the misuse of the [freedom of the] press if done by 
an official periodical? And, is the Editor of such a journal as responsible a figure as the editors of other or-
gans of the press, or is all his responsibility restricted by unquestionably executing the will of the authorities? 
    In addition, since the 0�	��
 *������	���� ... [J. Min. Publ. Educ.] corrupted the facts, I am asking 
you to publish the following letter which I had sent to Mr. Radlov but which he refused to make public.13 I 
ought to indicate that the business concerns an issue of a social importance since Nekrasov, a Member of the 
Council of the Minister of Public Education, profiting by his influence, attempts to direct the teaching of 
mathematics in high school on a wrong track. 
    Dear Sir, Ernest Lvovich [Radlov], – Since the periodical which you are editing, carried two polemic arti-
cles by Nekrasov directly concerning me [32; 33], I am asking you to find  place in your journal for the fol-
lowing explanation. 
    Professor Posse [29] had indicated some peculiar features of Nekrasov’s style.14 Without calling in ques-
tion the existence of those features, Nekrasov [33] maintains that he catched his style from me.15 This state-
ment is not true since such a style is absolutely foreign for me. Just as I disagree with him on mathematical 
topics, so also I differ from him in style. In particular, I think it reasonable to pass over in silence all that 
which does not concern the business at hand and do not allow any confusion of mathematics with religion 
and politics. 
    Then, Nekrasov repeatedly referred to scientific societies. He said that I had taken the principles of the 
theory of limits to the court of scientific societies and that our debate was done away by them.16 Later he 
declared that his definition had passed the crucible of the judgement of a scientific society so that the reader 
can be sure of its truth.17 These references do not accurately reflect reality. Never had I taken the principles 
of the theory of limits to the court of scientific societies. Regarding these principles I ought to say that I did 
not introduce there any innovations. In my lectures on the diff. calc. I defined infinitesimals similar to how 
already Cauchy [34, p. 26] did it 
 
    (On dit qu’une quantité variable devient infiniment petite lorsque sa valeur numérique 
    décroit indéfiniment de manière à converger vers la limite zéro) 
   
 and how they are defined in many foreign and Russian textbooks (for example, in the abovementioned book 
of Posse18), only I add the following words:19 
 
    It is important to indicate that we do not reckon its limit, zero, to the totality of the values  
   of an infinitely small number.20 
 
These words do not unite me with Nekrasov, but in this particular case they are decisive. 
    I shall not repeat or explain what I said before about Nekrasov’s discoveries,21 and I shall end my letter by 
indicating the resolutions of scientific societies. Nekrasov’s paper [26] begins thus: 
 
    Editorial note. Nekrasov submitted this paper as an answer to Markov’s article [11] and it is published in 
accordance with the decision of the Moscow Mathematical Society: to place in the Matematichesky Sbornik 
one article written by each of the two authors and devoted to the issue under consideration. 
 
And, the proceedings of the sittings of the Kharkov Mathematical Society on 19 Jan. 1914 [38] carry the 
following: 
 
    The letter of Markov concerned with his debate with Nekrasov was heard out. The Society, 
    having heard and discussed it, being guided by the principle that both sides ought to be put 
    as far as possible in identical positions, resolved to open the pages of the Soobshchenia for 
    Markov’s answer, if only he wishes to avail himself of that opportunity. 22                            9 Oct. 1915  
    So that the readers of the newspaper Den can form some opinion about Nekrasov’s style, I consider it not 
amiss to refer to the end of one of his phrases already mentioned by me [in Letter No. 2]: 
 
    Then only the religious – scientific – political experience under the educational coat of arms, similar to the 
one contained in the Arithmetic published (about 1700) by order of Peter the Great, is left.23 
 
24 Oct. 191524 
 
    Notes 
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    1. It seems possible that Markov recited the satirical verse “Prince Dundook” (rather than composed it) and 
directed it against Prince Galitsin, see the appropriate piece in this collection. The verse stated that the imagi-
nary prince Dundook became Academician only because having been endowed by an ass.    
    2. After the February revolution (1917), some Mensheviks (Russian social-democrats opposed to the Len-
inist Bolsheviks) were included in its editorial staff. The newspaper was suppressed in 1918. 
    3. He also opposed the idea of including mathematical analysis and analytic geometry in the curriculum, 
but did not elaborate. 
   4. Senkevich also reported that V.Ya. Tsinger, in the 1880s, “had used to say” that the kinetic theory of 
gases was “anarchic”, whereas N.Ya. Sonin, in the 1890s, “although he did not approve of the theory, had 
regarded it already with some leniency”. 
   5. See Note 19 to Nekrasov’s correspondence with A.I. Chuprov (in this collection). 
   6. Later on Markov had indeed published a paper [18] devoted to the teaching of probability theory in 
school (§1.2). 
   7. The term theory of probability occurs several times in this Letter, twice in quotation marks. The Editor 
had apparently inserted them believing that the term was not sufficiently known.    
   8. A few lines above Markov (correctly) indicated Nekrasov’s position, so that his phrase is hardly under-
standable. 
   9. The singular form is strange. 
  10. Alumni of non-classical schools, cf. the German Realschule. 
  11. Obviously, between the seminaries and the non-classical schools. 
  12. This book contains an extensive supplement of a natural-scientific and mathematical nature and several 
hundred appropriate references, also see [31]. 
  13. On this point see Radlov’s letter to Markov of 8 Oct. 1915 (Archive, Russian Academy of Sciences, 
Fond 173, inventory 1, 59 No. 3; fragment translated in DHS 2579, 1998,           p. 100).      , 
  14. Posse [29, p. 71] indicated that Nekrasov 
 
    Likes to strike his opponent with apparently very serious, but actually very obscure phrases 
    [ …] and [ …] when quoting the words of his opponent, he sometimes changes them and  
    attributes to them something that they nowhere and never said.    
 
   15. Here are Nekrasov’s words [33, p. 97]: 
 
    I was challenged to the debate by the argumentation of my opponent, whom I answered by 
   duty and catching his polemic style. 
 
   16. Here is the appropriate passage [32,  p. 12]: 
 
    Here [18, pp.  27 – 28] Markov provided as proof the principles of the theory of limits 
    which he [11, p. 81] had already taken to the court of scientific societies and gotten 
    there  my adequate response [26, p. 459]. 
 
In these articles nothing, however, was said about a “court of scientific societies”. Also see §1.4. 
    17. I quote Nekrasov [33, p. 101]: 
 
    My definition [26, p. 459] does not please Posse, but it passed the crucible of the 
    judgements of a scientific society so that the reader can be sure of its truth … 
 
He never explained what did he mean by the truth of a definition. 
    18. Markov apparently bears in mind the definition in Posse’s book [35], but he had not mentioned any 
such book before. 
    19. Markov referred to his textbook of 1898 which I did not see; however, the same definition is contained 
in its later edition [36, p. 45]: “A variable tending to zero is called an infinitesimal. It is important to note …” 
The report of the Commission established by the Academy of Sciences (1916) contained an explanation to 
the effect that Markov’s qualification remark was called forth by considerations of convenience [21, p. 101]. 
Markov was a member of that commission. 
   20. Hardly a proper term. 
   21. In 1910 Markov [37] declared: “I never confirmed and cannot confirm any of Nekrasov’s discoveries 
…” 
   22. Markov’s answer never appeared. 
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   23. Nekrasov referred to Magnitsky [39]. The coat of arm (let it even be “educational”) depicted there is 
described by Gnedenko [40, p. 57]. Nekrasov maintained that a course in mathematics restricted to deduction 
(i.e., without probability theory, as it followed from the context) was only a “religious – scientific – political 
experience”. It is hardly possible to understand him, but in any case induction is connected with statistics 
rather than with probability. 
   24. The newspaper Den provided a brief summary of the debate between Markov and Nekrasov by publish-
ing a paper by Pavel Youshkevich [41] three weeks after Letter No. 3 had appeared, cf. [42, p. 307]. 
 
    Acknowledgements. S.S. Demidov acquainted me with P.A. Nekrasov’s letters to Florensky which are kept 
by the family of the latter. M.V. Chirikov suggested some editiorial changes in my manuscript. 
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15. The Correspondence of Nekrasov and Andreev 

IMI, vol. 35, 1994, pp. 124 – 147. Coauthor: M.V. Chirikov 

 

    1. General information 

    1.1. Introduction 
Pavel Alekseevich Nekrasov (1853 – 1924) [1, §5; 2], Professor and Rector of Moscow University, then a 
prominent official at the Ministry of Public Education, was a distinguished mathematician and a religious 
person. A Platonist according to his philosophical views, he kept to reactionary political convictions. Kon-
stantin Alekseevich Andreev (1848 – 1921) was a Corresponding Member of the Imperial (Petersburg) 
Academy of Sciences, a geometer and Professor at Kharkov and Moscow. The correspondence of Nekrasov 
and Andreev1 was devoted to many subjects: the teaching of probability theory in high school; the encounters 
of both of them (but mostly of Nekrasov) with Markov;2 the foundations of mathematical analysis; the central 
limit theorem (CLT). The main student of the contemporaneous history of that theorem is Seneta [4, §§6 and 
7].3 For us, it suffices to say that in 1898 Nekrasov [5], having applied the methods of the theory of functions 
of a complex variable, sketched the proofs of the local and integral forms of the CLT for large deviations for 
sums of lattice random variables. His work made difficult reading and nobody appreciated it; the fate of his 
later writings proved to be just as dismal (cf. §1.3). 
    In his letters to Andreev Nekrasov repeatedly asked him to ascertain the possibilities of discussing some 
problems, and of reporting at the MMS, and we emphasize that the former, although being an “elder” there 
(see Letter 11), never occupied any official position at the Society. On the other hand, it follows from the 
concluding salutations in the letters of both Nekrasov and Andreev that there existed ties between their fami-
lies. 
 
    1.2. The Teaching of Probability Theory in Schools 
    Nekrasov’s attempts [6] to introduce the theory of probability into high school are well known [2, §2].4 
Like many other reformers, he had not thought about the difficulties of management which would have arisen 
had his proposals been implemented. Furthermore, for some reason he based them on P.S. Florov’s program 
compiled by that mathematician on a low theoretical level. A number of scientists beginning with Markov [8; 
9] had therefore come out against Nekrasov’s attempt and killed it. 
    Not feeling himself defeated, Nekrasov continued to explain his theoretically correct viewpoint in private 
letters. His main step, however, was an appeal to the Vice-President of the Academy of Sciences, the phi-
lologist P.V. Nikitin.5 As a result, on Markov’s initiative, the Academy established a commission which 
sharply denounced the Florov – Nekrasov proposal [10], but, at the same time, missed the opportunity to 
reform the Russian school program. Still, Nekrasov stood his ground [3]. In particular, he (pp. 44 – 45) listed 
the commissions and congresses of the teachers of mathematics, which, over the years, had to do with the 
school mathematical curriculum and stressed that in 1914 the commercial schools had included elements of 
probability theory into their program “in spite of the brakes created by Markov and his colleagues”. For the 
sake of comprehensiveness we list Nekrasov’s writings at least partly devoted to the teaching of probability 
in schools [11 – 17; 6; 18; 3] and we quote his generalizing declaration [3, p. 51]: 
 
    At bottom, my official activities in defining the various types of schools and mathematical 
    programs […] are reduced to an ideological struggle that aims at completely upholding the 
    classical values of the mathematical education in all types of the general school.6  
 
    1.3. Nekrasov’s Writings. Some Conclusions about Them 
    From about 1900 Nekrasov’s mathematical writings became unimaginably verbose, sometimes obscure 
and confusing, with mathematics being inseparably connected with ethical, political and religious considera-
tions. Markov [19; 20] expressed himself against this manner of exposition and Youshkevich [21] offered a 
number of Nekrasov’s phrase-mongering to illustrate his intolerable style. Much earlier Bortkiewicz, in a 
forgotten paper [22], accused Nekrasov of oily words (p. 215), reactionary longings (p. 216) and of attempt-
ing to justify “the principles of strong rule and autocracy” by the theory of probability (p. 219). 
    Nekrasov [13], however, expressly declared that a consolitismic [ ! ] basic education should be of a scien-
tific – religious – national – state nature”. It is still possible to understand this statement but not his own writ-
ings compiled according to the same principle. Then, coming out for the introduction of logic into schools of 
all types, and considering [11, p. v] that school mathematics should be based on logic, he (p. iii) included 
elements of probability theory and the Jakob Bernoulli theorem into it. Mathematics, as he declared in addi-
tion on p. 9, accumulated  
 
    Psychological discipline as well as political and social arithmetic or the mathematical law 
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   of the political and social development of forces depending on mental and physiological 
   principles! 
 
    This monstrous phrase apparently had to do with the works of Quetelet. Elsewhere, in connection with the 
statistical method, Nekrasov [7, p. 29] mentioned “problems of labor, and public wealth, of credit, insurance 
of life and capacity to work”. Not restricting his efforts by upholding his own views, Nekrasov had been 
accusing Markov of pan-physism7 and of following Nietsche only because his opponent did not lump to-
gether mathematics with ethics, philosophy etc. [18]: 
 
    The mathematical language [must] […] embrace supreme ethics, [be] together with 
    conscience (with theology) [ …] However, the mathematical language of such pan 
    -physicists as Markov is of another kind, it is Nietzschean and does not recognize supreme 
    ethics (theology).     
 
    All the above excepting the support of Florov’s unfit program (§1.2) is yet compatible with subjective 
scientific honesty. However, mathematical mistakes and unwarranted statements indicated by Markov [24; 
20], Liapunov [25] and Posse [26], also see [2, §4], impede even this conclusion.8 The abovementioned pecu-
liar features of Nekrasov’s style prevented the recognition of his works, and, to the contrary, favored his 
being considered only as a muddleheaded reactionary, We are unable to comment on a statement [27, p. 225] 
that he suffered from a mental illness, but it is impossible to deny Andreev’s opinion formulated by him in a 
letter to Liapunov in 1901 [28, p. 40]: Nekrasov 
 
    Reasons perhaps deeply, but not clearly, and he expresses his thoughts still more 
    obscurely. I am only surprised that he is so self-confident. In his situation, with the 
    administrative burden weighing heavily upon him, it is even impossible, as I imagine, to 
    have enough time for calmly considering deep scientific problems, so that it would have 
    been  better not to study them at all.9 
 
    Agreeing with Andreev, we believe that all of Nekrasov’s philosophical and mathematical statements 
should be regarded as doubtful. At the same time, we provide illustrations of his deep thoughts which enable 
us to consider him as some mathematical Nostradamus. Thus, 
     1) His ideas about the dominance of logic (above) sounds really modern since it is possible to assume that 
he also bore in mind mathematical logic.                                                            
     2) In connection with the mathematical study of indeterminacies Nekrasov [7, p. 23] mentioned almost all 
the main problems of the then not yet existing theory of catastrophes (and used the term catastrophe).  
    A special point concerns three Nekrasov’s mistakes of constructing/spelling and his own coined words.10 I 
attempted to preserve the former in translation so that the reader will see consolitismic (§1.3), equivalentness 
(Letter 9) and illiteracism (Note 38). A mistake of another kind is his use of pamphlet for an article. 
 
    1.4. Markov’s Polemic Style 
    Nekrasov repeatedly complained in his writings about the sharp tone of Markov’s polemic statements and 
even about the rudeness of his private letters [3, pp. 56 – 62]. Andreev  believed that scientific debates with 
Markov were simply impossible. Here is a passage from his letter of 13 April 1901 to Liapunov [28, p. 42]:11 
 
    I have experienced on myself all the annoyance of debating with a man who does not like 
    to restrict his sharp expressions at somebody else’s expense. Markov all but scolded me. 
 
    Then, Slutsky (letter of 22 Nov. 1912 to Chuprov [68, p. 44]) tactfully remarked that Markov possessed an 
“unusual” manner of writing private letters, whereas Chuprov, in a letter to an English statistician Isserlis 
written late in 1925 or early in 1926 (Ibidem, p. 55), indicated that 
 
    Markov’s temper was no better than Pearson’s; he could not tolerate even slightest 
    contradictions either. 
 
However, Markov’s very critical letter of 29 April 1913 to N.A. Morozov,12 a former political prisoner, was 
polite and ended in a way unusual for him: “Please be assured of my perfect esteem and devotion”. 
    Acknowledgement. S.S. Demidov acquainted us with Nekrasov’s letters to Florensky which are being kept 
by the latter’s family. 
 
    Notes to §1 
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    1. Archive of Moscow State University, Fond 217, inventory 1, No. 45 (Andreev’s letters) and No. 92 
(letters written by Nekrasov). 
    2. This second topic is also described in [2], which, however, was based on Markov’s newspaper letters. 
Nekrasov himself [3, p. 52] attributed the beginning of his sharp scientific debates with Markov (not yet 
regarding probability) to the beginning of the 1890s. Seneta [4, p. 70] noted that in those days (in 1892) the 
relations between the two mathematicians were yet normal: Nekrasov even read out one of Markov’s reports 
to the Moscow Mathematical Society (MMS).  
    3. Seneta also provided sufficient information about Nekrasov’s life. In lesser detail he described Nekra-
sov’s efforts to introduce probability theory into high school. 
    4. Very interesting are Nekrasov’s more general thoughts [7, pp. 30 – 31] on the teaching of mathematics 
in school. They allow us to perceive his notion of “classical values” of the appropriate course. He recom-
mended to include the theory of probability, elements of analytic geometry and analysis as well as the “con-
secutive approximate analysis” into the school curriculum. He related the last-mentioned subject to induction 
(understood in a wider sense) and he mentioned in this connection Laplace, Poincaré and other scholars (p. 
19). He attached much importance to the establishment of mathematical classrooms and the educational use 
of cinema (pp. 30 – 31). 
     5. Nekrasov [3, pp. 55 and 58] subsequently published two letters to Nikitin written on 29 Sept. 1915 and 
5 April 1916. 
    6. Cf. Nekrasov’s statement from his letter to P.A. Florensky of 2 Nov. 1916: 
 
    For the sake of the future of our fatherland, it is necessary to raise the standard of 
    mathematical education in the school but protect it from the Markov & Co’s frame of mind 
    by those precepts, emblems and exercises which are included in our native tongue, in 
    Magnitsky’s arithmetic, in Bugaev’s arithmology, in the theory of probability of 
    Buniakovsky, Chebyshev, Mendeleev and me. 
 
The term arithmology introduced by Nekrasov’ teacher, Bugaev, meant theory of numbers but later became a 
synonym of a doctrine of discrete functions and even a Weltanschauung based on discreteness. It is now 
dated. Mendeleev did not have either any probability theory or even systematized indications on treating 
observations. True, Nekrasov [17, p. 4] declared that “the maps and the principles of nomography” in the 
great scholar’s book � �������( /����� (On Coming To Know Russia) “are adapted to the Chebyshev 
theorem” but this obscure remark did not explain anything at all. Magnitsky was the author of the first Rus-
sian treatise on arithmetic. 
    7. See Letter 12 and the appropriate commentary. Creation of new words by amateurs was then in vogue. 
    8. It is hardly known that Nekrasov [23, p. 11; 4, pp. 45 – 46] committed an elementary logical mistake 
when proving the convergence of an iterative process. 
    9. This statement was possibly prompted by Liapunov’s lost commentary on a letter of 16 March 1901 
from Nekrasov to him [29, p. 84]. Nekrasov advised Liapunov not to hurry with publications on probability 
theory and maintained that the latter’s theorems “like those of Chebyshev” were corrupted by mistakes. It is 
quite possible that Liapunov could have imparted his thoughts about that letter to Andreev. Seneta [4, p. 63] 
indicated Nekrasov’s unjustified declaration [30, §168] about Liapunov’s memoir [31]. 
   10. See Note 7 above and Note 50 about the latter. The last invented word was juridism instead of “jurisdic-
tion of sorts”. 
   11. Andreev apparently had in mind Markov’s note [32]. Similar statements are in his Letter 3 (below), 
and, indirectly, in his Letter 7 (see Note 34). It is sufficient to indicate here that an editorial note attached to 
[33] explained that Markov had “declared that he considered it […] impossible” to replace some phrases in 
his letter [32] “by insertions without a sharp tone and not containing references to some personal relations”.  
Consequently, [32] was published with cuts. 
   12. Archive of the Russian Academy of Sciences, Fond 543, inventory 4, No. 1130. Markov denied Moro-
zov’s paper devoted to the application of the statistical method to linguistics and even publicly expressed his 
opinion [34].  
     
2. The Correspondence between Nekrasov and Andreev 
    We adduce now these letters (with insignificant abridgements). In a number of cases we had to specify the 
references.       
 
    1. Nekrasov – Andreev, 14 Oct. 1915 
    Nekrasov had sent Andreev his “pamphlets” including an offprint of [35]. 
    “As in the past,13 so now also K.A. Posse [26] appears as Markov’s advocate when the latter, in attempting 
to discredit his opponents, gets entangled in his own nets.This time Posse came out because Markov was 
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painfully flogged in my article [17] [ … ] This encounter has a double lining. One of these is the natural 
struggle between schools differing in their principles;14 but the other one, less visible, represents a tacit aspi-
ration of a group of Petrograd mathematicians for subordinating [other] schools to their practical influence. 
Thus, for example, the reviews written by the members of the scientific committee, Posse and Koialovich, 
and academician Markov, had killed, for all purposes, the talented works of P.S. Florov on analysis and prob-
ability theory. You probably know Florov who was a student at Kharkov University; he possesses a gift of 
explaining issues of higher mathematics in an elementary way.15 
    “Leaving aside the second lining since it touches the academic-managerial system, I wish to seek your 
advice about the first one that concerns the principles of mathematics of main importance for science and 
education. I am deeply convinced that the comparison of the Brashman – Davidov – Bredikhin – Imshenet-
sky – Bugaev – Tsinger school16 with that of Posse – Markov reveals the greater value of the former’s princi-
ples. At the same time, however, the latter is militant, and, by means of Markov & Co.’s 16-inches’ debate 
[cannonade], it is attempting to overthrow the best principles so as to replace them by their own ones. I alone 
have to withstand the charge of an entire bloc.  
    “Perhaps the Mathematical Society can objectively (without any personal debate) compile definite deci-
sions on the points of disagreement on principle as they are revealed in a number of my encounters with 
Markov & Co. Issues to be decided could be formulated about classifying the concepts; on relations of analy-
sis and arithmetic with mechanics and probability theory; and about the preference of some methods to other 
ones (e.g., about comparing the Bienaymé – Chebyshev – Markov method with the method of Cauchy – 
Chebyshev – Nekrasov – Pearson17 […]”  
   
    2. Nekrasov – Andreev, 15 Oct. 1915 
    “… I have prepared a brief report which I will entitle thus: The concepts limit and asymptotic equivalent of 
a function in the calculus of probabilities of sums and means when integer  m  [apparently: the argument of 
the function] increases unboundedly.18 There will be no personal debates in this talk, but, nevertheless, the 
main concepts will be discussed so exhaustively as to overturn completely the Markov & Co.’s declaration 
[24; 8; 26] that I, rather than they (Posse and Markov), am abusing the concepts limit and infinitesimal.” 
    The end of the letter is lost. 
 
     3. Andreev – Nekrasov, 24 Oct. 1915 
    Andreev received the manuscript of Nekrasov’s report. It had not indeed “contained any polemical sharp 
words” but it can lead to new discussion. The MMS resolved to transfer the decision about publishing the 
manuscript in the Matematichesky Sbornik to its Bureau.  
    “Naturally, I have absolutely abstained from any personal testimonial about the debate. Assuming that you 
are interested in my opinion about the differences between you, and Posse & Markov, I venture to formulate 
it. […] I believe that it is completely out of question to decide who is right in your debate. Its essence is not 
to determine the correctness or otherwise of some judgements based on rigorously established assumptions, 
but to establish these very assumptions. Even if this does not belong to metaphysics, it at least lies in the 
province of intuition in the broadest sense of this word. Here, along with the mind, […] appear, with a certain 
degree of being in the right, […] tastes, inclinations, habits, acquired outlooks, sometimes even random 
points of views, […] about which […] non est disputandum […] 
    “My life experience showed me that the champions of either direction sin, each of them in their own way. 
Some, while attempting to build firmly on a not yet prepared and still quaking soil, are compelled […] to 
make use of diffuse and tempting explanations, in verbose formulations, etc. That is your sin. 
    “Others, being unable to justify the [mistaken] proposition that progress in science is conditioned by bar-
ring the expansion of the mental outlook, resort to sophistry and cannot resist the temptation of stinging their 
opponents not by scientific, but by journalistic weapons. That is Posse’s sin.19 […] Not being a sinner in 
either of these senses, [Markov] ][…] to this day remains an old and hardened sinner in provoking debate. I 
had understood this long ago, and I believe that the only way to save myself from the trouble of swallowing 
the provocateur’s bait is a refusal to respond to any of his attacks […]”20 
 
    4. Nekrasov – Andreev, 25 Oct. 1915 
    Having received no answer to his Letters 1 and 2, and understanding that his requests were difficult to 
fulfil, Nekrasov is prepared to abandon them, but he asks Andreev to return him the “suggested report” to the 
MMS entitled Criticism of the connection and difference between the concepts limit and equivalent of a func-
tion of an unboundedly increasing number N.  Nekrasov then supplements the text of his report by the fol-
lowing considerations. 
    “…the concept equivalent of a function, that I am widely using in the calculus of discrete functions  � ( N )  
of a discrete and very large number  N,  has also been applied for a long time in another section of mathemat-
ics, namely, in the analysis of infinitesimals having to do with continuous magnitudes. Imshenetsky made use 
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of that concept in 1873, in his Supplements to [39]21 and thus essentially added to the Lagrange’s and Tod-
hunter’s concept known as the theory of analytic functions, and, at the same time, he paved the way for bring-
ing together the theories of continuous analytic and of discrete (arithmological) functions. 
    “Boussinesq [40] does not apply the term equivalent, but, like Imshenetsky, he                             (pp. 64 – 
66) established principles equivalent [tantamount] to this concept and indicates their importance for simplifi-
cation.22 These simplifications, as Imshenetsky put it, lead to imperfect equations, and, for continuous func-
tions, they lead, in the limiting case, to perfect equations between differential coefficients. […]”     
 
    5. Nekrasov – Andreev, 30 Oct. 1915 
    Nekrasov thanks Andreev for fulfilling his requests formulated in Letters 1 and 2.23 He agrees beforehand 
with any future decision made by the MMS about his debate with his main opponent, Markov, but he asks 
that his work mentioned in Letter 4 be additionally considered. That letter will “reveal more perfectly the 
criminal [ ? ] sense of what was said by me [Nekrasov] and Markov [41, p. 459; 30, vol. 22, p. 326; 24, pp. 
223 – 224].  
    “The fundamental issues of the calculus of equivalents and limits are closely linked with the main ten-
dency of mathematicians to simplify formulas and to admit, for the sake of simplification and saving of time, 
[…] a rightful dose of subjectivism(Boussinesq) and of active intuition (of experience, of the ars conjectandi 
[art of conjecture] in the spirit of Jakob Bernoulli) so as to approach the objective truth,24 – to admit it to an 
extent which will not lead to overstepping the right to make slight errors. Mathematics of approximate and 
asymptotic calculations has an exact juridism with rules, customs, instructions of/in computation which must 
be categorically observed. The question is, who of us, Markov or I, oversteps this extent in the differential 
calculus of probability �P?25 […] 
    “My prosecutor in the person of Markov had not, however, calmed down and continues to charge me defi-
nitely with introducing fundamental mistakes into the theory of limits, the doctrine of infinities and of infi-
nitely low probabilities”.                                                      
    Nekrasov listed a number of papers published by Markov, Posse and by himself [24; 9; 26; 17; 35] and 
continued: 
    “… from 1898 onward, while rendering proper homage to Chebyshev, I am, however, publicly maintain-
ing that his theorem on probabilities [37] is rather a postulate26 demanding critical attitude, and that the fun-
damental faults in the calculus of probability are to be found not in my work, but in Markov’s writings. In-
deed, he, even after the publication of my memoir [5], persisted in claiming that Chebyshev’s postulate is a 
theorem [46; 48 – 50; 51, 1900, pp. 88 – 89]. Later, evidently under my influence, Markov [51, 1913, pp. 88 
– 97] changed the theorem; however, he introduced a lacunary (a molar)27 reckoning when measuring a 
varianta28 
 
    X  =  �1  +  �2  + … +  �m. 
 
But he passed over in silence both that lacunarity and the fact that filling it in will demand the recognition of 
all the power of the fundamental base of my and Pearson’s critical attitude towards the known differential 
calculus of the probability of the value of  X.29 […] 
    “I am quite sharing your opinion that it would have been best to refuse to respond to Markov’s provocative 
attacks so as not to swallow his bait. And I had indeed ignored them until the attacks were perpetrated in 
some newspaper (the provocation in the newspaper Den [20] became Markov’s usual business)”. 
    However, Nekrasov cannot keep silent when Markov publishes such attacks in the periodical of the Minis-
try of Public Education [9] or of the Academy of Sciences.30 The letter in the newspaper [20]  
“impertinently slanders [Nekrasov] as though I attempt to direct the teaching of mathematics in schools on a 
wrong track31[…] Actually, my project, and even not my personally, but the collective project compiled by 
the professors and teachers of the Moscow educational region and the Petersburg Ministerial Commission in 
1899 – 1900 [was] later [discussed] at the All-Russian congresses of teachers of mathematics.32[…] 
    “I would like to ask you to consider personally and carefully the essence of the debate and to take a firm 
stand with confidence whether I am wrong, or is Markov wrong.[…]” 
 
    6. Nekrasov – Andreev, 15 Nov. 1915 
    “The debate is going on not about some depths of metaphysics, but only about the calculus of actual infini-
tesimal probabilities. The abuse of mathematics (petition principii [begging the question]) is not mine, but on 
Markov’s side since he scolds [denies] my right to apply the known simplifying principle of replacing actual 
infinitesimals by their equivalents […]” 33 
 
     7. Andreev – Nekrasov, 17 Nov. 1915 
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    The MSS’s Bureau indicated that Nekrasov’s suggested report concerns the subject of the debate which the 
Society had earlier (Matematich. Sb., vol. 28, 1912, p. 351) resolved to restrict by publishing one paper of 
each of the debaters. The MMS will apparently approve the Bureau’s opinion. 
    “You could have plainly understood [Letter 3] that I consider any investigation of this debate […] as at 
least a useless business.  […] In essence, all that you wish is that at least one such person will be found who 
explicates your own ideas more clearly […] I may assure you […] that you are severely mistaken if you think 
that my firm stand taken with confidence can lead to the resolution of the debate. Not confidence is here 
needed but clarity. However, an explanation of somebody else’s ideas is a thankless and very risky business. 
[…] Only once in my life did I allow myself to explicate somebody else’s ideas [54], the ideas of the late 
Imshenetsky [55], but I have since felt sorry for myself because I saw that I was occupied with a needless 
business which did not benefit anyone or anything.34 
    “[…] I certainly cannot approve of the academician’s [Markov’s] appeal to the public opinion formulated 
as a newspaper feuilleton [20]. However, once he brought himself to come out on that arena, he had the right 
to use all the means usually applied there, and, in particular, to parade in an ungainly fashion the weak points 
and the blunders of his opponent. Markov [20] makes use of this weapon very skillfully and deftly […]” 
    Andreev then comments on Nekrasov’s unfortunate, to say the least, statement quoted by Markov: 
    “ […] It is utterly unthinkable that you were seriously convinced that the publication of an article in the 
transactions of a scientific society may serve as some crucible […] or that it indicates the article’s approval 
by the society. […] All the previous lines were evoked by a feeling of my sincere liking and goodwill to-
wards you.” 
 
    8. Nekrasov – Andreev, 5 Dec. 191535 
    Upon considering Nekrasov’s letter to its Vice-President, the Academy of Sciences “resolved to constitute 
a commission” for looking into the teaching of the theory of probability in the school. The mathematical 
section of the Pedagogical Museum of the military schools discussed the reports of A.N. Krylov, S.A. Bogo-
molov, Ya.V. Uspensky and Nekrasov himself.36 
    “At the […] Museum I delivered a talk on the more elementary part of my report Criticism etc [see Letters 
2 and 4] and the educational and simplifying significance of the principle of equivalence of magnitudes was 
ascertained”. 
 
    9. Nekrasov – Andreev, 13 Dec. 1915 
    “[…] my memoir touched on the central issue of the fundamentals of mathematics, namely, on the equiva-
lence of functions. It shows the normal way of induction from the simpler to the more complex”.37 
    Nekrasov then mentioned Imshenetsky and Boussinesq (see Letter 4), referred to Barbèra [57] and contin-
ued: 
    “My own works on the calculus of functions [of very large numbers], on approximate and asymptotic laws 
of equivalentness [ ! ] of functions are completed along the entire line and in all rigor so that I am firm in my 
conviction against all the insinuations of Markov and Posse […]”38 
    Nekrasov mentioned the Zhurnal Ministerstva Narodnogo Prosveshchenia, cited Markov [24, pp. 223 – 
224] and informed Andreev that, in connection with his report at the Pedagogical Museum (see Letter 8) and 
with the appearance of a Russian translation of Newton’s Principia [58], he would like to supplement his 
suggested report at the MMS, and, in addition, to refer there to Barbèra [57]. 
 
    10. Nekrasov – Andreev, 12 Jan. 1916                                                                                                                                    
     Nekrasov once more (see Letter 9) makes known his desire to improve his report indicating the same 
reasons as before but this time without mentioning Barbèra [57]. 
 
    11. Nekrasov – Andreev, 5 Febr. 1916 
    The Commission of the Academy of Sciences “took  advantage of the school issue only for settling the 
score with me and for compiling a new pamphlet against me [10] […]” 
    Nekrasov asks permission to answer the Commision via the Matematich. Sb. “And I am once more asking 
you as an elder among the representatives of pure mathematics and pedagogy39 to support me with all reso-
luteness […]” The report of the Commission [10, p. 79] includes the “main distortion of the basis of my sci-
entific and philosophical concepts.40 […] I never confuse philosophy […] with pure mathematics41 […] The 
booklet [59] contains ideas identical in spirit with mine.”42 
 
     12. Nekrasov – Andreev, 7 March 1916 
    The MSS had not allowed Nekrasov to publish his answer to the Academic Commission in their periodical 
but he thanks Andreev for his troubles. 
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    “You have correctly indicated that the struggle is going on on three fronts. (The first one: the fundamentals 
of the analysis of infinitesimals and of their approximate asymptotic calculus; the second one: fundamentals 
of the theory of probability; and the third front: the bringing of mathematics and probability theory into 
proper relation with issues in physics, religion and politics.43) You think that for me the struggle on the third 
front is hopeless. However, it is here that the Commission has distorted my works most of all.44 […] Markov 
[51, 1908] treats problems in religion and politics (ignorantly, by means rejected not only by Buniakovsky 
[60, p. 326],45 but also by Boole, Jevons, Bertrand and Karl Pearson46), and this is allowed and even com-
mendable[…]” 
    If, however, Nekrasov [43] discusses the same issues, it becomes 
    “An inadmissible abuse of mathematics. […]  This is a purely Prussian objectivity of reasoning.47 […] In 
spite of the Commission’s statements I distinguish two main directions struggling with each other. The motto 
of the school belonging to one of these is mathematical humanism; the motto of the school of the other direc-
tion (trend) is physico-mathematical realism.48 If these trends can be united into a single one, it might be 
done only under the first motto, only when [additionally] stating that the ideal of science is the lamp of the 
truth (V.Ya. Tsinger). Pearson, a mathematician and a humanist, considers the separation of science and 
philosophy as obscurantism [61, p. 55 of the Russian translation]. […] The founders of the MMS were of the 
same opinion [62; 63, 64]”.49 
    Nekrasov then criticizes the Russian translation of Newton’s Principia [58]50 and declares that the theory 
of probability is the basis of “a wide mathematical induction in the sphere of disputable but vital issues 
(Poincaré, Pearson, N.A. Umov)[...]51 Regrettably, in 1872 the school in Russia took the road to ruthless 
pseudo-classicism and formalism and reshaped the minds of contemporaries in a different fashion;52 physico-
mathematics was substituted for mathematics, humanism became thought of as being opposite of mathemat-
ics rather than of the extremes of materialism amd heartless formalism”.53 
    The mathematical societies in Moscow and Kharkov came into being, as Nekrasov indicated, for strug-
gling against such obscurantism. 
    “Had the Mosc. Mathematical Society wished to defend the humanitarian branch of mathematics with its 
spiritual culture, it would have very, very strongly supported my just claim to correct the distortions commit-
ted by Markov & Co.” 
    Nekrasov begins thinking about leaving the Society. He asks Andreev to inform the MMS about his inten-
tion “as about a tentative decision” and to ask them whether they did not become “only physico-mathematical 
rather than widely mathematical […]” The formal cause for his leaving will be the Society’s refusal to enable 
him to defend himself from the Academic Commission. The end of the letter is lost. 
 
    13. Nekrasov – Andreev, 13 March 1916 
    After receiving Andreev’s (lost) reply to Letter 12, Nekrasov asks him “to do nothing” concerning his 
intended leaving of the MMS. 
 
    Notes to §2 
    13. Nekrasov apparently thought about letter [36], see Note 34. 
    14. The text below makes it clear that Nekrasov contrasts Moscow scientists with those in Petrograd (Pe-
tersburg). The lumping together of such mathematicians as Davidov and Bugaev and the astronomer 
Bredikhin (below) allows us to question whether such a school existed at all, cf. Notes 16 and 17. 
    15. Posse and B.M. Koialovich were members of the scientific committee of the Ministry of Public Educa-
tion. Concerning the latter see 4���$ 3��. �
���	  (New Enc. Dict.), vol. 23. Petrograd [, 1915], p. 46. In 
1883 – 1888 Florov published not less than eight papers on mathematical analysis (mostly, on differential 
equations) in the Soobshchenia Math. Soc. Kharkov Univ. In 1912 – 1915 he also wrote three superficial 
articles on the Jakob Bernoulli theorem; on the Buffon needle; and on insurance of life, all of them in Vestnik 
Opytn. Fiziki i Elementarn. Mat., and he reported on annuities at the Second All-Russian Congress of Teach-
ers of Mathematics (1913 – 1914). Nekrasov [17, p. 4] also publicly argued that Florov “possesses a wise gift 
for explicating great truths in the simplest form …” 
    We are unaware either of any reviews of Florov’s papers on analysis or of Posse’s comments on his work 
in probability. Koialovich [6, No. 3, pp. 18 – 19] regarded Florov’s program as scientifically unsatisfactory. 
We also note that he called mathematical statistics a shaky and poorly substantiated theory. 
    Later addendum: In 1910, Nekrasov asked the Minister of Public Education to be appointed unpaid mem-
ber of the Ministry’s Scientific Committee. His request was refused because of the resistance of those 
mathematicians who already were members of this Committee. They were afraid that Nekrasov’s appoint-
ment “can lead to very undesirable conflicts […] concerning the existing mathematical curricula”, see letter 
of N.Ya. Sonin to the Minister of  8 May 1910, Ross. Gos. Istorich. Arkhiv, Fond 740, inventory 43, No. 24, 
p. 2. The entire letter is translated in DHS 2579, 1998, pp. 101 – 102. Dr. A.L. Dmitriev (Petersburg), from 
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whom I received a copy of this letter, informed me that it is (mistakenly!) kept among materials concerning 
politically suspect academics of Tsarist Russia. 
    16. Nekrasov  undoubtedly meant V.Ya. Tsinger, also see his Letter 12. All the scientists whom he named 
excepting Imshenetsky were founders of the MMS. Also see Note 17. 
    17. It is difficult to agree with the existence of some single Cauchy – … –  Pearson methods. True, Nekra-
sov applied methods of the theory of functions of a complex variable in probability (§1.1) which explains his 
mentioning Cauchy (but not Chebyshev or Pearson). In essence, Nekrasov repeated his then already pub-
lished statement [17, pp. 10 – 11] about two directions in mathematics (where he had indeed contrasted “the 
ideas of Cauchy, and, on the other hand, of Bienaymé”).  
    The Academic Commission [10, pp. 67 – 73] established in order to discuss the teaching of mathematics in 
school, necessarily overstepped its terms of reference and sharply denounced both this statement and Nekra-
sov’s wrong understanding of the principles of mathematics (and his attacks on Chebyshev’s memoir [37] 
based on his mistakes). Also see Letter 5. 
    18. It can be thought that in Letter 4 Nekrasov described the same suggested report but entitled it differ-
ently. Later he published its “more elementary part”, cf. Letter 8. In his works that appeared from 1885 on-
ward Nekrasov understood the term “asymptotic equivalence” of functions  f ( x )  and  g ( x )  with a con-
tinuous or discrete argument  x  in several senses, namely (in modern notation)  f ( x )  ~  g ( x );  f ( x )  =  0 [ 
g ( x )];  and  f ( x )  =  o [ g ( x )].  This ambiguity allowed him to formulate some prophetic statements about 
the possibility of considering probability as an actual infinitesimal in the spirit of non-standard analysis [38,    
p. 110]. See Letter 5. 
    19. It seems that Andreev had correctly noticed some features of the debate between Nekrasov and his 
opponents but had not wished to consider carefully its mathematical essence. Posse’s paper [26] was never-
theless a scientific writing devoted, in particular, to the theory of limits. Finally, Markov, who introduced a 
new and extremely important object, dependent random variables, into probability, was not interested either 
in the methods of the theory of functions of a complex variable, or in axiomatizing probability. And for a 
long time he was regarding the fist steps of mathematical statistics with excessive suspicion. 
    20. Cf.§1.4 and Note 34.  
    21. Imshenetsky supplemented his translation of Todhunter [39] by considering the application of analysis 
to three-dimensional geometry and by a chapter on infinitesimals (definition; order of magnitude; equiva-
lence) and on differentials. Todhunter’s book was an educational treatise and Imshenetsky’s chapter was 
naturally of a methodological rather than scientific nature. Imshenetsky (p. 450) had indeed, see below, in-
troduced imperfect equations of the type  � (�;  	;  0)  =  0  which replaced equations  � (�;  	;  �)  =  0  when 
all the variables were infinitesimals with  �  being of a higher order of magnitude than  �  and  	  whose or-
ders coincided. The attribution of the theory of analytical functions to Lagrange and Todhunter remains on 
Nekrasov’s conscience. 
    22. On the indicated pages Boussinesq established only one principle by stating that an infinitesimal may 
be replaced by any other one if their ratio tended to unity. True, he additionally formulated an evident corol-
lary. 
    23. The extant part of the Letter 2 contains no requests. 
    24. On the indicated pages Boussinesq [40, pp. 64 – 66] had not mentioned subjectivism. Nekrasov’s ref-
erence to Jakob Bernoulli is hardly convincing. We are inclined to understand subjectivism in approximate 
calculations as a replacement of a given function  f ( x )  by a simpler function  � ( x )  that asymptotically 
estimates  f ( x );  � ( x )  is chosen subjectively so as to facilitate calculations. We shall also quote Ashby 
[42]: 
 
    The theory of systems should be based on methods of simplification, and, in essence, it 
    represents a science of simplification. […] I think that the science of simplification was 
    initiated by mathematicians who study homomorphisms. 
                                                                                    
     25. Nekrasov [43, 1912, p. xiv] also excused, although indirectly, “a relatively infinitesimal error against 
formal logic”. Markov [9, p. 28] declared that that statement “has nothing to do with common sense”. See 
Note 29 about the differential calculus of probability. 
    26. According to the context, Nekrasov meant the CLT. In any case, in 1901 he [30,            vol. 22] 
groundlessly accused Chebyshev (and, for good measure, Markov and Liapunov as well) in that they had 
mistakenly understood the foundations of mathematical analysis [2, §4]. In 1898 Nekrasov [5] had not at all 
mentioned the Chebyshev memoir [37], and later [44,            p. 24] explained that omission by his aspiration 
for brevity and by the fact that he had applied a more perfect method than the one used by Chebyshev. In 
1900 Nekrasov publicly declared that Chebyshev’s proof of the CLT was of little value, see my paper on his 
work in probability (AHES, vol. 57, 2003, pp. 337 – 353 (p. 348).                                                           
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     In 1898 Nekrasov was still able to write concisely, but his arguments were hardly convincing. In 1915 he 
devoted an article [45] making difficult reading to the memoir [37], also see Note 27, and in 1916 he [7, p. 
26] repeated that Chebyshev’s statement (the CLT) “is not a theorem in the strict sense but a postulate correct 
until finite magnitudes of probability are discussed, but having numerous exceptions otherwise”. Nekrasov 
connected the cases in which the “postulate” failed with an actual infinitesimal probability and referred to his 
“rigorous proof” and to Pearson’s “investigations” but had not mentioned any sources. His reference to Pear-
son is unconvincing, and it was the limit of the sum of variances of the studied random variables divided by 
their number that should not have vanished [47, p. 240; 1, §7.2]. Note that Nekrasov provided his own defini-
tion of a postulate [3, p. 54]; quite consistently, he called it a rule spoiled by exceptions. 
    27. Nekrasov, here [45, p. 318] and elsewhere [17, p. 12], identified a lacuna with a mosaic pattern of 
landownership and for some reason called the normal distribution lacunary. Earlier he [43, 1912, pp. 141 and 
473] understood lacunarity as a defect (lacunarity of a law) or brevity (lacunarity of a table). Also in [45, p. 
321] he explained that he had constructed the term molar from the Latin molares (a stone block). 
    28. A variable taking discrete values. The Russian term varianta is hardly used anymore although several 
decades ago Fichtenholz [52, §22] had applied it and referred to H.C.R. Méray (1835 – 1911) without men-
tioning any source. The German text of Fichtenholz used the German term Variante. 
    29. It is hardly possible to comment duly on this statement before studying in detail Nekrasov’s merits in 
proving the CLT (which Seneta, see §1.1, described somewhat cursorily). Note, however, that Nekrasov [17, 
p. 3] mentioned the “Nekrasov – Pearson differential form” which had something to do with the theory of the 
Pearson curves. Neither that source, nor [43, 1912, pp. 519 – 520], to which he had there referred, gives any 
clue to the understanding what exactly had Nekrasov contributed to this form and what was the essence of 
Pearson’s critical attitude towards the “differential calculus of probability”. 
     30. Nekrasov’s reference to the Academy’s Zapiski is patently wrong. He could have mentioned its Izves-
tia where Markov [53] negatively, although not altogether directly, commented on all of his works in general. 
Nekrasov had not (and could not have) answered  such a general comment. 
    31. Markov [20] discussed only the fundamentals of mathematical analysis and his statement about the 
wrong track remained unjustified. 
    32. Nekrasov’s reference to professors and teachers and to a commission was a fabrication, pure and sim-
ple. The discussion of his reports [12; 15; 16] at the congresses took place only partly; and, in addition, it had 
not at all amounted to their general approval. 
    33. Nekrasov [17, pp. 13 and 16] also publicly accused Markov of begging the question (again without 
explanation). Not later than in 1935 the concept of convergence in probability, that had been applied long 
before that, was fully understood. In probability theory based on classical analysis debates about actual in-
finitesimals became since then pointless.           
    34. Andreev had published Imshenetsky’s posthumous manuscript [55] whereas Markov [31] sharply criti-
cized it. Then, the former [54], while recognizing the paper’s incompleteness, reasonably argued that its 
appearance was nevertheless useful. Markov [34] however declared that his viewpoint had triumphed since 
the incompleteness of [55] was not denied.  
    Markov’s opinion was apparently too formal. Here, incidentally, is Bezikovich’s testimony [56, p. XIV] 
about Markov: His last article was the only one  
 
    Which lacks a complete solution of the formulated problem […] He brought himself to 
     publish it only having been afraid that he will be unable to complete it. 
 
Finally, we disagree with Andreev in that his paper [54] “had not benefited anyone or anything”. Imshenet-
sky’s article [55] continued his previous work of 1887 – 1888 which also provoked debate where Markov, 
Nekrasov, and Posse et al had participated [36]. 
    35. See §1.2. 
    36. The Pedagogical Museum published all these reports in 1916 as separate booklets. Neither of them 
concerned probability theory, but Nekrasov’s contribution [7] was an exception. Also see Note 18. 
    37. The replacement of an infinitesimal by an equivalent magnitude, as Nekrasov himself indicated (Letter 
5), is made for the sake of simplification. His idea becomes clear when recalling his pronouncement about 
induction, see Note 4. 
    38. Nekrasov apparently meant the papers by Markov [9] and Posse [26]. 
    39. A list of members of the MMS indicating the year of their entry had been published regularly in the 
Matematichesky Sbornik. Already in 1913 (vol. 29, No. 1 of the periodical) from among about 90 members 
from Russia itself not more than five had joined the Society before Andreev (before 1873) did. 
    40. Nekrasov perceived the “main distortion” in that he allegedly attempted to prove mathematically the 
omnipotence of God whereas he stated that without faith mathematics was insufficient for that purpose. Nev-
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ertheless, the Commission, in the place indicated, only referred to the bygone (and generally known) attempts 
to prove God’s omnipotence by applying various arbitrary rules for summing diverging number series. 
    41. In a letter of 13 Dec. 1916 to P.A. Florensky Nekrasov argued that he conciliated mathematics with 
religion and politics “logically, correctly and rightfully”. Both his statements were wrong, see for example 
the Introduction to his treatise [43, 1912]. 
    42. Khvolson [59, p. 11] held that “we must, and we can almost only believe” in physical laws. Thus, for 
small values of  a  the law of universal gravitation cannot be empirically isolated from the family of formulas 
including (in usual notation)  r 2 + a.  Then, he stated that hypotheses which indeed included “the veritable 
essence of physics as a science” (p. 13) were only based on faith (p. 12). Finally (p. 15), Khvolson declared 
that a number of issues including the problem of free lies beyond the province of knowledge. 
    43. Nekrasov publicly repeated these definitions of the “fronts” [3, p. 21]. “Mathematics and probability 
theory” apparently meant “mathematics including …” 
    44. Cf. Note 40. 
    45. In 1916 Nekrasov [3, p. 54] mentioned “the main mathematical doctrine […] of Buniakovsky and 
others about the trustworthiness of ancient legends …” Actually, Buniakovsky [60, p. 326] simply stated that 
“the spiritual world includes such facts which do not obey physical laws”. In 1908 Markov [51, 1924, p. 320] 
resolutely objected to this, and added later [9, p. 33] that the chapter of probability theory dealing with ap-
praisal of testimonies was its “weakest”. We shall say a few words about Markov’ unsuccessful petition, in 
1912, for excommunication from the Russian Orthodox Church (the Most Holy Synod resolved that he “fell 
away” from the Church). In his petition, Markov referred to Tolstoy who was excommunicated in 1901. A 
few days before his death in 1910, the Synod resolved that Tolstoy is to remain excommunicated.   
    46. Neither Buniakovsky, nor the other scientists (Boole, Jevons, Bertrand) could have rejected an objec-
tion only formulated in 1908. And, anyway, we think that denying atheism is as impossible as denying reli-
gious faith. Note also that Nekrasov, in the same letter, mentioned Pearson twice more. Had not he realized 
that Pearson, together with like-minded associates, had created the Biometric school in order to study 
mathematically the issues of the atheistic theory (more precisely, hypothesis) of the evolution of species? 
    47. Recall that Nekrasov wrote this in 1916. A much more ugly statement is to be found in his letter to 
Florensky of 11 Nov. 1915 (also while the war with Germany was going on):  
 
    I quite sympathize with your attempt to teach the mathematical encyclopedia at the 
   Theological Academy. At your hands, it will differ from an encyclopedia of Markov & Co. 
    inspired from Berlin. 
 
The letter bears the date 1905, but Nekrasov was obviously mistaken: he also referred to a source published 
in 1914. 
    48. It is impossible to understand why humanism cannot be realistic. Nekrasov, however, apparently 
thought about Christian principles rather than humanism. 
    49. Here are the relevant statements. Pearson (translated from Russian): “To distinguish between the fields 
of philosophy and science means promoting obscurantism”. Tsinger [63,  p. 39]: “Mathematical sciences … 
are very closely related to philosophy”. The speeches of Davidov [64] and Bugaev [62] lack such pro-
nouncements, but, judging by their contexts, these scientists would have hardly objected to Pearson’s opin-
ion. 
    50. A similar criticism is contained in Nekrasov’s letter of 7 Dec. 1916 to Florensky:  
 
    Krylov […] is elected to full membership at the Academy in spite of his scientific 
    illiteracism [ ! ]. He translated Newton’s book ignorantly […] and supplied his biased 
    translation with notes in the spirit of panphysism, i.e., in the same spirit in which 
    academician Markov distorted the principles of the classical work of academician 
    Buniakovsky [cf. Note 45] by his pseudo-interpretation. […] Those who collated the 
    authentic Newton’s text with its translation also mention many philological mistakes in the 
    latter which had distorted beyond recognition the ideas of the great scholar who believed 
    in God and His prophets. 
 
    Three authors (N.N. Luzin, p. 54; T.P. Kravets, pp. 322 – 323; and T.I. Rainov, p. 343) of the collected 
articles [65] expressed an opposite opinion. True, we had not found there any detailed discussion of Krylov’s 
work but it is quite possible that Nekrasov had exaggerated. And Krylov [66] expressly stated that he had not 
kept to Newton’s mathematical terminology.   
    Nekrasov had not explained the terms panphysism; physico-mathematical realism; physico-mathematics 
(see the same Letter 12). However, since he connected panphysism not only with Krylov, but also with 
Markov, who never studied physical problems, it might be assumed that he understood that term as the ex-
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planation of nature by mathematical means without turning to God. Indeed, in another letter to Florensky (1 
Aug. 1916) Nekrasov argued that “the Moscow school directs the training of teachers in the spirit of panphy-
sism with an anti-Christian tinge …” One question suggests itself: Was Laplace an panphysist? Apparently, 
yes. 
    51. Not the theory of probability but mathematical statistics is (partly) based on induction. See however 
Note 4. Umov was a physicist hardly connected with probability. 
    52. A strict bureaucratic surveillance of schools was implemented in 1866; in 1872 a “Statute concerning 
city schools” was adopted so as to weaken the influence of social institutions on education. A “Statute con-
cerning primary public schools was then introduced in 1874 for guarding the school against “pernicious and 
ruinous influences” [67,                              pp. 759 – 760]. These facts do not corroborate Nekrasov’s state-
ment which apparently reflected the weakening of the influence of  faith on natural sciences. 
    53. We think (cf. Note 48) that, according to Nekrasov, humanism meant Christian or mystic principles. 
This corroborates our opinion (§1.1) that he kept to the Platonic tradition. 
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15. The Notion of Randomness from Aristotle to Poincaré 

IMI, vol. 1 (36), No. 1, 1995, pp. 85 – 105 

 

    Note 
    Complying with a request made by a French colleague, I left him the manuscript of this paper for publica-
tion in a reputed periodical. Then, suddenly, it appeared elsewhere  (Mathématiques, informatique et sciences 
humaines No. 114, 29e année, 1991, pp. 41 – 55). I consider all this as a piracy and am reprinting my manu-
script here. Its Russian version has since appeared, see Contents. 
*                                                *                                                           * 
     1. Introduction 
    Aristotle and even earlier scientists and philosophers attempted to define, or at least to throw light upon 
randomness, and in jurisprudence, about two thousand years ago, it was indirectly recognized in an ancient 
Indian book of instructions [1, §108] which determined the behavior of man both at home and in social life.  
    In §2 I sketch the attempts to direct the concept of randomness into the realm of mathematical science; in 
§§3 – 10 I dwell on various interpretations of randomness that were being pronounced in natural sciences and 
philosophy; my §11 is devoted to the interrelation between necessity and randomness; and, finally, in §12, I 
formulate my conclusions. Since Aristotle, Darwin and Maxwell described (used; indicated) various aspects 
of randomness, I repeatedly mention each of these great scholars. The history of randomness is especially 
interesting since the new approach to its understanding that had recently took shape in physics and mechanics 
has affected the fundamentals of these sciences [2]. 
    I have examined the work of Poincaré, who paid much attention to randomness, elsewhere [3]. Here, I only 
mention that he directly linked chance to instability of motion [of the solution of differential equations] and 
introduced the fruitful method of arbitrary functions [4, pp. 88 – 89]. Then, there is a case for studying the 
attitude of ancient scientists preceding Aristotle towards randomness. However, my own experience [5, §§2.1 
and 2.3] is that this topic is extremely difficult since their thoughts may be interpreted in different ways. 
Finally, I restrict my paper with the fields of mathematics and natural sciences. 
    There is no general literature on my subject; one author [6] had discussed randomness from a different 
point of view, some other [7 – 13] busied themselves with its particular issues; I mention contributions [7 – 
9] in the sequel. I myself touched the same topic in many articles published in the Archive for History of 
Exact Sciences and my excuse for doing so, and for returning to the same subject in an ad hoc paper, is that it 
is patently impossible to compile a contribution such as this one all at once. 
 
    2. Mathematics and the Concept of Randomness 
    Lambert [14, pp. 238 – 239; 15, p. 246; 5, pp. 136 – 137] made an endeavour to formalize randomness. 
His interest in this problem may be explained by the fact that he was the first follower of Leibniz in attempt-
ing to create a doctrine of probability belonging to a general science of logic. Lambert’s efforts, founded on 
an intuitive notion of normal numbers, was ahead of its time. True, Cournot [16, pp. 57 – 58] and Chuprov 
[17, p. 188] had noted Lambert’s efforts, but no-one became interested in their accounts. 
    Poisson [18, pp. 140 – 141] hesitatingly offered a definition of a random magnitude as a variable that 
assumed different values with corresponding probabilities. His definition (independently re-introduced at the 
end of the 19th century [19, §15.4]) went unnoticed. Poisson [18, p. 80] also attempted to state the nature of 
chance. Randomness, he argued, was an ensemble of causes that produced an event without altering its (the 
event’s) chances of happening or failing. His idea seems unsuccessful, but at least Poisson thus maintained 
that random events possessing stable probabilities of two possible outcomes do occur. 
    While attempting to construct the theory of probability anew, von Mises [20a, p. 62]  introduced his cele-
brated concept of Kollektiv (of an infinite random sequence) and demanded that the order in which its ele-
ments followed each other be random (“mit zufallsartiger Zuordnung …”). Later he [20b, 1939, p. 32] 
equated chance with “complete ‘lawlessness’ ”, cf. §6, and (Ibidem, p. 133) noted its “fundamental impor-
tance” for the theory of probability. For an evaluation of his efforts see [4].  I only remark here that mathema-
ticians became interested in defining the collective and attempts of such kind are now continued in the mod-
ern theory of algorithms. Three approaches are now recognized [22, pp. 199 – 214]. The frequency viewpoint 
had originated with Mises (even with Lambert) and in 1963 Kolmogorov modified it. It demands that the 
various elements of a random sequence and of its legitimate subsequences appear with stable frequencies. 
According to the approach founded on complexity (Kolmogorov 1963), the entropy of the initial part of a 
random sequence should be sufficiently large. The main idea of the quantitative standpoint (Martin-Löf, 
1966) is that a random sequence may only have a small number of regularities, and, therefore, that it should 
pass certain tests. It is easy to see that these approaches are not independent. In 1963 Kolmogorov addition-
ally outlined the concept of a finite random sequence; according to his opinion, a finite sequence is the more 
random the more complex is the law that describes it. Quite recently there appeared another Russian paper 
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[23] on the same subject with no reference being provided to the previous one. As in the case of ref. [22], 
Uspensky was its coauthor, but this time, the second, or, rather, the first coauthor was Kolmogorov himself. 
 
    3. Randomness Does Not Exist 
    Such was the standpoint of the most eminent thinkers and scholars who believed that semblance of ran-
domness resulted from ignorance of the relevant causes. Sambursky [9,          pp. 40 – 41] described the utter-
ances of ancient Greek authors on that subject, and Kendall [8, p. 11] studied similar ideas due to St. 

Augustine, Thomas Aquinas, Spinoza and Dalembert. In turn, I discuss the thoughts of several scientists 
without dwelling on the writings of Bentley [24, pp. 316 – 318], who somewhat verbosely explicated New-

ton’s point of view, or Lamarck [25, pp. 74 and 97; 26, p. 329]. Here are the statements of Kepler [27], 
Laplace [28, p. 145] and Darwin [29, p. 128], in that order. 
    1. Chance is an idol, an abuse of God Almighty. 
    2. Chance is only ignorance of the connections between phenomena. 
    3. That chance occasions variations between individuals is wrong, but this expression “serves to acknowl-
edge […] our ignorance” of the relevant causes. 
    Kepler, however, was unable to deny that the eccentricities of the planetary orbits were random (§5). New-

ton left two pronouncements [30, Query 31; 31, p. 49] which testify that he attached certain importance to 
chance and to which I return in §§7 amd 8:   
 
    Blind chance could never make all the planets move one and the same way in orbs 
    concentrick, some inconsiderable irregularities excepted, which may have risen from the 
    mutual actions of comets and planets upon one another, and which will be apt to increase, 
    till this system wants a [divine] reformation. Such a wonderful uniformity in the planetary 
    system must be allowed the effect of choice. And so must the uniformity in the bodies of 
    animals. 
 
    Did blind chance know that there was light and what was its refraction, and fit the eyes of 
    all the creatures after the most curious manner to make use of it?  
         
A similar utterance is in [32, p. 544], and another one, formulated in about 1715, in [33,        p. 127]. 
    Lamarck [34, p. 450] thought that variations between individuals came into existence because of random 
causes and the Darwinian theory hinged in its entirety on the action of these same causes. It is extremely 
strange that, in spite of his own statistical explanation of the second law of thermodynamics, Boltzmann 

failed to recognize either the latter fact or the importance of randomness in nature [35, §4.3]. Finally, I return 
to Laplace in §5. 
 
    4. A Possibility 
    Randomness is a possibility. This definition goes back to Aristotle [36, 1064b – 1065a], who, moreover, 
apparently believed that a chance event had a logical or subjective probability lower than 1 / 2. Similarly, 
Thomas Aquinas [37, vol. 19, p. 297] supposed that random events “proceed from their causes in the minor-
ity of cases …” 
    The followers of the Indian teaching of Syadvada, that existed as early as in the 6th century B C, studied 
the concepts of the possible, the indeterminate, etc. Mahalanobis [38] maintained that this doctrine was inter-
esting for the history of statistics. He had not mentioned randomness, but I believe that the Syadvada indi-
rectly recognized it as a possibility. 
    Darwin [39, vol. 1, p. 449], drawing on stochastic calculations made at his request by Stokes, decided that 
a particular deformity in man was passed from parent to child and did not occur by chance [was not merely 
possible]. William Herschel [40, p. 577] and Struve [41, Note 72] left room for randomness of this kind. In 
their models of the stellar system they only restricted the distances of the stars without indicating their actual 
position. Maxwell [42,       p. 274] remarked that neither the form and dimensions of the planetary orbits, nor 
the size of the Earth were determined by any law of nature [that the relevant magnitudes might have been 
different]. He had not mentioned randomness and his remark had to do with yet another interpretation of 
chance (§6). 
    Hegel [43, p. 383], in addition to understanding randomness as a possibility, formulated the converse 
proposition:  
 
    Das Zufällige ist ein Wirkliches, das zugleich nur als möglich bestimmt […] was möglich 
    ist,  ist selbst ein Zufälliges.   
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  It is easy to illustrate this proposition. If a random variable  X  takes values  xi  with probabilities  pi,  i  =  1,  
2, …,  n,  then any possible  xi  is random in a sense that it occurs with probability  pi.  Note that Aristotle had 
not connected any definite probabilities with the possible values of  xi,  i  =  1,  2.   
 
    5. Deviation from Laws of Nature 
    Randomness occurs when the purpose of nature is not attained, when hindering causes corrupt the opera-
tions of nature. This explanation is due to Aristotle [44, 199b] who thought that nature’s accidental mistakes 
brought about the appearance of monsters and that the birth of female animals was the first departure from 
the type, and, at the same time, a natural necessity [45, 767b]. His statements were the first to confront neces-
sity and randomness. Indeed, the occurrence of monsters accompanies the necessary acts of regular births 
whereas the birth of a female is, according to Aristotle, both necessary and random. From a modern point of 
view the second example is wrong; and it hardly corresponds to his own belief (§4) that the probability of a 
chance event is lower than 1 / 2. Referring to the Philosopher, Thomas Aquinas [37, vol. 19, p. 489] pointed 
out that the birth of a girl was a random event. 
    Kepler [46, p. 244; 47, p. 932] suggested that only “zufällig” perturbations had forced the planets to devi-
ate from circular motion. True, he also stated that the eccentricities regulated the planets’ motions [48, p. 
317], but he was naturally unable to say why the eccentricity of a given planet had a particular value rather 
than any other one. Kant [49, p. 337] repeated Kepler’s pronouncement on the elliptic paths of ther plan-
ets.Lamarck [26, p. 133] maintained that there existed deviations from the divine lay-out of the tree of ani-
mal life and explained them by the action of a  “cause accidentelle et par conséquent variable”. 
    The pronouncements described above pertained to determinate laws of nature. However, many natural 
scientists, while making similar statements, actually thought about mean states. Adanson [50, p. 48] regarded 
intraspecific variations as digressions from the divine order and believed them necessary “pour l’équilibre 
des choses”. Lamarck [51, p. 76] argued that “plusieurs causes”, some of them “variables, inconstantes et 
irrégulières dans leur action”, corrupted [determined!] the [mean] state of the atmosphere. Humboldt [52, p. 
68] conditioned the study of all natural phenomena by discovering the appropriate mean values (mean states). 
As early as in 1817 he isolated climatology from meteorology [53]. His point of view was not, however, 
quite consistent in that he had not linked his definition of climate [54, p. 404] with mean states, but at least 
later scholars improved on him [55, p. 296]. 
    De Moivre [56, p. 253] declared that the value of the parameter of the binomial distribution of male and 
female births was of divine origin. Quite logically, he regarded as random only the deviations of the number 
of male (say) births from the corresponding number determined by the binomial law. Random, in modern 
notation, for De Moivre was not  X  itself, but rather ( X  -  E X ). He (Ibidem, p. 251) also argued that 
 
    In process of Time, Irregularities [produced by chance] will bear no proportion to the   
    recurrency of that Order which naturally results from Original Design. 
 
And De Moivre [57, p. 329] effectively declared that the aim of the theory of probability was to isolate 
chance from divine design [from purpose], and thus came close to another understanding of randomness (§6). 
Being greatly influenced by Newton, to whom he devoted the first edition of his book [57], De Moivre had 
not nevertheless repeated the former’s inference on the need for divine reformation (§3).  
    Similarly, for Laplace the theory of probability belonged to natural sciences rather than to mathematics, 
and its goal was not to study mathematical objects (for example, densities), but the discovery of the laws of 
nature. He therefore stood in need of analyzing observations, of eliminating randomness from them, of sepa-
rating chance from law. 
 
    6. Lack of Purpose 
    Randomness is lack of divine law or goal; it occurs when independent chains of events intersect each 
other. Again, randomness is lack of purpose, and perhaps, “uniformity” (§7) as well. It was in this sense that 
chance was understood in ancient India, about two thousand years ago, although not in natural sciences, but 
in civil life [1, §108]: If, shortly after giving evidence at a trial, a misfortune befell the witness or his family, 
it was believed that God punished him [that the evil had not happened without purpose, i.e., not by chance]. 
 
     6.1. Lack of Law Or Goal 
    According to Aristotle, an unexpected meeting of two people [36, 1025a] or a discovery of a buried treas-
ure [44, 196b] are chance events. Each of them could have been (but was not) aimed at. Junkersfeld [7, p. 
22], who considered numerous examples contained in the great scientist’s work, inferred that he would not 
have thought that coming across a stranger or finding a rusty nail were random. 
    The ancient Indian Yadrichchha or Chance theory contained a similar interesting illustration of random-
ness [58, p. 458]: 
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    The crow had no idea that its perch would cause the palm-branch to break, and the palm-  
    branch had no idea that it would be broken by the crow’s perch; but it all happened by 
    pure chance. 
    These examples show that the interpretation of chance as an intersection of chains of events was known 
even in antiquity. In this connection Cournot [16, p. 56] had quoted Boethius and Bru [59, p. 306] noticed 
that Cioffari [60, pp. 77 – 84] had discussed or reproduced appropriate passages from several ancient schol-
ars. Hobbes [61, p. 259] maintained that a traveller “meets with a shower” by chance since “the journey 
caused not the rain, nor the rain the journey”. Much the same was the opinion of many modern scientists [5, 
p. 133] and of course in any reasoning of this kind the interpretation mentioned above simply suggests itself. 
Darwin [62, p. 395] argued that he had used the word chance only in relation to purpose [to lack of purpose] 
in the origination of species. He continued: “the mind refuses to look at [the universe] as the outcome of 
chance, – that is, without design or purpose”. 
    The Dalembert – Laplace problem merits special attention. The word Constantinople is composed of 
separate letters; is it possible that the choice and arrangement of the letters were random? Dalembert [63, pp. 
245 – 255], who questioned the fundamentals of the theory of probability, maintained that all arrangements 
of the letters were equally probable only from the mathematical point of view but not in reality. Laplace [28, 
p. 152; 54, p. XV] came to a different conclusion: Since the word had a certain meaning [answered a particu-
lar purpose], the composition was not likely at all to have been accidental [aimless]. 
    This reasoning helps to understand properly a number of earlier pronouncements. Aristotle [65, p. 289b] 
believed that it was impossible for the stars to move independently one from another [to move at random] 
and yet to remain fixed, –  they possessed common motion. A similar idea can be traced in the theory of 
errors. A large deviation of an observation from the appropriate arithmetic mean had rather been assigned to 
a special reason (though not to a goal, or a law, but to a blunder) than attributed to an unlikely combination of 
admissible and mutually independent [accidental] errors. Note, however, that observational errors hardly 
belong to natural sciences. 
    Kepler [66, p. 337] thought that a possible (a chance, see §4) appearance of a new star in a definite place 
and on a particular date was so unlikely that it had to be occasioned on purpose. By implication, he believed 
that each place (and date) was equally probable. Thus, Kepler understood randomness not only as lack of 
purpose, but as something [aimlessly] possible (§4), and, at the same time, as uniform (§7). 
 
    6.2. Intersection of Chains of Events 
    Randomness is an intersection of such chains. This interpretation is due to La Placette [67, last page of 
Preface] who devoted his book to proving that games of chance were not contrary to Christian ethics. He 
contended that “ le Hasard renferme […] un concours de deux, ou de  plusieurs événements contingents”. 
Each event had its own cause, the author continued, but we did not know why they coincided. La Placette had 
not explained randomness; his definition amounted to saying that the cause of any chance event was un-
known (cf. §3).  
    Cournot [59, §40; 16, p. 52] took up La Placette’s idea and in one instance [16, p. 57] referred to him. 
Cournot [59] initially mentioned chains of determinate events thus improving on his predecessor: 
 
    Les événements amenés par la combinaison ou la rencontre de phénomènes qui 
    appartiennent à des séries indépendantes, dans l’ordre de la causalité, sont ce qu’on 
    nomme des événements fortuits … 
 
In his later work Cournot [16] regrettably omitted the phrase “dans l’ordre de la causalité”. He [59, §§41 – 
48] apparently thought of using his definition of randomness to present the theory of probability as a science 
of chance events. He could not have succeeded; what was really needed was a systematic use of the notions 
of random variable (cf. §2) and of its expectation and variance. 
     
    7. Uniformity  
    Randomness is something uniformly possible, it can occur in one out of several equally possible ways. 
 
    7.1. Uniform Randomness 
    In §6.1 I stated that Kepler had equated chance with uniform randomness. This attitude was characteristic 
of natural scientists for about two centuries. Arbuthnot [68], in attempting to explain the prevalence of boys 
among the newly-born, contrasted uniform randomness and design without thinking of other possible laws of 
randomness. The same kind of comparison is implied in both of Newton’s pronouncements (§3). 
    Jakob and Niklaus Bernoulli and De Moivre introduced the binomial distribution into the theory of prob-
ability; in spite of that, the former understanding of randomness persisted. Boyle [69, p. 43], indicating that a 
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chance composition of a long sensible text was impossible, declared that the world could not have been cre-
ated randomly. The first part of his statement is also contained in the Logique de Port-Royal [70, Chapt. 16]. 
Kant [49, p. 230] and Voltaire [71, p. 316] maintained that a uniformly random origin of organic life was 
even less possible than a similar origin of the system of the world. Daniel Bernoulli [72] and Laplace [73], 
likely following Newton, calculated the probability that the regularities observed in the Solar system were 
due to randomness but they only contrasted blind chance and a determinate cause. 
    Maupertuis [74, pp. 120 – 121] indicated that the seminal liquid “de chaque individu” most often con-
tained parties similar to those of its parents. He also mentioned rare cases when a child resembled one of his 
remote ancestors (p. 109) as well as mutations (a later term)                (p. 121). It could be thought that Mau-
pertuis recognized randomness with a multinomial distribution, but he was not consistent. While discussing 
the origin of eyes and ears in animals, he [75, p. 146] restricted his attention to comparing “un attraction 
uniforme & aveugle” and “quelque principe d’intelligence” (and came out in favor of design). 
    In the 19th century, many scientists, imagining that randomness was only uniform, refused to recognize the 
evolution of species. While illustrating that idea, both the astronomer John Herschel [76, p. 63] and the 
biologist Baer [77, p. 6] mentioned the philosopher depicted in the Gulliver’s Travels [but borrowed by 
Swift from Raymond Lully, 13th – 14th centuries]. Hoping to get to know all the truths, that good-for-nothing 
inventor was putting on record each sensible chain of words that happened to appear among their uniformly 
random arrangements. 
    Also in the 19th century, Boole [78, p. 256] argued that the distribution of stars was random, if, owing to 
the ignorance of the relevant law, “it would appear to us as likely that a star should occupy one spot of the 
sky as another” (cf. §3). And he continued: “Let us term any other principle of distribution an indicative 
one”. Even in 1904 Newcomb [79, p. 13] called the uniform distribution of stars “purely accidental”. Recall-
ing the definition of a finite random sequence as outlined by Kolmogorov (§2), and bearing in mind that the 
number of stars of the first few magnitudes is finite, I note, however, that Boole’s and Newcomb’s inferences 
were quite modern. 
    The following examples that have to do with finite populations of stars or atoms are similar. Nevertheless, 
in these instances natural scientists reasonably believed that uniform randomness represented a statistical law 
of nature. Thus, Forbes [80, p. 49] contended that 
 
    An equable spacing of stars […] [was] far more inconsistent with a total absence of Law  
   or Principle, than the existence of [regions of condensation and paucity] of stars. 
 
He [80, 1850, p. 420] also asked which distributions might be called random [as not representing any law, cf. 
§6.1]. 
    In 1906 Kapteyn [81, p. 400] declared that 
 
    The peculiar motions of the stars are directed at random, that is, they show no preference 
    for any particular direction. 
 
Struve [82, pp. 132 – 133] pronounced a similar weaker statement even in 1842. Boltzmann [83, p. 237; 84, 
p. 321] held that gas molecules move with equal probability in whichever direction, but did not mention 
randomness. 
    Sometimes chance might have been connected with the state of chaos, i.e., with the absence of any law of 
distribution. Since this possibility was hardly discussed before the 19th century, I believe that either no-one 
considered it, or, in any case, that it gradually gave way, perhaps unjustly, to uniform randomness. In those 
times, apparently only De Moivre [56,                        pp. 251 – 252] mentioned chaos, but even he dismissed 
it out of hand. “Absurdity follows”, he declared, while considering one or another value of the parameter of 
the binomial distribution, if a certain event happened not  
 
   According to any law but in a manner altogether desultory and uncertain; for then the  
   Events would converge to no fixt Ratio at all. 
 
And, when introducing his definition of probability as the limit of statistical frequency, von Mises [19, p. 60] 
effectively excluded chaos. 
    Against the background of the abovementioned examples, it is interesting to name two philosophers of the 
18th century who expressly indicated that non-uniform randomness was indeed possible. Hume [85, vol. 1, p. 
425], while discussing chance events, illustrated his ideas by considering an imaginary die having “four sides 
marked with a certain number of spots, and only two with another”. He had not however referred to any law 
of nature. D’Holbach [86, pt. 2, pp. 138 – 139] maintained that the molecules of various bodies greatly dif-
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fered one from another and combined with each other in diverse ways. He compared them with “dice pipées 
[…] d’une infinite de facons différentes” [with irregular dice]. 
 
    7.2. Specifying Particular Problems 
    During the 19th century, it gradually became clear that the concept of uniform randomness in general was 
not sufficiently intelligible. The problem of determining the distance between two random points (A  and  B)  
on a sphere is highly relevant since Laplace [87, p. 261] and Cournot [59, §148] understood it in different 
senses. Laplace believed that  B  was, with equal probability, any point of the great circle  AB  whereas Cour-
not’s solution implied that equally probable were all possible situations of  B  on the sphere. Similarly, 
Daniel Bernoulli had calculated the probability that the planes of the planetary orbits were close to each 
other due to uniform randomness (cf. §6.1), but Todhunter [88, §396] remarked that it would have been more 
natural to consider uniform randomness with respect to the closeness of the poles of the orbits. 
    Darwin [89, pp. 52 – 55] attempted to ascertain whether earth worms carrying small objects into their 
burrows seize “indifferently by chance” any part of their find. He considered four versions of such random-
ness with regard to the manner of capturing paper triangles strewn about on the ground. After calculating the 
appropriate frequencies, Darwin decided that the worms carried the triangles non-randomly, i.e., to a certain 
extent sensibly. Considering non-randomness on a par with reason, he therefore recognized chance as lack of 
purpose; in §6.1 I have mentioned him exactly in this connection. 
    Bertrand [90, pp. 6 – 7] took up the problem of calculating the distance between random points on a 
sphere. Without mentioning Laplace or Cournot, he repeated their solutions and concluded that both were 
correct. In addition, Bertrand maintained that not only small distances but other geometric features as well 
might be used to characterize an unlikely scatter of the stars over the sky. He hardly knew about Darwin’s 
experiment, but he provided a few more examples including his celebrated problem on the probability of the 
length of a random chord of a given circle. He thus proved that uniform randomness was not definite enough 
and justly insisted that in particular instances that concept be specified. 
 
    8. Instability of Motion 
    Randomness is instability of motion, or of initial conditions; it involves slight causes leading to consider-
able consequences. Galen [91, p. 202], without mentioning randomness, asserted that “in old men even the 
slightest causes produce the greatest change”. According to Newton (§3), the accumulation of irregularities 
in the planetary system may be interpreted as an action of slight causes giving rise to considerable effects 
(true, only gradually). Many examples from §6.1 can be also considered in this connection. 
    Maxwell [92, p. 366] prophetically argued that physicists will study “irregularities and instabilities” and 
thus move away from mere determinacy. Illustrating his idea, he mentioned unstable refraction of rays within 
biaxial crystals (p. 364). Maxwell thus connected randomness with instability but had not said so directly. He 
expressed similar thoughts elsewhere [93, pp. 295 – 296]: 
 
    There is a very general and very important problem in Dynamics […] It is this: 
    “Having found a particular solution of the equations of motion of any material 
    system, to determine whether a slight disturbance of the motion indicated by the 
    solution would cause a small periodic variation, or a total derangement of the 
    motion …” 
 
    Von Kries [94, p. 58], while discussing the game of roulette, noted that 
 
    Eine kleine Variirung der Bewegung hinreichend, um an Stelle des Erfolges 
    Schwarz der Erfolg Weiss herbeizuführen …  
 
His remark was not, however, convincing: the slight variation of the motion could have resulted, first and 
foremost, in changing the number of revolutions travelled by the ball. 
    Pirogov [95, p. 518] called an event random if its dependence on the relevant causes was complicated and 
“mit Hülfe von nur analytischen Functionen gar nicht ausgedrückt werden kann”. His utterance may be con-
sidered as another hint at the connection between chance and instability. As to complicated causes, see §9. 
    As stated in §1, I am not discussing the work of Poincaré, but at least I emphasize that he was the first to 
say expressly that randomness is instability of motion. 
 
    9. Complicated Causes 
    Randomness occurs when complicated causes are involved. In a heuristic sense Leibniz [96, p. 288] an-
ticipated this explanation by declaring that the “zufällige Dingen” were those “deren vollkommener Beweis 
jeden endlichen Verstand überschreitet”. While formulating his celebrated law of the velocities of gas mole-
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cules, Maxwell [97] reasonably supposed that the distribution sought sets in “after a great number of colli-
sions among a great number of equal particles”. He had not mentioned randomness. Elsewhere he [98, p. 
436] remarked that the motion of heat was “perfectly irregular” and that the velocity of a given molecule 
could not be predicted. Once more, he did not mention randomness, and he said noting about complicated 
causes. I have adduced his second pronouncement since it supplements his previous idea. Note that he actu-
ally rejected Laplace’s famous declaration [64, p. VI] on the possibility of calculating the future states of the 
universe. 
 
    10. Slight Causes Leading to Small Effects 
    Randomness occurs when slight causes lead to small effects. Laplace [99, p. 504] qualitatively explained 
the existence of trifling irregularities in the system of the world by the action of countless [small] differences 
between temperatures and between densities in the diverse parts of the planets. He had not mentioned ran-
domness. Kepler and Kant (§5) referred in similar cases to deviation from purpose. 
 
    11. Necessity and Randomness 
    In discovering laws and regularities of nature and in studying its mean states, scientists determined neces-
sity. Besides that, they often revealed, or even attempted to isolate, the unavoidable accompanying phenom-
ena of the second order, i.e. randomness. And it was exactly in this manner that many natural scientists imag-
ined the relation between necessity and chance. Recall in this connection Aristotle’s opinion (§5) on the 
appearance of monsters, Kepler’s reasoning on the eccentricities of the planetary orbits (§5), Newton’s 
thoughts (§3, also see below) on the planetary system, Lamarck’s utterance (§5) on the tree of animal life, 
De Moivre’s reasoning (§5) on the sex ratio at birth as well as the isolation of climatology from meteorology 
achieved by Humboldt (§5) and William Herschel’s and Struve’s models of the stellar system (§4). 
    Lamarck’s pronouncement [26, p. 169] merits special attention. He apparently believed that necessity and 
chance were the two main moyens of nature. Without proving anything or providing any example, he de-
clared that these “moyens puissans et généraux” were universal  attraction and a repulsive molecular action  
“qui […] varie sans cesse …” He also argued that the 
 
    Equilibre entre ces deux forces opposées […] naissent [ …] les causes de tous les faits    
    que nous observons, et particulièrement de ceux qui concernent l’existence des corps  
    vivans.  
 
Lamarck likely supposed that the molecular action was random since elsewhere (see §5) he maintained that 
by definition accidental causes were variable. 
    Without dwelling on the statistics of marriages, suicides, crime, etc that reveals laws in apparently free 
(random] behavior of man, I note that Kant [100, p. 508] compared the chance birth of a man with the stabil-
ity of the birth-rate: 
 
    Der Zufall im Einzelnen nichts desto weniger einer Regel im Ganzen unterworfen ist …  
       
Only Hegel, after offering his definition of randomness (§4), formulated a proposition on the unity [on the 
interdependence] between necessity and chance. Exactly this unity, he [43,          p. 389] declared, “ist die 
absolute Wirklichkeit zu nennen”. Engels [101, p. 213] approvingly called this thesis utterly unheard of and 
urged scientists to study both necessity and chance. It was Poincaré [102, p. 1], however, who provided the 
most important statement: 
 
    Dans chaque domaine, les lois précises ne décidaient pas de tout, elles tracaient seulement 
    les limites entre lesquelles il était permis au hasard de se mouvoir. Dans cette conception, 
    le mot hasard avait un sens présis, objectif … 
 
A few words about the theory of probability. At the end of §5 I mentioned De Moivre and Laplace in con-
nection with the aim of that scientific discipline. They entrusted the theory with delimiting randomness from 
necessity. In our days, the same goal is being achieved by mathematical statistics created since then. Pearson 
[103] remarked that the development of the theory of probability was much indebted to Newton; I shall show 
that he thought about the great scientist’s idea on the relation between necessity and chance. Here are his 
words: 
 
    Newton’s idea of an omnipresent activating deity, who maintains mean statistical values, formed the foun-
dation of statistical development through Derham, Süssmilch, Niewentyt, Price to Quetelet and Florence 
Nightingale. […] A. De Moivre expanded the Newtonian theology and directed statistics into the new channel 
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down which it flowed for nearly a century. The causes which led De Moivre to his Approximatio [56] [where 
the normal approximation to the binomial distribution was first discovered] or Bayes to his theorem were 
more theological and sociological than purely mathematical, and until one recognizes that the post-
Newtonian English mathematicians were more influenced by Newton’s theology than by his mathematics, the 
history of science in the 18th century, – in particular that of the scientists who were members of the Royal 
Society – must remain obscure. 
 
Since Newton never mentioned the maintaining of mean values, I believe that Pearson actually thought about 
divine reformation, necessary, according to Newton (§3), for neutralizing the propagation of chance corrup-
tions in the Solar system, for preserving the mean states. Thus, Pearson suggested that Newton’s theologi-
cally formulated idea concerning the relation between necessity and chance had served as a basis for the 
development of the theory of probability. Pearson’s general statement about the science in the 18th century 
may be specified. First, he apparently bore in mind Laplace (end of §5 and above); second, restricting my 
attention to the theory of probability, I note that Pearson [104, §§10.1 – 10.2] put forward plausible argu-
ments in favor of the thesis on Newton’s influence on Bayes (and Price, who communicated and inserted 
comments in the Bayes memoir). 
 
    12. Conclusions 
    The denial of randomness (§3) was only formal and nowadays seems to be deservedly forgotten. Possibil-
ity (§4) found its way into laws and empirical regularities, but it was Hegel who declared that randomness 
was a possibility, and, moreover, that the possible was random. Chance as deviation from laws of nature (§5) 
is recognized as a perturbation (a noise) and natural scientists admitted that it indeed was corrupting the laws. 
As far as the deviations obey the preconditions of the central limit theorem, this randomness is normal. Ran-
domness as lack of law or purpose (§6) may be interpreted as an intersection of independent chains of events. 
The definitions of §§4 and 6, while reflecting different heuristic features of randomness, essentially coincide. 
Randomness is a random variable having a uniform distribution (§7), i.e., it is a special case of the possible 
(§4). Therefore, this uniform randomness characterizes lack of determinate law or purpose (§6); at the same 
time, in some instances it signifies the existence of a special statistical law of nature. 
    Randomness is occasioned by instability (§8) and/or complicated causes (§9). It can also occur in the con-
text of slight causes leading to slight effects (§10). This case partly includes deviations from the laws of na-
ture (§5), as in meteorology and astronomy. The joint action of a large number of such causes can lead to 
random variables with a normal distribution (above). 
    It is scarcely possible to comprehend randomness without studying its interconnection with necessity. 
Hegel stated that these concepts were united. However, even after Hegel scientists had been recognizing 
randomness only as a phenomenon of the second order accompanying the main event, necessity (§11). Until 
the mid-19th century necessity (divine design) had been contrasted only with blind chance (uniform random-
ness, §7). 
    The explanations and definitions of chance (§§4 – 10) are heuristically connected with the modern inter-
pretations of randomness (§2). Thus, §9 is closely linked with the complexity approach and to a lesser degree 
a similar link seems also to apply to §8; §7 illustrates a particular instance of the frequentist approach and the 
rest of these sections at least do not contradict the quantitative approach. Finally, I note that §§4 – 6 and 10 
are linked with §11. 
    Acknowledgements. B. Bru, B.V. Chirikov and V.V. Nalimov sent me reprints/copies of their contributions 
or other materials. M.V. Chirikov, a relative of B.V., pointed out a number of mistakes and ambiguities in a 
preliminary text of this paper. A. Kozhevnikov and E. Knobloch gave me editorial advice, and A.P. 
Youshkevich counselled me to explain the modern point of view on randomness (§2). 
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17. Correspondence between P.A. Nekrasov and A.I. Chuprov 

IMI, vol. 1 (36), No. 1, 1995, pp. 157 – 167 

 

    1. Introduction 
    I have written about Pavel Alekseevich Nekrasov (1853 – 1924) [1, §1.5; 2; 3, §1]. Now, I mention other 
sources [4; 5; 6] throwing light on his biography. The author of [6] explains Nekrasov’s Weltanschauung and 
his later work by his aspiration for permeating social life by arithmology (in its wider sense). Be that as it 
may, I keep to my previous opinion [3, §1.3], and, in particular, I am still believing that, from about 1900, 
Nekrasov’s mathematical writings became unimaginably verbose, intrinsically connected with ethics, religion 
and politics, and therefore obscure. In addition, the term arithmology, even in its narrow sense, is no longer 
in use, and Polovinkin [6] should have explained his reasoning as well as the title of his article. See Note 6 to 
Correspondence of Nekrasov and Andreev (translated in this collection). 
    Here, I only repeat that in 1893 Nekrasov became Rector of Moscow University; in 1898, warden of the 
Moscow educational region; and, in 1905, a prominent official at the Ministry of Public Education. Alek-
sandr Ivanovich Chuprov (1842 – 1908), Corresponding Member of the Imperial (Petersburg) Academy of 
Sciences, was a statistician, the father of zemstvo statistics, an economist and writer on current topics [7; 8]. 
For a long time, until the autumn of 1899, he taught at the Law faculty in Moscow. More widely known is his 
son Aleksandr. 
    Two letters from Nekrasov to Chuprov (1898 and 1899) are kept at the Central State Historical Archive 
(Fond 2244, inventory 1, No. 2124). The first is devoted to the teaching of the theory of probability at the 
Law faculty of Moscow University (see §2) whereas the second one characterizes the general situation at the 
University and I think that it should be also adduced. Here it is. 
 
    Nekrasov – Chuprov, 17 Febr. 1899 
    Dear Sir, Aleksandr Ivanovich, – Today, your lecture, as I heard, had not taken place because of the pres-
sure of a group of students who want to impede the course of studies. Since there exists another group of 
students seeking after the contrary, I am most zealously         [ ! ]  asking you not to give in during your 
forthcoming lecture tomorrow, and, if possible, to carry it out. In this way you will undoubtedly contribute to 
putting an end to the students’ unrest. [ …]1 
 
     2. The Letter of 1898 
    Nekrasov is known to have been advocating the inclusion of the theory of probability into the school cur-
riculum. It occured that he also thought of teaching this discipline to student-lawyers. His appeal to Chuprov, 
who was extremely influential in his field, was hardly official: the latter was not the Dean of the Law faculty. 
    At the turn of the 19th century, the possibility of using probability in statistics was already proved, – in 
England, for biological research, and, on the Continent, for the theory of stability of statistical series (Lexis, 
Bortkiewicz). Furthermore, already Quetelet applied elements of probability for studying moral statistics (the 
statistics of marriages, suicides and crime), which could have undoubtedly been useful for lawyers. Neverthe-
less, Nekrasov’s program (below) hardly mentioned that branch of statistics. 
    In 1896 Nekrasov accepted the “candidate composition” [9] written by Chuprov’s son, then graduating 
from the Physical and Mathematical faculty of the University. There, the future scientist attempted, in par-
ticular, to study the interrelations of the statistical method with philosophy and logic, and Nekrasov could 
have well included the last-mentioned item in §7 of his program, “The statistical method as one of the meth-
ods of cognition”. Finally, §8 of Nekrasov’s program testifies to his interest in the application of the theory 
of probability to economics. Later he paid much attention to that issue [10; 11, 1912, Chapt. 5 of pt. 2], and, 
during 1918 – 1919, he read a special course On the branches of mathematics necessary for the economic 
sciences [12, p. 423] at Moscow University (for a single listener, A.A. Konius).2 Here, now, is Nekrasov’s 
letter. 
 
    Nekrasov –  Chuprov, 27 Jan. 1898 
    Highly respected Aleksandr Ivanovich, – I am sending you a copy of my memorandum about which I told 
you during our rendezvous and which I, as a person teaching the theory of probability, intend to submit to the 
Law faculty.3 Other mathematicians will also probably      sign it. The extent of teaching is determined by the 
appended program; for the time being I am raising the issue only in its essence. I am convinced that a proper 
and skillful teaching of probability will heighten the lawyers’ level of education and I hope that you will 
regard this matter with due sympathy and exert your influence at the Faculty in order to establish this teach-
ing under the most favorable conditions that are especially necessary for an absolutely new undertaking. [ …] 
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[Supplement 1.] A Rough Program for Teaching Probability Theory with Applications to Phenomena 
of Public Life to Students of the Law Faculty4 

    1. Random phenomena and their probabilities. Examples of direct calculations of probabilities. The 
case of an infinite number of chances. Moral certitude. 
    2. The main theorems. The addition theorem. Contrary events. A group of all possible incompatible 
events.5 A compound event and the notion of conditional probability. The multiplication theorem. Inde-
pendent events and the multiplication theorem for them. Hypotheses. The theorem on total probabilities. 
    3. Probabilities of compound events in numerous trials. The case of constant probability in all trials. 
The case in which the probabilities of the events change from one trial to another. 
    4. The law of large numbers. An elementary derivation of the theory of Jakob Bernoulli and Poisson. 
Definition of the expectation of a random variable.6 The Chebyshev form of the law of large numbers. The 
Poisson and the Bernoulli theorems as particular cases of the Chebyshev proposition. The boundaries of 
the action of the law of large numbers. Examples provided by Ettingen and Bertrand.7 
    5. On probabilities a posteriori.  The Baye [ ! ] theorem and its corollaries. Examples. The subjective 
aspect of the notion of probability. The change of the posterior probability depending on the accumulation 
of data. The application of the Baye theorem to the derivation of the main theorem on testimonies.8 
    6. An elementary theory of the method of least squares. The principle of the arithmetic mean.9 The 
measure of precision. Combination of observations having different measures of precision. The weights of 
the results. The method of least squares in cases of one and many unknowns. 
    7. Application of probability to statistics. Statistical data and the statistical method. Its field. The need 
for a special critical appraisal of statistical data. Phenomena in public life and the will as one of its 
causes.10 Moral statistics. A classification of mass observations and phenomena. Regularities in phenom-
ena of public life. An empirical determination of probabilities as one of the problems of statistics. 
Application to determining the probabilities of duration of life. The statistical method as one of the 
methods of cognition. 
    8. The influence of chances on estimating monetary undertakings. The importance of the law of large 
numbers in the Bernoulli and Chebyshev forms for determining the value of sums and undertakings ex-
posed to randomness. On fair money games. On insurance of property and life. On buying annuities. 
    9. Application of the theory of probability to legal proceedings. A caution regarding the conditions for 
the application of probability theory to verdicts and testimonies.11 The difficulties in accomplishing these 
conditions in full. The change of the probabilities of phenomena after new testimonies and verdicts be-
come known. Criminal statistics.12 
 
    [Supplement 2.] To the Law Faculty 
    During the lasr half-century, the theory of probability together with its applications made more than a 
small progress for which it is considerably indebted to Russian scientists, suffice it to mention Buni-
akovsky, Davidov and especially Chebyshev.13 The advances in probability were not however reflected 
upon the level of educating the students of the Law faculty since the teaching of that discipline is not as-
signed a proper place.14 
    It could hardly be doubted that the subject-matter of a science cannot be isolated from its main methods 
without causing damage to the teaching. Such an abnormal dissociation always led to stagnation hindering 
the correct interpretation of the appropriate phenomena, and moreover, precluding the expedient use of 
methodology. Regrettably, such a dissociation, harmful for the success of education, exists between the 
sciences of jurisprudence, which are in charge of the phenomena in social and political life, and the theory 
of probability, which provides mathematical methods for their systematic investigation. 
    Professor [Yu.E.] Yanson, in his '��	�� ���������� (Theory of Statistics). Psb, 1891, p. 490, charac-
terized the abnormality of the situation in the following words: 
 
    Regrettably, statisticians are not sufficiently acquainted with the theory of probability 
    whereas the mathematicians, who applied mathematical calculations to analyzing 
    numerical data on social phenomena, considered them as abstract magnitudes, did not 
    take into account the special properties of these phenomena and arrived therefore at 
    conclusions bordering on nonsense.15 
 
The need to get rid of this dissociation by properly teaching the theory of probability and its applications 
to phenomena in social life can be justified by many considerations. Thus, the doctrine of probabilities 
provides a precise formulation and a complete interpretation of the so-called law of large numbers, i.e., of 
mass phenomena to which social and state phenomena also belong. At the same time, this science offers 
methods for discovering the most cautious assumptions about future random phenomena, for example 
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those concerning economic and financial life. Lastly, the application of probability theory to testimonies 
and verdicts cannot remain uninteresting for an educated lawyer. 
    Since social phenomena cannot at present be investigated without any knowledge of the theory, its con-
clusions are even now being partly reported at the Law faculty. Regrettably, the information provided is 
scanty, extremely fragmentary and not always precise. Furthermore, it is offered on trust, without any sub-
stantiation which is necessary not only for cogency, but also for ensuring a distinct understanding of the 
boundaries for applying the reported methods. So as to justify such an abnormal situation, it was reasoned 
that the mathematical analysis of probabilities demanded the use of higher mathematics, the acquaintance 
with which could not have been expected from student-lawyers. At present, however, this consideration 
had lost its meaning owing to the works of Chebyshev and the attempts of later Russian mathematicians.16 
Chebyshev’s outstanding merit consists not only in that he provided a more general expression of the law 
of large numbers, but also in that he extraordinarily simplified the proof of this most important proposition 
of the theory.17 Nowadays, all the essential parts of this doctrine and its applications can be taught in an 
elementary way when issuing from the mathematical knowledge determined by the gymnasium program. 
This discipline can thus be made intelligible to student-lawyers. It is self-evident that the lectures in prob-
ability adapted for them must differ from those read to future mathematicians, but they can retain precise 
scientific character and be rich in their content.  
    The reader in probability must naturally take care that its teaching be of an adequate scientific level and 
sufficiently disseminated in the University. This consideration prompts me to raise before the Faculty the 
issue in principle about the teaching of the theory of probability with its applications to student-lawyers. 
This problem interested me for a long time; at present, I have compiled quite a definite plan for its solu-
tion and presented it in the subjoined rough program that can be made use of for teaching the theory of 
probability with its applications to student-lawyers. Two hours a week lasting for an academic year would 
be quite sufficient for a conscientious mastering of this course. When studying the theory according to this 
program, student-lawyers will encounter difficulties; these, however, will be caused not by the complexity 
of mathematical analysis, that will not go beyond the gymnasium curriculum, but by the intricacy of the 
ideas and notions that form the subject-matter of the science of random phenomena.18 He who success-
fully overcomes these difficulties will more distinctly understand the laws of social phenomena. In raising 
the issue of teaching the theory of probability at the Law faculty, I consider it necessary to state that fa-
vorable conditions ensuring adequate success be provided for this. If this issue will be satisfactorily 
solved, the teaching will not present any difficulties for the personnel at the disposal of the University.19 
 
    Notes 
    1. Next year, 9 February 1900, Nekrasov will write to F.E. Kosh (1843 – 1915), a philologist and orien-
talist: “Up to now, there is absolute order at Moscow University, but the nearest future is full of uncer-
tainty”(Archive, Russian Acad. Sci., Fond 558, inventory 4, No. 235). Also see the appropriate passage in 
[2, §1]. 
    2. In November 1989 Konius told me that Nekrasov’s lectures had included an examination of the work 
of Walras, the founder of the mathematical school in economics. Judging by its title, Nekrasov’s course 
had much in common with his report [13]. 
    3. I emphasize that Nekrasov, still the Rector of the University [14], did not pull rank. 
    4. The titles of several sections of this program coincided with those of the appropriate chapters of Nek-
rasov’s treatise [11, 1896 and/or 1912]. 
    5. The term “a group of … events/phenomena” occurs also in Nekrasov’s treatise [11, 1896, p. 13; 
1912, p. 221] without any special emphasis on group. 
    6. Nekrasov was one of the first to apply this term (in Russian, random magnitude [1,    p. 350, Note 
17]). However, the absence of the notion of density implies that he restricted his attention here to discrete 
variables. Incidentally, he was thus unable to mention the normal distribution which considerably wors-
ened his program. 
   7. I am unaware of the former and I doubt that either was essential. 
   8. This term is not in common use. Later Nekrasov [15, p. 14] called the formula of the type 
 
    P  =  pA / ( pA  +  qB ) 
 
“the main equation of the probabilities of testimonies”;  p  and  A  were the probabilities of the truthful-
ness of the witness of the event in question and of the subsequent narrator,           q  =  1  –   p  and  B  =  1  
–  A.  Already Condorcet [16, p. 400] introduced this formula. 
    9. Otherwise: the Gauss postulate (1809) according to which the arithmetic mean of observations coin-
cided with the mode of the unimodal curve of distribution of their errors. 
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   10. It seems that Nekrasov had grossly exaggerated the importance of (free) will. The regularities in 
public life, which he obviously had in mind, were caused not by the action of will, but by the specific na-
ture of mass phenomena. My statement excludes public 

 outbursts, or social will. Nekrasov largely devoted his writing [17] to free will.  
    11. Nekrasov apparently thought about the (non-existent) independence of the judgements passed by the 
jurors. 
    12. Vlasov [18], see Note 15 below, had not discussed the subject-matter of Nekrasov’s §§6, 8, or 9, but he 
included elements of the theory of stability of statistical series lacking in §7. 
    13. Nekrasov obviously overestimated the influence of the two first named mathematicians. 
    14. Here and below Nekrasov directly or implicitly stated that some elements of probability were neverthe-
less reported at the faculty. According to official documents, the theory of probability was not taught there in 
1902 – 1903 or 1912 – 1916 [19], and only in 1907 – 1908 A.K. Vlasov delivered a course of lectures in that 
theory [18]. At that time, and also in 1912 – 1916, statistics was also taught at the Law faculty. I have no 
information relating to 1899 – 1907 or 1908 – 1912. Note that in 1908 Vlasov edited a Russian translation of 
Laplace’s Essai philosophique and that in 1911, after about twenty years there, he had to leave the University 
[20] because of the worsening of its social and political atmosphere [21, pp. 375 – 377]. 
    15. Quetelet [22, p. 633] pronounced a similar statement, but he only mentioned “des prétendus savants”. 
Is it true, however, that mathematicians rather than the statisticians themselves arrived at non-sensical re-
sults? Buniakovsky [23, p. 154], who was both a mathematician and a statistician, remarked, although not in 
a statistical context, that 
 
    Anyone who does not examine the meaning of the numbers with which he performs 
    particular calculations, is not a mathematician. 
 
    16. Along with Nekrasov’s example below, it can be indicated that Chebyshev, in his Master dissertation 
[24], had indeed explicated the theory of probability by elementary means but his description was ponderous. 
Vlasov (Note 15) also managed without higher mathematics in his textbook. 
     17. In describing Chebyshev’s merits Nekrasov possibly did not want to go beyond the boundaries of his 
program. Nevertheless, Nekrasov denied the importance of the Chebyshev’s proof of the CLT, see Note 26 to 
Correspondence of Nekrasov and Andreev (translated in this collection).  
     18. At the time, this definition of probability theory, although formulated indirectly, was indeed fortunate. 
     19. I do not know whom Nekrasov had borne in mind. He himself left the University two months after-
wards [14]. Moreover, during 1902 – 1904, 1912 – 1913, 1914 – 1915 and                1916 – 1917 no-one had 
been teaching the theory of probability even at the Physical and Mathematical faculty [25]! I have no infor-
mation about 1904 – 1912, but during 1913 – 1914 and 1915 – 1916 the theory was indeed taught there by 
L.K. Lakhtin (Ibidem). Incidentally, all this testifies against the Nekrasov – Florov proposal that probability 
theory be introduced into the school curriculum [26]. Some participants of the then ensuing debate (Ibidem, 
No. 3) had indeed expressed doubts about the availability of qualified school teachers. 
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18. Markov and Life insurance 
IMI, vol. 2 (37), 1997, pp. 22 – 33 

 

1. Introduction 
    In 1906 Markov published two polemic articles (letters) on insurance of children in the newspaper 4�!� 
����  (Nasha Zhisn, Our Life). Later he (§4) referred to them without mentioning his authorship; no wonder 
that they were not included in the Bibliography of his works [1]. Neither did Grodzensky [2] cite them al-
though it was he from whom I first came to know about their existence. I comment on these articles in §4 and 
reprint them in §5, and in §3 I describe Markov’s activities in insurance. My §2 discusses the history of in-
surance and its material is largely known. There, I draw, among other sources, on my previous paper [3]; 
Kohli & van der Waerden [4] and Hald [5] devoted much attention to this subject.  
    I define life insurance as any agreement ensuring payments of definite sums either to the heir(s) of the 
insured should he/she die within a stipulated period of time (a lump sum) , or to the insured himself (regular 
sums, and, especially, an annuity). According to modern ideas, but not in line with the practice of insurance 
during the 17th and 18th centuries, the price of such agreements must be determined by means of mortality 
tables depending on the age and the sex of the insured. My definition does not cover all the existing forms of 
life insurance (§4), but it is sufficient for a general understanding of the matter. I also note that various kinds 
of mutual insurance of several persons have also been widely used. Thus, upon paying a necessary sum, a 
married couple could have enjoyed a fixed annuity until one of them dies, with the surviving spouse continu-
ing to draw it to the end of his/her life. 
    In England, societies offering mutual insurance had already been in existence in the 17th century. At the 
turn of the next century that country had several thousand of them. Their members drew insurance in cases of 
illnesses or death of their wives, and wives received it upon the death of their husbands. It seems [6] that 
most such societies existed on voluntary dues, but that in any case there had been no connection between the 
premiums and the ages of their members. 
    An operation connected with risk is called fair if the expected winning ( � ) is zero              (E�  =  0). For 
an insured, insurance is never fair: since insurance societies cannot exist without profit, his/her expectation is 
always negative. Nevertheless, insurance might be advantageous for the insured, if, for example, his family 
will get a lot of money should he die prematurely. And, indeed, such scientists as Laplace [7, p. 454] ardently 
approved of the institution of life insurance. In 1898, more than 7mln people were insured the world over, 
about 0.1mln of them in Russia [8, p. 747] which goes to show the scale of the activities of the main insur-
ance enterprises roughly at the time that directly concerns us. 
 
    2. From the History of Life Insurance 
    Population statistics had been the most important branch of political arithmetic that emerged in the mid-
17th century and at least until the beginning of the 19th century the former remained significant mainly be-
cause of the developing insurance business demanding reliable data on mortality and studies of its laws. 
These statistical data, insofar as they were being collected by insurance societies, had been kept secret, but 
the theoretical principles were not concealed. Their development both directly and implicitly heightened the 
interest in probability and to some extent fostered its advancement. 
    In 1669, in a letter to his brother Lodewijk devoted to various problems in mortality and published in 1895 
[9], Christiaan Huygens calculated the expectations of the order statistics for an empirical distribution, intro-
duced the concepts of mean and probable durations of life and constructed and made methodological use of a 
graph of a continuous function                    y  =  1 – F ( x )  where  F ( x )  in my notation was an integral 
distribution function of mortality. It was in this correspondence that the theory of probability went beyond 
the province of games of chance (as it also did in 1671 at the hands of De Witt). 
    In 1709 Niklaus Bernoulli [10] considered a number of problems connected with insurance. In one of these 
he (pp. 296 – 297, also see [11, pp. 195 – 196]) determined the expectation of the maximal element of a sam-
ple from a continuous uniform distribution. Issuing from statistical data published by Halley in 1694, De 
Moivre [12] proposed to describe mortality, beginning with age 12, by a uniform distribution. There also he 
introduced the expectation of a random variable thus distributed (Problem 20 from pt. 1) and calculated prob-
abilities of the type P ( �  �  x )  =  1  –  F ( x ) for the same distribution (Chapt. 8 of pt. 2, my own notation). 
    Laplace [7, Chapt. 9] solved several problems on life insurance in the same way as those pertaining to the 
treatment of observations, but this time he also discussed the so-called Poisson generalization of the Ber-
noulli trials. Gauss did not shun life insurance either; he had to solve practical problems while managing the 
pension fund at Göttingen University [13,         pp. 61 – 64]. In Russia, Zernov [14] published a treatise in 
which he paid special attention to life insurance and Buniakovsky, in 1846, devoted a chapter of his cele-
brated work to the same subject. 
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    3. Markov’s Work in Retirement Funds 
    Retirement funds began appearing in Russia in the second half of the 19th century. After retirement, their 
members had been drawing lifelong pensions depending on the duration of their work and their final or mean 
salary. It was indeed possible to estimate the duration of life of the pensioners by applying mortality tables 
(although, strictly speaking, statistical inferences suitable for the general population will not do for its special 
groups), but it was extremely difficult to predict the yearly number of the retiring or their salaries whereas the 
evaluation of the number of additional members of a given fund admitted for state reasons (see below) was 
absolutely impossible. Consider also that the widows and children of dying members were also provided with 
life annuities or longterm pensions, and it becomes evident that any retirement fund could have went broke, 
and especially so during its first years of existence when experience was still lacking and unreliable guess-
work was necessary. 
    Ostrogradsky [15] participated in the work of the first Russian retirement fund. A few decades later 
Markov began to busy himself with similar activities; already in 1884 he [16] published detailed calculations 
for the retirement fund at the Ministry of Justice. In 1890 he became member of its governing board [17, vol. 
2, p. 36]. He actively participated in its sittings, offered his advice about concrete issues and checked book-
keeping accounts. Thus, he compiled a note [18] (not mentioned in his Bibliography [1]) on the financial 
conditions necessary for ensuring the payment of pensions. Vol. 1 of the same source [17] contains many 
references to Markov, and on pp. 90 and 100 it cites pp. 10 and 6 respectively of a certain note, possibly [16], 
since [18] is only two pages long.  
    In 1893, 1894 and 1902 Markov received letters of thanks from the Ministry of Justice [2, p. 59]. Inciden-
tally, its retirement fund was considered the “best established” from among the six funds of the “civil de-
partments”, and this fact was naively attributed to Markov’s “precise mathematical calculations” [19]. It 
would have been more correct to mention his prudence and foresight, perhaps his intuition and ability to 
detect the slightest circumstances. 
    Markov also occupied himself with similar work at the War Ministry [20]. In 1900 Academician Sonin 
[21], on behalf of the Physical and Mathematical Department of the Academy of Sciences, acquainted him-
self with the work of the Ministry’s retirement fund and expressed his opinion about it in the following way: 
“The sole reason for the crisis that it experiences now” was the unforeseeable increase in the number of its 
members occurring through instructions from above. He recommended to liquidate the fund and to transfer 
its liabilities to the state. 
    After hearing this out, Markov (Ibidem) declared that he did not agree with Sonin “on any point”. The 
Department resolved that, since the problem posed by the War Ministry [before the Academy] was rather of a 
practical than purely scientific nature, it should only inform the Ministry that “the members of the Academy 
are always ready to render assistance” to it.  
    Also in 1900 the same Ministry established a “Special [standing] Mathematical Conference” for determin-
ing the financial state of its fund [22, p. 10]. Its members included academicians Markov, Sonin and I.I. 
Yanzhul, other eminent scientists (I.I. Pomerantsev, N.Ya. Tsinger) and actuaries (B.F. Maleshevsky). Re-
grettably, nothing is known either about the work of this Conference or of Markov’s even more active par-
ticipation in practical life insurance after his retirement in 1906 [23, p. 604]. 
    Again in 1900, Markov devoted to life insurance a short chapter of his textbook [24]. There, not aiming at 
new results, he acquainted his readers with the main stochastic problems of the contemporaneous insurance 
business. I indicate, finally, that the Markov Fond (Fond 173, inventory 1) at the Archive of the Russian 
Academy of Sciences includes three letters directly pertaining to my subject.  
    1) An undated Markov’s letter to Maleshevsky (Delo 60, No. 15). Markov disapprovingly mentioned the 
“just appeared” book of Savich [25] and noted that it “compelled me [him] to turn attention once more [ ! ] to 
the theory of inability to work”. He also discussed one of Maleshevsky’s formulas and expressed his opinion 
about the mortality of the disabled. 
    2) D.A. Grave’s letter to Markov of 21 April 1916 (Delo 5, No. 5). Grave indirectly agreed with Markov in 
that the granting of some kind of pensions was undesirable. 
    3) Another letter from Grave to Markov of 13 Dec. 1916 (Delo 5, No. 7). Grave mentioned a “surprising 
discordance” between the calculations made by Markov and Maleshevsky. These apparently concerned the 
work of the pension fund in the city of Chernigov. 
 
    4. Markov’s Newspaper Publications 
    In §5 I reprint two polemic newspaper articles published by Markov and devoted to the insurance of chil-
dren. It may be thought that this kind of insurance was more or less widely practised in Russia from at least 
the mid-19th century. In any case, Kraevich [26] included an appropriate example in the first three editions of 
his collection of mathematical exercises for school students. Here it is. Upon the birth of a boy, his father 
deposits 1,000 rubles with an insurance society. In exchange, the son draws  x  rubles after his 20th birthday, 
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but the money is lost if he dies before that date. Assuming that the insurance is fair, and that the interest rate 
is 5%, determine  x  by means of the appended mortality table (whose origin is not explained).  
    Both this simplest pattern, and the other one criticized by Markov (below), and, as it may be supposed, any 
other scheme for insuring children, suffers from one and the same essential defect: they necessarily remain 
unfavorable for the insured (see §1; fair insurance is only possible in textbooks), and they do not really insure 
him. Here is a relevant passage whose author mentions, among other types of insurance, the insurance of 
children against death [27, p. 243]: 
 
    Cases that, under the guise of insuring life, conceal deals in paying out some moneys upon 
    the occurrence of a stipulated event not inflicting [pecuniary] loss on the insured, – deals 
    which do not restore actual damage, – should not be attributed to insurance. They abuse 
    the  idea of insurance.  
 
    Markov’s criticism was justified; regrettably, however, he did not take the occasion to explain to his read-
ers that there exist other forms of life insurance (and of insuring property) advantageous for the insured.1 
 
    5. Markov’s Letters 
    Letter No. 1. Newspaper Nasha Zhisn, 7 April 1906, p. 1 
    The “Benefits” of Insurance through the Savings Offices 
    In order to ascertain the benefits of insuring profits and capitals through the state savings offices […] it is 
necessary to consider the tariffs. Judging by the number of these (5 – 10), the insurance of juveniles plays a 
large part in the new direction of business of the savings offices.Who will benefit from this insurance, 
excepting “those engaged in this operation”?2 To answer this question it is necessary to dwell on the tariffs of 
insurance from which we extract two lucid examples. 
    1) According to tariff 6, a downpayment of 1,200 rubles is necessary for a six-year-old child to draw 
2,000r after reaching the age of twenty; and, should the child die prematurely, only 1,200 – 60 = 1,140r  are 
returned back (5% is retained to cover the expenses). On the other hand, if the same sum, 1,200r,  be kept at a 
bank with an interest rate of 4% (this is the rate underlying the tariffs) for each full hundred rubles,3 then, 
consecutively,  
 
    1,200  + 4%  =  1,248  at seven years; […] 1,964  +  76  =  2,040  at twenty years.4 
 
    My table shows that this insurance is in all cases disadvantageous for the family. If the child survives until 
age 20, the loss will be expressed by a small sum of 40r; otherwise, it can amount to several hundred rubles 
since the family loses the interest on the downpayment. 
    2) According to tariff 8, a yearly grant of 600r  during five consecutive years will be paid out to a six-year-
old child after his reaching age 18 for a downpayment of 1,789r; and, should the child die before that age, 
1,789 – 89 =  1,700r are returned back. 
 
    1,789  +  68  =  1,857 (age, seven years); [ …] 2,729 +  108  =  2,837 (age, eighteen years). 
 
So, when paying out the 600r for five years, we obtain consecutively 
 
    2,837  –  600  =  2,237; […]  637  –  600  +  24  =  61. 
 
It is seen that this operation also inflicts a loss for the family. In the favorable case this loss is expressed by a 
small sum of 61r ; otherwise, it can amount to a thousand rubles. 
    As indicated above, I have chosen lucid examples, but similar results are obtained in the other cases as 
well with the only difference being that, for the most favorable instances, the small loss can become a small 
profit. However, the possibility of large losses for the family because of a premature death of its child per-
sists. 
 
    Letter No. 2. Newspaper Nasha Zhisn, 2 May 1906, p. 1 
    The “Benefits” of Insurance through the Savings Offices 
    The explanations provided by the Directorate of the savings offices [28] do not explain anything; on the 
contrary, they obscure the essence of the problem that I have raised.5 They are composed in such a way as 
though the whole matter consists in the high cost of insurance through savings offices, which, in my exam-
ple, was expressed by a small sum of 40r out of 2,000. Dwelling only on this small loss, the Directorate 
maintains that it is of no consequence owing to the security of savings through the insurance and is compen-
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sated by profit sharing. And, assuming an interest rate of 5% rather than 4%, the Directorate promises the 
insured a payout of 2,180 – 2,280 instead of the 2,000.  
    Thus, the Directorate completely overlooks those cases in which the insured child dies prematurely and the 
family’s loss due to the insurance is expressed already by hundreds rather than tens of rubles. Only by forget-
ting these instances is it possible to bring oneself to state that the savings are here secured. Meanwhile, in my 
first Note I had paid attention to these cases; and, for determining the loss incurred by the insurance to the 
family, I had adduced, in addition to the figure 2,040 on which the Directorate rests its eyes, a number of 
other ones. The Directorate apparently chose only the most favorable case; and it vainly tries to prove that in 
this instance the family’s loss can be replaced by some profit. Indeed, I had mentioned this possibility in my 
Note: suffice it to change the age of the insured and the duration of the contract in such a way that the prob-
ability of losing the stipulated insurance heightens. 
    As to the method by which the Directorate attempts to replace the loss by a profit, it cannot be called 
proper not only because, instead of providing a detailed calculation, it only indicates an indefinite magnitude 
between 2,180 and 2,280, but, mainly, since it admits that its estimation was based on changing the interest 
rate. The Directorate obviously forgot that after 14 years and assuming a 5% yearly interest rate, a capital of 
1,200r, when saved without  
any insurance being involved, fetches not 2,040, but 1,200 � 1,0514  =  2,374r.6 Nevertheless, 
I am quite prepared to agree with the Directorate that my calculations were based on a too low rate of inter-
est, witness for example the latest pleasing loan.7 But an increase in the rate increases the family’s loss in-
curred by the insurance. The Directorate’s statement about an exaggeration in my reckoning is therefore 
absolutely wrong. Thus, my indication that some insurance procedures offered by the savings offices always 
lead to losses remains unshaken. Neither can it be shaken until the mortality table taken as the basis for com-
puting the tariffs of insurance remains unaltered and the expenses (5%) of carrying out the insurance are not 
lowered. 
    Indicating profit sharing, the Directorate says that five years after the insurance operations begins profit 
will be shared among the insured; but it forgets to mention that a considerable part (25%) of the profit will go 
to the employees of the savings offices. 
    Defending its future operations of insuring juveniles, the Directorate refers to [private] insurance societies 
where such operations are carried out according to higher tariffs, but, regrettably, it does not corroborate this 
statement by comparative excerpts. My remarks undoubtedly concern these societies as well, but it is also 
obvious that insurance societies aim at getting rich, and this distinct goal can serve as a warning to those 
insuring. On the other hand, the fact that some operations are being carried out, is no proof that they should 
indeed be done. For example, a lot of people gather to play the roulette in Monaco –  so should not we there-
fore arrange that game, or something similar, at the savings offices? For anyone who read my first Note it 
should be clear that all the conclusions there contained only concern the insurance of juveniles. The tariffs of 
insurance as carried out by the savings offices cover, however, not one single form of insurance, as it could 
be understood from the words of the Directorate, but several forms, so that, according to the number of the 
tariffs involved, the insurance of juveniles occupies a rather considerable place among the new operations at 
the savings offices. And I have provided examples concerning two different tariffs. 
    I have not touched on other kinds of insurance so that the Directorate apparently vainly defends them; and 
the more so since its arguments reduce to a statement that for 70r it is possible, given some conditions, to 
draw 1,000r. Is the Directorate really so naïve as to attach serious meaning to this proposition? Having 70r 
and playing the roulette game it is possible to win even more than 1,000r. 
    Thus, I have spoken only about some forms of insurance whereas the Directorate itself raised the question 
about the high, or the low cost of all kinds of its insurance but has not provided any proof of the latter; it did 
not even adduce comparative passages from its own tariffs and those of insurance societies. For my part, I 
remark that if, contrary to expectation, insurance through savings offices will prove to be cheap for the in-
sured, it will be expensive for the state, provided of course that the business will be widespread since the 
expenses will then not be low.8 
 
    Notes 
    1. Elsewhere Markov [24], only in the edition of 1908, on p. 97, when referring to his letters and to the 
Explanation [28], contrasted various forms of insurance: 
    There exist also [ ! ] such insurance operations which do not protect against any risks, and 
    in all cases inflict some greater or lesser damage on the insured. Such operations may be 
    justified […] only by a rather doubtful consideration that they compel people to save 
    money. 
 
Note, however, that parents (when juvenile insurance is concerned) become directly interested in the pecuni-
ary sense in that their insured children remain alive. 
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    2. Markov bears in mind the employees of the offices, see Letter 2. 
    3. Interest was paid on the sum rounded down to the nearest hundred. 
    4. Markov had written down all the intermediate results (here omitted). The same will be true in two other 
cases below. A rough check of his final figure is provided by calculating 1,200 � 1.0414  =  2,078. 
    5. Markov refers to his Letter 1. The Directorate maintained that the insurance of juveniles ensures but 
little profit: it “comes close […] to simple saving”.Then, private insurance societies offer even worse condi-
tions for the insured; the psychological aspect of being protected from chance by insurance is important; if, 
after some time, the savings offices show a profit higher than 4%, the surplus will be given over to those 
insured. 
    6. More correctly, 2,376. It is obvious that the restriction concerning the interest (Note 3) did not apply to 
the savings offices themselves. 
    7. Markov possibly referred to the “Short-Term Treasury Bonds” issued on 9 December 1905 and yielding 
a 5.5% rate of interest [29, p. 67]. 
    8. It seems that the only explanation here is that “cheap” means “almost fair”. 
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19. Slutsky: Commemorating the 50th Anniversary of His Death 
IMI, vol. 3 (38), 1999, pp. 128 – 137 

 
     Note. The original Russian text lacks §3.3. 
  
     1. Introduction 
    Many authors [7; 27; 1; 4; 5, 32; 8; 20]1 described the life and work of Evgeni Evgenievich Slutsky (1880 
– 1948), an outstanding mathematician, statistician, and economist, and his most important writings are 
available in a one-volume edition [26]. I am therefore restricting my main goal to publishing or describing a 
few archival letters either written by, or having to do with him (§3). In addition, I say a few words about 
Slutsky’s life (below) and throw light on the events which apparently compelled him to abandon economics 
(§2).2 
    In 1920 Slutsky became Professor at Kiev Commercial Institute. However, he had not mastered the 
Ukrainian language which was then made compulsory for academic institutions, and in 1926 he had to move 
to Moscow and to start working there at the Central Statistical Directorate [4, p. 268], and, at the same time, 
at the Conjuncture Institute under the Finance Ministry [15, p. 8]. 
    Already then Slutsky busied himself in real earnest with applying his statistical research to geophysics. 
Being forced to abandon his activities in economics (§2), he [4, p. 270], for a few years,  
 
    Went over to working in institutes connected with geophysics and meteorology where he 
     […] hoped to find application for his discoveries in the field of pseudo-periodic waves.3  
 
He had not found suitable conditions for theoretical research (Ibidem), and in 1934 he moved to the Moscow 
State University, then (in 1939) going over to the Steklov Mathematical Institute. The University conferred 
on him the degree of Doctor of Physical and Mathematical Sciences honoris causa [4, p. 271]. 
    Slutsky was an original and deep researcher. He is mostly known as a cofounder of the purely mathemati-
cal theory of probability and the theory of random processes, and remembered for his application of stochas-
tic ideas and methods in economics and geophysics (especially in studying solar activity) and as a compiler 
of important mathematical tables which constituted “a masterpiece of the art of calculation” [27, p. 417]. 
     Slutsky’s contribution to the theory of consumer’s demand is very valuable [1, p. 210]. For a very long 
time before his death he (Ibidem, pp. 213 – 214) remained 
 
    Almost inaccessible to economists and statisticians outside Russia […] His assistance, or 
    at least personal contacts with him would have been invaluable. 
 
    2. Withdrawal from Economics 
    In 1927, N.D. Kondratiev, the Director of the Conjuncture Institute, published a critical article concerning 
the first Five-Year-Plan. Soon he was elbowed out of science, arrested (1931) and then (1939!) shot [10]. 
N.S. Chetverikov, Kondratiev’s assistant, served four years in prison, and, in 1937 or 1938, was subjected to 
new “repressive measures” [3]. Slutsky apparently had not suffered,4 but the general situation in statistics 
became unbearable. Later Chetverikov [4, p. 270] warily remarked that in 1930  
     The Conjuncture Institute ceased to exist and the Central Statistical Directorate underwent 
     radical change.   
 
I myself add that, also in 1930, the leading statistical journal, Vestnik Statistiki, was closed down and only 
reappeared in 1948;5 during that period only a meager number of statistical papers had been published in 
Planovoe Khoziastvo. 
    Under the changed social conditions, Maria Smit (more correctly, Falkner-Smit), a statistician of the new 
wave, became especially useful in spite of her crass ignorance (and in 1939 she was even elected 
Corresponding Member of the Soviet Academy of Sciences). Pearson, she [30, p. 228] wrote,  
 
    Does not want to subdue the real world by a single curve [of distribution] as ferociously as 
    it was attempted by Gaus [ Gauss ] […] His system [of curves] nevertheless only rests on a 
    mathematical foundation, and the real world cannot be studied on this basis at all. 
 
    She [28, p. 168] also declared that Marxist statisticians should help the state security service in exposing 
the “saboteurs”. Iastremsky (Ibidem, p. 153) effectively agreed and mentioned D.F. Egorov (who died soon 
afterwards in his exile in Kazan): 
 
    I had recently an occasion to hear out […] the speech of Prof. Egorov, the then not yet 
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    exposed saboteur.6 He came out with a program of sorts saying so ardently, even with a cry 
    in his voice, What are you harping here on sabotage? […] There are no saboteurs worse 
    than you yourselves, comrades, since you standardize reasoning by popularizing Marxism. 
 
Also see [22] and [23]. 
 
    3. Archival Sources 
    Before adducing the promised letters I list similar and already published archival materials concerning 
Slutsky.7 
    1) In three of his letters to Chuprov, Markov, in 1912 [13, pp. 53 – 58] criticized Slutsky’s book [26]. In 
the same source (p. 143) the Editor, in his review of the Markov – Chuprov correspondence, quoted a pas-
sage from a letter written by Slutsky to Markov. I translated and published this letter in full [22, pp. 45 – 46]. 
    2) I myself [22, pp. 43 – 50] made known a few other archival or hardly known materials: 
        a) Chuprov’s review of Slutsky [26] published in 1912 in a newspaper. 
        b) Slutsky’s scientific character written by Chuprov in 1916. 
        c) Passages from the correspondence of these scholars with each other. 
    3) Seneta [21] published English translations of two of Slutsky’s letters to his wife concerning the author’s 
appraisal of the comparative contribution of Borel and Cantelli to the discovery of the strong law of large 
numbers.8 
 
    3.1. D.A. Grave – A.A. Markov, 4 Nov. 1912, Kiev 
   Archive of the Soviet Academy of Sciences, Fond 173, Delo 5, No. 1 
   Highly respected Andrei Andreevich, – I got to know E.E. Slutsky under the following circumstances. I 
was invited to a sitting of the Society of Economists at K. Comm. [Kiev Commercial] Inst. to attend a report 
on applying the Pearson theory to statistics. The report was delivered by Slutsky, a young man who had re-
cently graduated from the [Kiev] University with a gold medal awarded for a work on political economy, but, 
because of some reasons, was not left at the University [to prepare himself for professorship]. 
    I inquired directly of Slutsky’s professor of political economy the reasons for this, and his answer sur-
prised my by the justification unusual for a mathematical ear. According to his words, Slutsky is quite a tal-
ented and serious scientist, but the professor had not ventured to nominate him for being left at the University 
because of his distinct sympathy with social-democratic theories. And when I was unable to refrain from 
stating that at the mathematical faculty the author is not usually asked about his political views, the professor 
advised me to leave Slutsky at the mathematical faculty. I was naturally obliged to say that I have absolutely 
no desire to intervene in the business of the law faculty and that I am therefore asking him to leave the 
mathematical faculty alone. After this encounter Slutsky became my student and protégé. Although I am not 
at all acquainted with his works and had not understood    
the mathematical part of his report. 
   The lawyers, professors at the K. Comm. Inst., who did not understand Slutsky’s book [26] but desired to 
acquaint themselves with the Pearson theory, have asked me to explicate it properly in my course in insur-
ance mathematics [6]. I do not know how to find a way out of this diffuclt situation: it is simply repulsive to 
read all this … 
    [The sequel has no bearing either on Slutsky or probability and/or statistics. As also below, I myself in-
serted or specified the bibliographic information provided. For Grave, it was “repulsive” to read Pearson; cf. 
the now published letter of Slutsky to Markov (below).] 
 
    3.2. The Extant Part of the Unsigned and Unaddressed Letter (obviously, from Slutsky 
           to Markov; no date) 
    Same Archive, Fond 173, delo 18, No. 5 
    are not independent in magnitude from the sum of the already accumulated deviations or that the probabili-
ties of equal deviations are not constant, we shall indeed arrive at the formula 
 
    (1 / y) dy/dx  =  x / F( x ). 
 
In an infinite number of cases (naturally, not always!)  F  can be expanded into a Taylor series, and the first 
few (e.g., three) terms will ensure a sufficient approximation. These qualification remarks should have cer-
tainly been made. 
    Only experience can show how often do empirical polygons of distribution, which could with a sufficient 
approximation be interpolated by a Pearson curve, appear in practice. Much material is already collected for 
answering this question in the positive. In many cases the Gauss curve will not do since asymmetric polygons 
are often encountered in practice. Interpolation by parabolic curves 
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    y  =  ao  +  a1x  +  a2x

2  +  … 
 
is unsuitable since these curves do not give an adequate picture at the edges of the figure: it is impossible to 
ensure their asymptotic approximation to the  X  axis; in addition, they lead to many superfluous inflexions. 
The Pearson curves constitute the type that occurred to be practically the most suitable. 
    Since the Gauss curve in very many cases is well suited for representing statistical facts, especially in 
anthropology [anthropometry], it seems desirable also for the asymmetric Pearson curves not only to indicate 
that they are corroborated by practice, but in addition to provide a theoretical derivation that would put this 
curve [these curves] in the same line as the Gauss curve on the basis of the theory of probability (hyper-
geometric series). 
    The derivation on pp. 16 – 17 only serves to make the striking practical suitability of these curves less 
incomprehensible by means of the hypothesis on the action of infinitely many causes combining semi-
randomly one with another. 
   2) The method of moments. Here, I allow myself to remark that neither Pearson, nor Lakhtin [9] say that 
they proved that the method of moments brings 
 
    ( (y  -  Y) 2 dx 
 
to its minimal value. They only prove that the method ensures an approximation. It would have been interest-
ing to investigate this problem and to indicate precisely when is the method of moments applicable, and when 
it is not. Lakhtin does it, but is he not mistaken? 
    I think that, quand meme, approximate formulas should not be objected to. Indeed, you yourself [11, p. iv ] 
admit that such formulas might be used in probability theory even “without estimating their error” since “the 
aims of applied mathematics” demand this. You also state that approximate formulas should in addition be 
created for ensuring the calculations [12, p. 77].9 At the same time, the method of moments is very conven-
ient; and, since it is proved to provide an approximation for a large number of types of functions, its critical 
investigation is desirable. In many cases it is simply indispensable since the method of least squares some-
times leads to intolerable or even unrealizable calculations. If desired, I shall next time illustrate this proposi-
tion.  
    3) The theory of correlation. Here, I shall allow mysef for the time being …10 
 
    3.3. Slutsky’s Letters to Karl Pearson 
    I [22, pp. 46 – 47] published Slutsky’s letter of 31 March 1913 to Chuprov. It occurred that Slutsky sent 
Pearson two manuscripts for publication in the Biometrika. Pearson had, however, returned both of them, and 
Slutsky, considering that he was treated improperly, asked Chuprov’s advice. Chuprov recommended that 
Slutsky submit his work to the Royal Statistical Society, and one of these manuscripts was indeed published 
by it [25]; the other one, on a modification of the difference method, had not appeared anywhere. 
    Now, I am able to make known three letters from Slutsky to Pearson;11 Pearson’s letters are lost. Slutsky 
invariably gave his address as the Volodkevich Commercial “Schoole” in Kiev. Volodkevich was the name 
of his (future?) wife, and I am sure that since 1917 Slutsky never mentioned this private enterprise. 
 
    3.3.1. Slutsky – Pearson, 23 April 1912 
    University College London, Library, Pearson Papers 856/4 
 
    Dear Sir, – I am sending for your approval a paper concerning a correction to be made in the theory of 
contingency. If you find no fallacy in chief results, will not the paper be of some interest to the readers of the 
Biometrica? [ ! ] Should you find any fault making idle the whole of my reasoning, I hope you will not refuse 
to communicate me your kindly criticism. It is a pleasure to acknowledge beforehand my great debt to you 
for the slightest of hints on the fallacies possibly made in my work. I am, 
    Yours faithfully E. Slutsky 
    P.S. The summary of the results is to be found at the end of the paper. 
 
    3.3.2. Slutsky – Pearson, 6 May 1912 
    Kept at the same place, 856/7 
     
    Dear Sir, –  I had the pleasure to receive your honored  letter on the 3d  May and I must excuse myself for 
answering so late – the reason is that I wanted much time for translating my letter in English. I thank you 
very much for your long and very interesting letter  and for the proof which I am sorry not to have got yet, 
probably because it must be censured before I get it. Being you really very thankfull for your suggestiv and 
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very valuable criticism and agreeing with you in many points, I fear nevertheless that I shall not be able to 
agree with you about their bearing concerning my main thesis. I think I can keep my ancient opinion about 
the best method of determining the probability we have in view, though after your letter I feel compelled to 
change its foundation. I take the liberty to begin with some general considerations and then I shall continue 
with the question in which we disagree. 
    1. There is not a single method for the determination of the probability that a given system of frequencies 
has arisen from random sampling. 
     A) The theoretical frequencies being known à priori, we can determine the probability of the given system 
of errors: 
 
    e1  =  m1  –  µ1,  e2  =  m2  –  µ2, …   P  =  Q () µ

2; n�) – 
 
in the notation of my paper – where  n�  is the number of groups, 
 

    )µ
2  =  � [µRi iei

2 / µR
iµσ 2] +  2 � [µRij ei ej / µR 

iµσ
jµσ ],     

 
               | 1                rµ1µ2                     rµ1µ3        …|  
    R  =    |  rµ2µ1          1                    rµ2µ3           . ..|                                                      ( 1 ) 
               |  ……………………………………. |  
 
   Now it is to be remarked  that the method, even when applied to the same material, gives us very different 
results, the value of  n�  being arbitrary. As you have shown [14, p. 160], by infinitesimal grouping  P  =  1  
for any value of  )2  will appear. There is thus a  number of groups  n�m  which brings the value of  P  to the 
minimum, and I think you will agree that this minimal value of  P  is that really significant for the probability 
in question. “Really significant” means but this: we cannot assume a value greater than this  Pminim  to the 
probability that the given system of frequencies has arisen by random sampling from the supposed theoretical 
population. 
    B) Let 
 
    *1  = f1 ( m1;  m2; …;  mn ),   *2  =  f2 ( m1;  m2; …),   *q  =  fq( m1;  m2; …)  
 
be functions of empirical frequencies such that 
 
    f1 (µ1;  µ2; …)  =  0,   f2 (µ1;  µ2; …)  =  0, …,  fq (µ1;  µ2; …)  =  0 
 

and let  
1θσ ,  

2θσ , …,  r*i*j, …  be their standard deviations and correlations. Then the probability of our 

frequency distribution being a random sample of the theoretical population                             (µ1;  µ2; …;  µn ) 
can be judged 
    �) From the probability of the deviation of any  *i  from its zero value. In this case 
 

    P  =  π/2 �
∞

iθ

exp [– (1/2) *i 
2 / iϑσ 2

] d*i. 

       
    	) From the probability of the set of deviations from their zero values of a correlated system of functions 
*1;  *2; …;  *q 
 
    P  =  Q ( )2 *1;  *2; …;  *q 

 
 ;  q  +  1) 

 
where  q  is the number of independent values (*1;  *2; …;  *q), 
 

    )2  
*1 ; *2  ; … ;    *q   =  � [*Rii*i

2 / *R 
2

iθσ ] +  2� [*Rij *i *j / *R
jθθσ

i
] ,                                         ( 2 ) 

 

and  R  is the same as ( 1 ) but with  *i  replacing  µ i. 
    The question of the relations between the results obtained by different methods seems to me to be a very 
difficult one. I think, however, that the following propositions hardly can meet objections. 
    Proposition 1. From all the values )1,  )2, …,  )s  that is really significant which gives the least value for  P. 
For ex. [15, p. 280 & 283 – 284]: In the case (1 – 3) – Motion of bright Line –  the probability of the fre-
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quency distribution being a random sample from the general population distributed normally equals 1/23 if 
judged from the value of the criterion  )2  and it is  <  1/1000 if the probable error of the skewness will be 
taken into account. 
    Proposition 2. Should we take a great number of random samples from the general population and evaluate 
all values 
 
    )2  with indices  µ,  *1,  *2,  …,  *q,  *i*j,  *i *j *k, …, *i *j… *s, …  
 
for each random sample, the distribution of each  )2  must be that indicated by the theory within the errors of 
random sampling. 
    Proposition 3. Let us have  )1

2  (for  n1  independent values  *i;  *j ; …; *k)  and  )2
2  (for  n2  independent 

values  *  with other indices) and let  n1  not be equal to  n2. Then it is impossible that for all random samples  
)1

2  =  )2
2  =  )2  say. Indeed, the theoretical distribution of  )1

2  as given by  Q () 
2; n1  +  1)  differs from the 

theoretical distribution of  )2
2  as given by               Q () 

2; n2  +  1)  whereas  )1  being identical with  )2  their 
distributions must and will be also identical. 
    2. I come now to consideration of the point of our divergence and I confess that “if I writte 
 
    1e p  =  1f p –  N � ( 1 f p  +  2 f p) / (N �  +  N +) 
 
I vary the constitution of the general population for each pair of samples I take, whereas it must really be a 
constant, as we take all pairs of samples”. 
    For consequence  )2  proposed by me as the criterion of divergency cannot be regarded as your criterion 
for goodness of fit as worked out in your paper [14, pp. 160 – 163]. In the notation of this letter  it is not  )2

µ. 
But nevertheless it is significant. Let us have a contingency table [Table 1] and let us look upon the values 
like 
 
    mi j  -  Ni � Nj + / N  =  �ij 
 
as on the functions of the group frequencies, varying from sample to sample, and becoming all zeros for the 
general population. Then my criterion of divergency  )2

�  [Slutsky wrote out the right side of ( 2 ) with  �  
replacing  *]; the corresponding value of 
 
    P   =  Q [()2

�; (s – 1) ( t  –  1)  +  1] 
 
measures the probability “that a given system of deviations from the probable (�ij  =  0) in the case of a corre-
lated system of variables (�ij)  is such that it can be reasonably supposed to have arisen from random sam-
pling”. It is quite analogous with my )2  

*1 ; *2  ; … ;    *q   and it is easely to be subsumed under your general the-
ory in [14, p. 157 – 160]. 
    Let us suppose there is no correlation in the general population and let a great number of random samples 
be taken from it. Then the distribution of values of  )2

�  will be that given by  Q [()2
�; (s – 1) ( t  –  1)  +  1]. 

    I have shown in my paper that my criterion of divergency (  )2
�  ) for a fourfold table is identical as to its 

numerical value with your square continugency  )2
µ. If so both theories cannot be valid as it is shown in the 

proposition 3 above. 
    I am not able now to see any error in my reasoning and it seems me the divergence in our views resolves as 
follows: We do not know the theoretical frequencies and we use “the best available values”, i.e.  Ni � Nj + / N  
as it occurs in many other cases. 
    (A) I think that they are not the best, and it seems to me you will agree that we should obtain far better 
values if we have had a theory of skew surfaces. Then fitting such a surface to the system of values like  Ni � 
Nj + / N  and integrating its volume for the base elements of the subgroups we have had indeed the best avail-
able values. 
    (B) Yet supposed the values like  Ni � Nj + / N  be “the best available”, there is still no ground that they are 
sufficiently good, for we can safely use the theoretical values deduced from the sample itself instead of the 
unknown quantities relating to the general population only if their probable errors are sufficiently small. That 
is the case with the standard deviation, when used to determine the probable error of the mean. In determin-
ing the goodness of fit we bring into the comparison the empirical frequencies with the theoretical ones de-
duced from the sample itself. But in using the method of moments for fitting the curves we reduce largely the 
probable errors of the theoretical group frequencies so that they become small as compared with the empiri-
cal frequencies. 
    For Ex. the frequency in Gaussian distribution, the base element being  h, is µx  �  yh  whence  ,µ/µ  =  
,y/y.  But in this case    
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    �y/y  ( x2 / ,3 ) �,,  so that  ,y / y  =  ( x2 / ,2 ) N2 . 
 
For the empirical frequency  mx  we have 
 

    ,m  =  )]/(1[ Nmm − ,  ,µ/µ  = )/1()/1( Nm −   �  1 / � m. 

Let  x  =  (1 / 2),,  h  =  (1 / 8),,  N  =  450,  m  =  µ.  Then  ,µ/µ  =  ,y / y  =  0.008  and             ,m / m  =  
0.224  exceeding by 28 times the preceeding value of procentual error of theoretical frequency. Let us take 
now a fourfold table [Table 2] and suppose the values  a,  b,  c,  d  be proportional to the values in the general 
population. Let  a�  =  (a  +  b) (a  +  c) / N.  Then 

    ,a  =  [a (1 – (a / N)] ½, 

    ,a�  =  ( 1/N ) [(a  +  c) 2 ,2
a+b  +  (a  +  b)2 ,2

a+c  +  2(a  +  b) (a  +  c) ,a+b ,a+c ra+b, a+c]
1/2 

where              

 ,2
a+b   =  (a + b)[1  –  (a  +  b) / N ],   ,a+b ,a+c ra+b, a+c  =  a  –   (a  +  b) (a  +  c) / N. 

 
For  a  =  b  =  c  =  d  =  12,  ,a  =  3,  ,2

a+b  =  ,2
a+c  =   12,  ra+b, a+c   =  0,  ,a�  =  2.45.  

 

For  a  =  b  =  c  =  d  =  1200,  ,a  =  30,  ,a�   =  24.5. 

    Thus, taking for the theoretical frequency  (a  +  b) (a  +  c) / N  as determined by any random sample and 
dealing with every possible random sample we shall have our errors measured from the point the position of 
which is subject to errors of random sampling almost so great as the values we are measuring thereof. In 
consequence we shall obtain the values of  )2  on the average largely reduced as compared with the case we 
knew the à priori frequencies in the general population. In my paper are given the values of  )2

� evaluated for 
random samples obtained by the experiment. The values of  e  which correspond to the  �  in the notation of 
this letter were measured from the theoretical frequencies deduced from the data. If we measure them from 
the frequencies known in my case à priori:  a  =  b  =  c  =  d  =  12,  we obtain, as a matter of fact, much 
greater values (given in the table here apart). If we use the same grouping as before we obtain [Table 3].  
    This sems to me to confirm my views that your theory is to be applied in the cases where we know the à 
priori frequencies but that in the cases we do not know them your  )2

µ  must be replaced by my  )2
�  which is 

numerically identical with it, so that the whole difference in the results touches only the value of  n�  being in 
the case we use  )2

�,  (s  -  1) (t  -  1)  +  1. 
    It seems  to me I have found now more stronger grounds for the proposed modification in the theory and I 
will be immensely grateful to you if you let me know your views on the matter. Again thanking you for your 
courtesy I am Yours very faithfully E. Slutsky 
 
 

Table 1  Table 2  
mij     ...    N1�   a                b          a  +  b 
N2�  c               d           c  +  d 
N1+    N2+          N a  +  c     b  +  d          N 

 
Table 3  
Values of  )2

µ Theory Statistics e2 / µ 
(on à priori grounds) 
µ   m 

0   –   0.25 1.54 2 0.14 
0.25 –   0.50 2.51 1.5 0.41 
0.50 –   1 5.88 3.5 0.96 
1      –   2 11.44 13 0.21 
2      –   3 9.04 5.5 1.39 
3   –  � 19.58 24.5 1.24 
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                             whence P  =  0.50,  )2  =  4.35 
         
Table 4 
The values of  )2

µ  (criterion for goodness of fit) –  for the experiment described in my paper – if we use the à 
priori probabilies:  a  =  12,  b  =  12,  c  =  12,  d  =  12.  
 
N       )2

µ N        )2
µ N        )2

µ N        )2
µ N      )2

µ N          )2
µ 

1      1 1/3 10      5 1/6     
2      1 2/3 11      4 1/6     
3      1 1/6 12      3 1/2     
4       2 1/6 13      1 1/2     
5       4 1/6 14      4 1/6     
6       3 5/6 15      3 1/2     
7       1 1/6 16      1 5/6     
8       3 1/6 17            1     
9          1/2 18      1 5/6     
 
 
 

 

    19      1 1/3         27      1 2/3        35     1/6           43       2 1/2 
20      4 1/2         28      1 1/3        36     1 2/3        44       2 1/6 
21      4 1/2         29      2 1/2        37     5 5/6        45       3 2/3 
22         1/2         30      1              38     4 1/6        46       3 1/6 
   23         5/6         31      6 1/2        39     3              47       5 1/6 
   24      9 1/2         32      3 1/6        40     3 1/2        48       4 1/2  
25         1/2         33      0              41     5 5/6        49       3 2/3 
26       2 1/6        34      3 1/6        42     1 1/6         50      5 5/6 
 
 
3.3.3. Slutsky – Pearson, 18 May 1912 
    Kept at the same place, 856/4 
    Dear Sir, – I take the liberty to write you again, before I have your answer on my previous letter. I am 
printing now a treatise (or a text-book) on the theory of correlation and I would be very gratefull to you if 
you let me know whether the probable error of the partial correlation coefficient can be reduced to the same 
form as the probable error of the total one, as mr Yule says.12 
    I have also brought fast [replace this German word by the proper English almost – O.S.] to the end a paper 
on a General test for Goodness of Fit of the Regression Curves. To keep your valuable time I do not send it 
to you and I take the liberty only to communicate you an idea of it you will easily appreciate. It is very sim-
ple but I am not able to refer to any previous mention of it. 
    In the notation of your memoir on Skew correlation [16] the criterion will be simply 
 

    )2  =  S (Y  -  yx)
2 / (

2

xnσ / nx ) 

 
n�  =  number of arrays  +  1  for there is no correlation between the means of the  x-arrays and the probability 
of a deviation is 
 

    C exp [ – (1/2) (Y – yx)
2 / [(

2

xnσ / nx )] � (Y – yx)]. 

 
    Quite analogous will be a criterion which can be applied in the physical sciences to test the probability that 
a given system of measurements can reasonably be supposed to correspond to the proposed functional rela-
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tionship. If you will agree with this I can send you a more elaborate – but still a short paper – with the illus-
trations taken from your memoir on skew correlation [16]. 
    I excuse myself, dear sir, for my very imperfect English and for the trouble I give you and remain very 
faithfully yours E. Slutsky 
 
 
    3.3.4. Slutsky’s Letter to Aleksandr Nikolaevich Shchukarev, a specialist in physical  
              chemistry (1928) 
    Archive of the Moscow State Univ., Fond 276, Inventory 1, No. 114 
 
    Slutsky made known his opinion about Shchukarev’s unnamed paper, perhaps answering the latter’s re-
quest. This paper [19], which I located without much difficulty, was written extremely carelessly. In essence, 
Shchukarev vainly attempted to derive the Maxwellian law without introducing any stochastic ideas and it is 
therefore sufficient to say only a few words about Slutsky’s reply. 
    Slutsky indicated that Shchukarev had not nevertheless managed without stochastic considerations; admit-
ted (perhaps too modestly) that he “hardly understands” physics but “somewhat catches” the logical structure 
of “suchlike theories”; and offered concrete remarks (unnecessarily since the paper was beyond repair). 
 
    Notes 
    1. Short anonymous and hardly differing articles on Slutsky are included in the 2nd and 3rd editions of the 
Bolshaia Sovetskaia Enziklopedia; the 3rd edition is available in an English translation (entitled: Great Sov. 
Enc.). My references do not at all exhaust the literature on him. Sarymsakov [18] praised his work in geo-
physics, and the authors of several sections of [31] described his mathematical achievements. Romanovsky 
[17] indicated that Slutsky was chairman of a commission on applying statistical methods in industry (as a 
young man he studied for a few years at the machine-building department of the Munich polytechnical school 
[4, p. 262]). It seems, however, that because of the negative attitude of the Soviet establishment towards 
statistics in general (§2) that commission was unable to be of essential use. 
    2. For a background to this section see [23]. 
    3. Slutsky had been applying these discoveries mostly to economics, and his transition to other branches of 
knowledge was painful: disallowing a report that appeared in 1932 but was delivered by Slutsky in 1928, he 
had not published anything during 1930 – 1932. I also note that an English translation of his paper of 1927 
was published in 1937. It found important application in investigating time series in economics [1, pp. 209 – 
210]. 
   4. In 1990 the eminent mathematician Konüs told me that at the time he had also worked at the Conjuncture 
Institute. He was left alone; as Könus explained the attitude of those responsible for the decision-making, 
they had decided: “He is only a mathematician, not responsible for anything…”  
     5. In 1929 a paper by the mathematician and statistician N.V. Smirnov appeared in the Vestnik  and Slut-
sky even before his move to Moscow had published four articles there. 
     6. Smit [29, p. 4] clumsily declared that “the crowds of arrested saboteurs are full of statisticians”. Ander-
son, a student of Chuprov, testified [2, p. 294]: 
 
    Könnte ich […] eine ganze Reihe von in Rußland früher sehr geschätzten Statistikern und 
    viel verschprehenden jüngeren Schülern […] Tschuprows aufzählen, deren Namen nach 
    1930 aus der sowjet-russischen wissenschaftlichen Literatur plötzlich ganz verschwanden. 
 
    7. I also stress that Chetverikov [4] mentions and quotes Slutsky’s biography written by his wife, Yu.N. 
Volodkevich (p. 265), as well as another biography written by Slutsky himself (pp. 267 and 271). In turn, 
Gnedenko [5, p. 6] quotes Slutsky’s autobiography compiled in 1938. They do not provide any information 
about these sources. Recall (§1) that in 1939 Slutsky started working at the Steklov Mathematical Insitute. 
    8. Also see [4, p. 269]. In 1970 Chetverikov had given me  (Russian) typed texts of these letters which I 
turned over to Seneta (their copies are regrettably lost). Seneta acknowledged my help in obtaining “impor-
tant materials” but had not elaborated. He was concerned that I could have had problems with the Soviet 
authorities. 
    9. Slutsky obviously referred not to the paper itself as put out in the Matematich. Sbornik, but to its previ-
ously published offprint. Indeed, he mentioned the year 1911 and p. 4 neither of which agree with the peri-
odical. The appropriate page numbers in the translation (see References) are 77 and 78. 
   10. Slutsky discusses the Pearson curves. At the time (and even in 1928, in his letter to Shchukarev, see 
§3.3.4, which I only describe but do not quote) he sometimes wrote “theory of probability” instead of the 
correct Russian “… of probabilities”. 
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    Slutsky derived the equation (see beginning of letter) in his book [26, p. 17]. Also there (pp. 15 – 17 rather 
than 16 – 17) he obtained the normal distribution as the limiting law for the binomial distribution. Assume 
the unknown law (Y) as, for example, a polynomial of the n-th degree, then, in principle, its (n  +  1) parame-
ters can be determined given the appropriate moments. If the class to which  Y  belongs is not restricted, its 
unique determination is impossible even if “all” the moments are given. Slutsky’s question apparently 
touched on this problem of moments. 
   11. For some reason the pressmarks of two of the letters are identical. 
   12. Slutsky’s reference is J. Roy. Stat. Soc., 1907, pp. 6 and 47. In both these cases Yule was a participant 
in discussing the contributions of other authors. The paper that Slutsky mentions just below is apparently 
[25]. 
     
    References 
    1. Allen, R.G.D. The work of Eugen Slutsky. Econometrica, vol. 18, 1950, pp. 209 - 216. 
    2. Anderson, O. Mathematik für marxistisch- leninistische Volkswirte. Jahrb. f. Nat.-Ökon. u. Statistik, 
Bd. 171, 1959, pp. 293 – 299.           
    3. Anonymous, Anniversaries and memorable dates. Voprosy Statistiki, No. 11, 1995,            p. 77. ( R ) 
    4. Chetverikov, N.S. Life and scientific work of Slutsky (1959). In author’s book �������������� 
���
�������� (Stat. Investigations). M., 1975, pp. 261 – 281. Translation to appear in 2004 in the DHS se-
ries. 
    5. Gnedenko, B.V. Slutsky. [26, pp. 5 – 11]. ( R ) 
    6. Grave, D.A. Insurance mathematics. Izvestia Kievsk. Kommerch. Inst., book 16, 1912, pp. i – iv + 1 – 88 
of second paging. ( R ) 
    7. Kolmogorov, A.N. Slutsky. Obituary (1948, in Russian). Transl.: Math. Scientist,       vol. 27, 2002, pp. 
67 – 74.  
    8. Könus, A.A. Slutsky. Intern. Stat. Enc., vol. 2. Editors, W.H. Kruskal, Judith M. Tanur. New York – 
London, 1978, pp. 1000 – 1001. 
     9. Lakhtin, L.K. On the Pearson method etc. MSb, vol. 24, 1904, pp. 481 – 500. ( R ) 
    10. Makasheva, N. N.D. Kondratiev. Brief biogr. essay. Mirovaia Ekonomika i Mezhdunarodn. Otnoshe-
nia, No. 9, 1988, pp. 59 – 61. ( R )  
    11. Markov, A.A. #����
���� ��	��������$ (Calculus of Probabilities), 2nd edition. Psb, 1908. 
    12. Markov, A.A. A rebuke to P.A. Nekrasov. MSb, vol. 28, 1912, pp. 215 – 227. Transl.: DHS 2579, 
1998, pp. 77 – 82. 
    13. Ondar, Kh.O., Editor, Correspondence between Markov and Chuprov (1977, in Russian). New York, 
1981. 
    14. Pearson, K. On a criterion that a given system of deviations from the probable etc. Phil. Mag., vol. 50, 
1900, pp. 157 – 175. 
    15. Pearson, K. On the mathematical theory of errors of judgement etc. Phil. Trans. Roy. Soc., vol. A198, 
1902, pp. 235 – 299. 
    16. Pearson, K. On the general theory of skew correlation etc. Drapers’ Co. Res. Mem., Biometric Ser., 2, 
1905.   
    17. Romanovsky, V.I. On the application of math. statistics and the theory of probability in the industries 
of the Soviet Union. J. Amer. Stat. Assoc., vol. 30, 1935, pp. 709 – 710. 
    18. Sarymsakov, T.A. Statistical methods and problems in geophysics. ;��	�� �����(���� ����5���� �� 

���
����. ���������� (Second All-Union Conf. on Math. Statistics). Tashkent, 1948, pp. 221 – 239. ( 
R ) 
    19. Schükarev, A.N. Ein Versuch der Ableitung des Maxwellischen Verteilungsgesetzes. Phys. Z., Bd. 29, 
No. 6, 1928, pp. 181 – 182. 
    20. Seneta, E. Slutsky. Enc. Stat. Sci., vol. 8. Editors, S. Kotz, N.L. Johnson. New York, 1988, pp. 512 – 
515. 
    21. Seneta, E. On the history of the strong law of large numbers etc. Hist. Math., vol. 19, 1992, pp. 24 – 
39. 
    22. Sheynin, O. Chuprov. Life, Work, Correspondence. (1990, in Russian). Göttingen, 1996. 
    23. Sheynin, O. Statistics in the Soviet epoch. Jahrb. f. Nat.-Ökon. u. Statistik, Bd. 217, 1998, pp. 529 – 
549. 
    24. Slutsky, E.E. '��	�� ��		�
���� (Theory of Correlation). Kiev, 1912. 
    25. Slutsky, E.E. On the criterion of goodness of fit of the regression lines etc. J. Roy. Stat. Soc., vol. 77, 
1914, pp. 78 – 84. 
    26. Slutsky, E.E. #��	����� �	��� (Sel. Works). M., 1960. 
    27. Smirnov, N.V. Slutsky. Izvestia Akad. Nauk SSSR, ser. matematich., vol. 12, 1948,    pp. 417 – 420. ( R 
) 



 114

    28. Smit, M. Planned sabotage and the statistical theory. Planovoe Khoziastvo, No. 10, 1930, pp. 139 – 
168. ( R ) Incorporates several reports including that of B.S. Iastremsky. 
    29. Smit, M. '��	�� � �	������ ��������$ ���������� (Theory and Practice of Soviet Statistics), 2nd 
edition. M. – L., 1931. 
    30. Smit, M. Against the idealistic and mechanistic theories in the theory of Soviet statistics. Planovoe 
Khoziastvo, No. 7, 1934, pp. 217 – 231. ( R ) 
    31. Stokalo, I.Z., Editor, #���	�� ������������$ 
���
����� (History of National Mathematics), vol. 
4, pt. 2. Kiev, 1970. 
    32. Youshkevich, A.A. Slutsky. Dict. Scient. Biogr., vol. 12. Editor, C.C. Gillispie. New York, 1975, p. 
461.  



 115

 
 

20. History of the Theory of Errors 
IMI, vol. 5 (40), 2000, pp. 310 – 332 

 
    1. Introduction 
    During the last 40 years I published many writings partly or completely devoted to the history of the the-
ory of errors [1 – 35] and what follows is their résumé. The last three of these contributions [33 – 35] ap-
peared later than this paper and I do not refer to them below. My main writing on the present subject is [30]. 
    I understand the method of least squares (MLSq) both as a certain condition for solving redundant systems 
of linear equations (§2) and as the appropriate formulas for estimating the precision of the observations and 
of the computed values of the (estimates) of the unknowns. MLSq was developed by Gauss in 1823, but, 
keeping to traditional terminology, I also apply this term with regard to his contribution of 1809. Then, the 
term normal distribution which I naturally use had appeared in 1873 (C. Peirce [36]) and was definitively 
introduced into the nascent mathematical statistics by Pearson in 1894. Finally, I omit the three last words in 
the expression density law of observational errors. 
 
    2. Aims and Branches [23] 
    The theory of errors aims at establishing expedient patterns and methods of observation and at determining 
their most plausible results. Thus, when intersecting station  C  from given stations  A  and  B  in the field it is 
required to find the optimal form of the triangle  ABC  (ensuring the least possible influence of the errors of 
measurement upon the coordinates of  C) and to choose appropriate methods of observation and calculation 
(so that the systematic errors  be eliminated from the appropriate means as much as possible and the random 
errors of the observation and of the final results be sufficiently small).  
    Formally speaking, the theory of errors estimates  k  unknown constants  x,  y,  z, … and determines the 
precision of their determination given “physically” independent observations  s1,  s2, …,  sn  (n  > k)  and the 
coefficients of the equations 
 
    ai x  +  bi y  +  ci z  + … +  si  =  0,  i  =  1,  2, …, n.                          ( 1 ) 
 
The approximate values of  x,  y,  z, … are known (for example, from a subsystem of ( 1 )) so that the linear-
ity of the equations is warranted. Such an estimation is called adjustment of observations, –  of direct or indi-
rect observations for the cases  k  =  1  and  1  <  k  <  n  respectively. Systems ( 1 ) are inconsistent and any 
vector (xo,  yo,  zo, …) leading to reasonably small residual free terms, call them  vi,  is therefore considered as 
their solution. Thus, the principle of least squares is defined by the condition 
 
    � vi

2  =  min                                                                                                            ( 2 ) 
 
with the minimum being sought among all such vectors. In the case of direct observations the estimator 
sought coincides here with the arithmetic mean of the observations  si. 
    Neither the search for expedient patterns of observation ( e.g., for the optimal form of the triangle, see 
above), nor the application of methods of revealing and excluding systematic errors demand stochastic con-
siderations, and the appropriate, the determinate, branch of the theory of errors (§10) is akin to the explora-
tory data analysis [37] and design of experiments, the two new disciplines that might at least partly be attrib-
uted to applied statistics. 
    Random errors are random variables and the stochastic theory of errors is based on the theory of probabil-
ity whose development in the 19th century, and even to the 1920s, was mainly determined by the requirement 
of adjusting observations. Thus, while describing his own treatise of 1912 (first edition 1896) on probability 
theory, Poincaré [38, p. 343] stated that “La théorie des erreurs était naturellement mon [his] principal but” 
and Lévy [39, p. vii] indicated that without the error theory his book, – his main contribution on stable laws, 
– “n’aurait pas de raison d’être”. 
 
    1.2. The Stages 
    a) The stochastic branch. During the first stage, perhaps up to Tycho Brahe, astronomers were dealing 
with their observations as they saw fit. To him we are indebted for the first ideas and methods concerning 
preliminary treatment of observations, and to Galileo, for discussing the elements of the theory of errors. At 
the second stage, observations ceased to be the “private property”of astronomers, but their treatment had not 
yet been corroborated by quantitative considerations. The third stage, that somewhat overlaps the second one, 
began with Simpson and Lambert. Simpson proved that, for two distributions, the arithmetic mean was 
stochastically preferable to a single observation and Lambert introduced the principle of maximum likeli-
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hood, adjusted indirect observations and estimated (imperfectly) their precision, and founded the basis of the 
theory of errors. Finally, Euler anticipated the principle of least squares. During the fourth stage, Laplace 
and Gauss completed the development of the classical error theory. Gauss was especially meritorious: unlike 
Laplace, he studied the treatment of a finite number of observations without applying limit theorems and 
presented his findings in a form suitable for application. 
    b) The determinate branch. Before the 18th century, only general methods for minimizing the influence of 
errors were known. During that century, the effect of observational errors upon the final results began to be 
determined by differential formulas and narrow formal definitions of random and systematic errors were 
provided. At the beginning of the 19th century Laplace examined the precision of simple patterns of geodetic 
networks. Gauss and Bessel originated a new stage in experimental science by thoroughly studying all possi-
ble instrumental errors and defects of observational methods and by recommending appropriate measures. 
Finally, Helmert began to investigate geodetic networks in much more detail and formulated the problem of 
attaining a given (or the highest possible) precision under minimal (or given) expenses of time and money. 
 
    1.3. Fields of Application 
    Apart from metrology (whose boundaries with physics and chemistry are fuzzy) both branches of the the-
ory of errors are applied in practical astronomy and geodesy. The determination and specification of the pa-
rameters of the Earth’s ellipsoid of revolution by meridian arc measurements, and, since the 20th century, by 
means of geodetic networks remains a fundamental problem of the two last-mentioned disciplines. Further-
more, new most important practical problems have also appeared. In the 19th century the flattening of the 
Earth’s ellipsoid began to be also determined by pendulum observations and nowadays gravimetry, that is 
certainly unable to manage without the error theory, studies in addition the exterior gravitational field of the 
Earth. An absolutely new field of application for the theory is the treatment of geodetic observations made by 
means of artificial satellites. 
 
    2. Ancient Astronomy: Its Features [12; 22] 
    a) Ancient astronomers attempted to determine reasonable boundaries for the possible values of the ob-
served magnitudes. Suppose that observations  s1,  s2, …,  sn  of the observed constant  s  are arranged in an 
ascending order, then  s1  and  sn  can determine these boundaries; however, with an increasing  n  the interval 
between these observations tends to 
 increase. It should therefore be checked against some indirect or theoretical considerations, and astronomers 
had indeed allowed for previous observations.  
    b) The second feature of ancient astronomy was the understanding of the need to observe regularly. Thus, 
Hupparchus regularly observed the length of the tropical year. 
    c) Astronomers attempted to observe under optimal conditions, when unavoidable errors least corrupted 
the final results. Neugebauer [40, p. 101] remarked that observations in ancient times “were more qualitative 
than quantitative”. This is not true literally, but in general ancient science had indeed been qualitative (cf. 
next point). 
   d) Commentators agree in that Ptolemy arbitrarily selected and treated observations, and many believe that 
he appropriated Hipparchus’ observations. Yes, he possibly did, but he apparently acted in the spirit of his 
times without considering it disgraceful. And I think that his arbitrariness in treating observations may be 
explained. Neither the arithmetic mean, nor any other estimator of the constants sought was then generally 
accepted; even Al-Biruni, 900 years later, did not keep to any standard method when adjusting his metro-
logical measurements. So, had not Ptolemy, had not his contemporaries believed that any number within the 
interval  [s1;  sn]  can equally (although also allowing for indirect considerations and information) serve as an 
estimate of the unknown constant? From a modern point of view, when having observations of low precision, 
it is indeed possible to rely on only one, and to disregard all the rest of them. This can be justified by a refer-
ence to the Cauchy distribution whose variance does not exist at all; for observations obeying this law, their 
arithmetic mean is not better than any one of them. 
    Two authors [41; 42, p. 6] to some extent corroborate my assumption. The former remarked that, as a 
cartographer, Ptolemy was mainly concerned with semblance of truth (I would say: with general correctness) 
rather than with mathematical consistency. The latter stated that even in the Middle Ages maps “may well 
have been made from general knowledge of the countryside without any sort of measurement”. 
 
    3. From Al-Biruni to Kepler [12] 
    3.1. Al-Biruni [20] 
    His writings contain many pronouncements concerning the treatment of observations. Thus, when deter-
mining the longitudinal difference between two stations by simultaneous observations of a lunar eclipse, he 
obviously attempted to exclude systematic errors from his final result. Elsewhere he qualitatively reasoned on 
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the combined effect of observational and calculational errors. As an observer and calculator he surpassed his 
predecessors and was a worthy forerunner of Galileo and Kepler. 
    3.2. Galileo 
    He was the first to discuss the elements of the theory of errors. Buniakovsky mentioned this fact much too 
concisely and had not provided the exact reference. Maistrov [43, Chapt. 1] described Galileo’s ideas in de-
tail but superficially; and Hald [44, §10.3] furnished a comprehensive account. Galileo attempted to deter-
mine the diurnal parallax of the New Star of 1572, or, more precisely, to decide whether it was situated “be-
low” the Moon, between the Moon and the stars, or among the stars. He collected observations of many as-
tronomers and was able to arrive at the correct answer. In the process, he formulated the properties of the 
“usual” random errors and indicated that the parallax ought to be determined under the condition that the sum 
of the absolute corrections to observations be minimal, cf. §4.3. 
 
    3.3. Tycho Brahe 
    He was the first astronomer of the new time to carry out long series of observations of the planets and 
stars. Although direct proof is lacking, it is hardly doubtful that he took reasonable measures to exclude ran-
dom and systematic errors from his observations. And he essentially developed the technique of observations 
and raised their plausibility. It was on the 
 basis of his observations that Kepler was able to construct a new (the new) system of the world. 
 
     3.4. Kepler [13] 
    While attempting to fit in Tycho’s observations with the Ptolemaic system of the world, Kepler noted that 
the discrepancies between them and the theory reached  8� which was inadmissible. He apparently tried out 
several versions of adjusting the observations, and it might be thought that he applied the principle of mini-
max demanding that the maximal absolute correction (more precisely, corruption) of the observations or their 
functions be minimal. The minimax method is now used not in the theory of errors but in statistical decision 
making. 
    But how had Kepler calculated these corruptions? He [45, p. 334] assigned them arbitrarily but “within the 
limits of observational precision”. And he should have somehow considered the properties of “usual” random 
errors, – somehow selected a larger number of corruptions small in absolute value and about the same num-
ber of positive and negative corruptions. Kepler apparently approached this problem in the spirit of modern 
statistical simulation. 
    After collecting four values of the right ascension of Mars,  s1, …,  s4, say, Kepler [45,               p. 200] 
assumed as his final result some number  s  calling it medium ex aequo et bono. He obviously selected the 
generalized arithmetic mean with weights  p1  =  p2  =  1,  p3  =  2  and  p4  =  0. More interesting, his Latin 
expression meant in fairness and justice and implied (as it did in one of Cicero’s writings) rather than ac-
cording to the letter of the law. Thus, already in Kepler’s time the (ordinary) arithmetic mean became an 
universal estimator. The first to state, although not clearly enough, that the arithmetic mean was an optimal 
estimator was Cotes and Laplace testified that “tous les calculateurs” were keeping to [kept following] his 
“rule”. 
    In one of his letters of 1627 Kepler remarked that the total weight of a large number of coins of the same 
coinage [almost] did not depend on the inaccuracies in the weights of the individual coins. This proposition 
(involving, however, the mean weight) can be justified by a reference to the law of large numbers. 
  
    4. The Eighteenth Century [4; 9] 
    4.1. Tobias Mayer [21; 24] 
    In 1750, he was the first to adjust indirect observations in a formalized way. Having obtained 27 equations 
in three unknowns, he separated them into three equal groups, added together all the equations in each group 
and solved the thus obtained system. If, for example, the first group consisted of the nine first equations, 
then, as he tacitly assumed (notation as in §2), 
 
    v1  +  v2  +  … +  v9  =  0.                                                                                         ( 3 ) 
 
Mayer was mostly interested in only one unknown, call it  x,  and, accordingly, all the equations in his first 
group were those having the largest positive coefficients  ai  whereas all the  ai’s in the second group had 
largest negative values. We may assume that he thus attempted to secure the largest possible weight of  x. 
    Mayer also indicated that it was too difficult to solve all the possible subsystems of three equations each 
(so as to calculate the pertinent means over all of them). For the case of two unknowns such a procedure had 
indeed been done (Boscovich), and this suggests that scholars had wished to approach the adjustment of both 
direct and indirect observations in the same way. C.G.J. Jacobi and Binet, independently, proved that calcu-
lation taking into account all of the appropriately weighted subsystems was tantamount to the least-squares 
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solution of the initial system; no weights were, however, introduced. Note that condition ( 3 ) is exactly ful-
filled when applying the MLSq if at least one coefficient (ai,  or  bi,  or …) is identical in all the equations. 
 
    4.2. Lambert [2; 6] 
    Lambert classified observational errors in accord with their origin; attempted to prove that the extreme 
observations ought to be rejected and that the arithmetic mean was the best estimator of the constant sought; 
like Mayer, estimated the precision of observations (although, again like his predecessor, unfortunately); 
introduced a continuous unimodal density curve (without specifying it) and formulated the principle of 
maximal likelihood. 
    He also adjusted indirect observations actually applying condition ( 3 ) and suggested the term Theorie der 
Fehler that became generally accepted in the mid-19th  century; neither Laplace nor Gauss ever used it, but 
Bessel applied it without mentioning anyone. Lambert was the first to discuss the issues of the theory of 
errors in detail. 
 
    4.3. Boscovich [11; 15; 21] 
    Not being satisfied with the existing methods of treating indirect observations (§4.1), Boscovich applied 
conditions 
 
    v1  +  v2  +  … +  vn  =  0,   |  v1 | +  |  v2 | +  … +  |  vn |  =  min                                ( 4a, b ) 
 
and provided pertinent qualitative arguments. The restriction ( 4a ) was not essential (by eliminating one 
unknown it was possible to ensure its fulfilment); the second one, (4b), determined the median in the case of 
direct observations, and, in the general case, led to exactly  k  zero values of  vi,  as Gauss remarked in 1809 
(without taking into account condition (4a)). Note that he thus knew an important theorem in linear pro-
gramming.  
    Boscovich applied his method for determining the (two) parameters of the Earth’s ellipsoid of revolution 
by meridian arc measurements. Eliminating one of them (see above), he proposed a geometric trick for de-
termining the second one whereas Laplace, in 1818, used an algebraic method. Both scholars remarked that 
one of the vi’s had vanished. 
    In an undated manuscript Boscovich considered the most simple cases of summing discrete observational 
errors; he thus possibly (and to a small extent) forestalled Simpson (§4.4). 
     
    4.4. Simpson [10; 12] 
    In 1756 – 1757 Simpson proved that for the discrete uniform law, and for both the discrete and continuous 
triangular distribution, the arithmetic mean was stochastically preferable to a single observation. He actually 
considered random errors as random variables whose formal (and hesitating, for that matter) introduction was 
only due to Poisson. Thus, Simpson applied densities in the error theory; furthermore, he effectively used 
generating functions. For passing on to the continuous law he replaced the discrete values of errors 
 

– v,  – (v  –  1), …  – 1,  0,  1, …, (v  – 1),  v 
 
by  – kv,  – k (v  –  1), … with  k  �  0,  v  �  �  and  k v  =  Const.  
 
    4.5. Lagrange [10] 
    Without mentioning Simpson, Lagrange, in 1776, considered, with the same aim, a number of discrete and 
continuous distributions, some of them (for example, the cosine law) bearing no relation to the error theory. 
He applied the term courbe de la facilité des erreurs replaced by Laplace by courbe des erreurs (or, des  
probabilités). Instead of a limiting transition from discrete to continuous (§4.4), Lagrange was able to apply a 
(modified) method of generating functions by introducing “generating integrals” [46, p. 170]. 
  
    4.6. Daniel Bernoulli [8; 24]       
    In 1778 Daniel Bernoulli objected to the arithmetic mean and proposed instead the maximum likelihood 
estimator ( ê ) for density 
 
    y  =  r2  –  (ê2  –  x2),  y  �  0  
 
where  r  was the greatest possible error. He arrived at the generalized arithmetic mean 
 
    ê  =  (p1 x1  +  p2 x2  + … +  pn xn) / (p1  +  p2  + … +  pn)                                ( 5 ) 
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of  n  observations  xi  with 
 
    pi  =  [r2  –  (ê  –  xi)

2] –1.                                                                                   ( 6 ) 
 
    Already for  n  =  3  Bernoulli had to solve an algebraic equation of the fifth degree. The posterior weights  
pi  ( 6 ) increased with  xi  moving away from the central group of observations. He had not mentioned this 
fact, whereas, in accord with the context, the opposite should have been expected. The unusual behavior of 
the weights can now be justified for some distributions. 
    In 1780 Bernoulli, while examining the precision of pendulum observations, isolated random (momenta-
nearum, obeying the normal distribution) and systematic (chronicarum, constant) errors. He introduced the 
normal distribution in 1770 – 1771 in his study of the sex ratio at birth and it was not at all difficult for him 
to apply it in the new context. If, in a simplified pattern, the probabilities of the birth of both sexes are identi-
cal, the probability that out of  2N  newly born there will be about  m  boys is 
 
    P ( m  =  N  ±  µ)  �  c exp (– µ2 / N). 
 
Later, in 1780, Bernoulli wrote out an equality of the same type for  2N  =  86,400  oscillations of the pendu-
lum per day with  (N  +  µ)  of them being too slow, having period            (1  +  �) sec, and  (N  –  µ) fast 
oscillations with period (1  –  �) sec. Both earlier and in 1780 Bernoulli specifically considered the case of  P 
(0  �  µ  �  r)  =  1/2.  In the second case he obtained  r  =  100  and determined the probable error (Bessel’s 
term of 1816) of the sum of daily oscillations. 
 
    4.7. Euler [7; 21] 
    In a commentary of 1778 to Daniel Bernoulli’s memoir of the same year Euler objected to the principle of 
maximum likelihood. Mistakenly thinking that Bernoulli determined the weights as 
 
    pi  =  r2  –  (ê  –  xi)

2, 
 
he reduced the expression ( 5 ) to a cubic equation 
 
    nê3  –  ê(nr2  –  3B)  –  C  =  0                                                                            ( 7 ) 
 
where  ê  was not anymore the maximum likelihood estimator,  
 
    B  =  a2  +  b2  +  c2  + …,  C  =  a3  +  b3  +  c3  + …,  
 
    a  +  b  +  c  + …  =  0,  x1  =  -  +  a,  x2  =  -  +  b,  x3  =  -  +  c, …  
 
Finally, Euler noted that his equation ( 7 ) can be derived from 
 
    [r2  –  (ê  –  a)2]2  +  [r2  –  (ê  –  b)2]2  +  [r2  –  (ê  –  c)2]2  + …  =  max. 
 
If the fourth powers of the errors are disregarded, Euler’s condition will be tantamount to the principle of 
least squares! 
 
    5. Laplace [4; 9; 10; 15; 16] 
    Laplace’s contributions to the theory of errors can easily be separated into two groups. Until 1810, he 
examined various criteria for deriving estimators of the true values of the constants sought (cf. §9) by issuing 
from more or less arbitrary densities. He invariably arrived at involved equations and was compelled to re-
strict his studies to the case of three observations. Then, after non-rigorously proving several versions of the 
central limit theorem (CLT; a term due to Polya, 1920), he became able to consider a large number of obser-
vations, and began to apply one and the same criterion (see below) for selecting the estimators. Finally, how-
ever, in 1818 Laplace abandoned it and chose, even before Gauss did, the condition of least variance (though 
only in connection with the normal distribution).  
     
    5.1. Early Memoirs [15] 
    In 1774 Laplace, assuming an arbitrary analytic condition, selected the density 
 
    � ( x )  =  (m/2) exp [– m | x | ] 
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or (as I add), more precisely, 
 
   � ( x )  =  (m/2) exp [– m | x –   e | ] 
 
where  e  was the unknown (location) parameter. Introducing the product 
 
    f ( x )  =  � ( x;  x1) � ( x;  x2) � ( x;  x3)                                                                     ( 8 ) 
 
where  xi  were the observations, he determined an estimator of  e  by applying two different conditions, viz., 
by assuming that it was the median with regard to the curve  ( 8 )  and that 
 

    �
∞

∞−

| x  –  e | f ( x ) dx  =  min. 

 
It occurred, however, that in both cases the results were identical. 
    In 1781 Laplace again issued from a curve of the type of ( 8 ), but in addition to the two previous condi-
tions he considered two more criteria, namely, that the median was determined with respect to  x f ( x ),  and 
that  f ( x )  =  max  (principle of maximum likelihood). When examining a general stochastic problem, 
Laplace also non-rigorously derived the density 
 
    y  =  (1/2a) ln [a / | x | ],  | x |  �  a,                                                                           ( 9 ) 
 
or, as I myself add, 
 
    y  =  (1/2a) ln [a / | x  –  e | ],  | x  –  e |  �  a. 
 
When attempting to estimate  e,  he introduced, on a “physical” level, the Dirac delta-function. Regrettably, 
however, in the language of distributions his reasoning becomes meaningless.  
    I believe that Laplace understood well enough that his derivations were non-rigorous (for example, the 
function ( 9 ) did not exist at  x  =  0) but regarded them as preliminary and provisional attempts. 
 
    5.2. The Memoir of 1810 
    Here Laplace considered  n  observations with errors obeying an arbitrary distribution possessing variance. 
Applying an analog of a characteristic function and the inversion formula, he derived a version of the CLT. 
His calculations were non-rigorous and extremely careless and apparently only his intuition enabled him to 
arrive at the correct result.  
    In a supplement Laplace justified the principle of least squares without having recourse to the Gaussian 
postulate of the arithmetic mean (§7.1). Nevertheless, he had to admit another assumption, and an artificial 
one at that. 
 
   5.3. The Memoir of 1811 
   Here, Laplace applied indeterminate multipliers ( qi ) for solving equations in one unknown 
 
    aix  +  si  =  �i,  i  =  1,  2, …,  n  
 
where  �i  were observational errors rather than residual free terms. Multiplying each  i-th equation by  qi  and 
summing the equations, he obtained 
 
    x  =  [sq] / [aq]  +   [� q] / [aq]  �  [sq] / [aq]  +  g 
 
where, in Gauss’ notation (regrettably not adopted either by Laplace ot other French scholars including Pois-
son), 
 
    [ab]  =  a1 b1   +  a2 b2  +  …  +  an bn. 
 
    Assuming  an even distribution with a variance and one and the same order for his multipliers, Laplace 
non-rigorously proved that the error  g  was normally distributed and determined the  qi’s by demanding that 
the error possessed least absolute expectation. He got 
 



 121

    qi  =   µai,  x  = [ as] / [ aa] 
 
which corresponded to the principle of least squares (for direct observations). Finally, Laplace generalized 
his account onto the case of several unknowns. 
 
    5.4. Théorie analytique des probabilités 

    In this monograph of 1812 Laplace again determined the distributions of several functions of (independ-
ent) observational errors  �i, – namely � �i,  � | �i  |,  [�i  �i]  and  [q �],  this last being a linear function with 
coefficients of one and the same order, –  identically distributed on a finite interval. He obtained the pertinent 
normal laws and repeated his previous (1811) justification of the principle of least squares. 
    A few words about the first two supplements to the Théorie (1816 and 1818). In 1816, the most interesting 
was Laplace’s oblique indication that the sample variance and the arithmetic mean for (independent) nor-
mally distributed errors were independent. He thus knew the so-called Student – Fisher theorem. In 1818 
Laplace estimated the precision of triangulation by the “closings” of the triangles and derived the density of 
the measure of precision of the normal law (thus regarding that measure as a random variable). Then, when 
considering the Boscovich method of adjusting observations (§4.3), he compared the expediency of the 
arithmetic mean and the median depending on the pertinent law of distribution and in essence assumed the 
condition of least variance as his test. 
 
    6. The Principle of Least Squares 
    6.1. Legendre [21] 
    Justifying his proposal by qualitative arguments, Legendre, in 1805, adjusted indirect observations by the 
principle of least squares and indicated that the greatest absolute correction should be minimized. Note, how-
ever (Gauss, 1809), that this minimax condition follows from the generalized principle of least squares 
 
    lim ( v1

2p  +  v2
2p  +  …  +   vn

2p)  =  min,   p  �  �. 
 
    6.2. Adrain [1; 17] 
    In 1809 Adrain provided two very non-rigorous proofs that observational errors follow the normal law. As 
a corollary , he easily arrived at the principle of least squares. John Herschel, and then Maxwell, in 1860, 
essentially repeated one of his proofs. Adrain had published his contribution in a hardly known American 
periodical, that, moreover, almost immediately ceased to exist. European mathematicians only came to know 
about his work in the 1870s. 
 
    7. Gauss [4; 12; 16; 17; 21; 24; 32] 
    7.1. The First Attempt 
    Gauss had been applying the principle of least squares from 1794 or 1795 onward and published its first 
justification in 1809. Postulating the coincidence of the arithmetic mean and the maximum likelihood estima-
tor for a unimodal, symmetric and differentiable density                      � ( x  –  xo),  he proved that this density 
was normal and that the principle of least squares followed at once. Thus, according to Gauss, the least-
squares estimators were “most probable”. Nevertheless, he was (or at least became) unsatisfied with these 
findings. Indeed, his postulate was not evident; random errors could have possessed other densities as well; 
and the principle of maximum likelihood was less reliable than an integral criterion of the type 
 

    �
∞

∞−

 � ( x  –  xo) f ( x)  dx  =  min.                                                                              ( 10 ) 

 
    7.2. Mature Thoughts 
    In 1823, having selected condition ( 10 ) with  f ( x)  =  x2  as a criterion, Gauss proved that the correspond-
ing estimators were determined  by the MLSq (and called them “most plausible”). He also derived the for-
mula for estimating the sample variance by the residual free terms  vi  of the initial equations (§2)                                        
 
    ,2  =  [vv] / (n  -  k)                                                                                                   ( 11 ) 
                                                                                                     
 and determined (with a mistake [47; 48]) the boundaries of the variance of this estimator. The solution of 
this last problem demanded the knowledge of the density; otherwise, Gauss’ findings were distribution free 
and completed the construction of the classical error theory. True, many sections of his contribution of 1823 
(and, to a lesser extent, of 1809) made difficult reading.  
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    7.3. The Fate of the First Approach [17; 24] 
    The first substantiation of the MLSq proved extremely tenacious: it was elegant and much simpler than the 
second one, and the normal distribution more or less conformed to reality and became rooted in physics 
(Maxwell, in 1860). In actual fact, astronomers and geodesists, and other natural scientists of the mid-19th 
century had hardly been acquainted with Gauss’ mature thoughts and some were only gradually grasping the 
essence of the MLSq (Ivory [26], a “scharfsinnigen” mathematician, as Gauss called him, in a series of his 
papers in 1826 – 1830, although he it was who at once came out in favor of the second justification). Cheby-
shev (lectures of 1880) had not described the second justification and, moreover, unsuccessfully dwelt on 
formula ( 11 ): he replaced the magnitudes  vi  by observational errors. True, Markov’s active defence of 
Gauss’ mature thoughts and an appropriate description of this issue in his treatise bore fruit: in Russia, the 
first justification left the forefront. 
 
    7.4. Appendix: Legendre and Gauss [21; 24] 
    When publishing his first substantiation of the MLSq, Gauss used the expression “our principle” and in 
1820, after his letter of 1809 to Gauss had remained unanswered, Legendre  reasonably and openly remarked 
that a discovery was due to him who first published it. Here is the pertinent opinion of two commentators 
[51, p. 309; 52, p. 18]: 
 
    Gauss cared a great deal for priority. […] But to him this meant being first to discover, not 
    first to publish; and he was satisfied to establish his dates by private records, 
    correspondence, cryptic remarks in publications. […] Whether he intended it so or not, in 
    this way he maintained the advantage of secrecy without losing his priority in the eyes of 
    later generations. 
 
    Was einem normalen Autor verboten ist, einem Gauss wohl gestattet werden muß, 
     zumindest müssen wir seine Gründe respektieren. 
 
        I am dwelling on this issue only because Stigler [53], who described the work of Legendre, Gauss and 
other scholars on a modern level (but omitted the ancient history as well as Kepler, Lambert, Daniel Ber-
noulli’s last memoir and Helmert), unfoundedly questioned Gauss’ priority (even in the above sense) and his 
imparting his discovery to colleagues and, for good measure, declared that Euler had not understood the 
essence of statistics. I [21, §7; 32] resolutely refuted these allegations which Stigler, moreover, expressed in 
an inadmissible manner, and I only adduce one pertinent example (see his pp. 57 and 146): Legendre “imme-
diately realized the method’s potential” but “there is no indication that [Gauss] saw its great potential before 
he learned of Legendre’s work”. In 1999 Stigler [54] repeated suchlike astonishing declarations slightly less 
impudently and, without recalling his previous opinion, highly praised Euler. 
 
    8. Further Work [28] 
    8.1. Newcomb 
    Arguments, denying the universality of the normal law, had been multiplying and gradually undermined 
the first justification. Cournot [61] was the first to suggest that the density might be represented as 
 
     � (x)  =  [ n1 �1 (x)  +  n2 �2 (x)  +  …] / (n1  +  n2  + …)  
 
where  ni  were the numbers of observations in one and the same series possessing densities  �i ( x ). He had 
not indicated the type of these partial densities nor did he explain the difference between them. All of them 
were possibly normal laws with differing variances. 
    Newcomb’s investigations of 1882 and 1886 [62] became generally known. He remarked that in a long 
series of observations errors were seldom normally distributed and argued that their density was a mixture of  
n  such laws with differing measures of precision  hi  appearing with probabilities  pi. Newcomb also devel-
oped a method of adjusting observations possessing such a density but it occurred that the simplifications that 
he introduced reduced his integral criterion to the principle of maximum likelihood. And, what was worse, 
his method remained subjective because the parameters of the mixture,  hi,  pi  and  n, could not have been 
determined quantitatively. It should also be noted that the normal law has special importance in the error 
theory: its existence is necessary and sufficient for the least-squares estimators to be jointly effective. Al-
ready Bienaymé [64] indicated that such estimators were desirable.        
    Newcomb actually replaced the constant measure of precision of the normal law by a discrete random 
variable. In 1887 Lehmann-Filhès proposed, instead, to regard  h  as a continuous random variable with its 
own normal distribution. Finally, Ogorodnikov [62] argued that the errors were distributed with density 
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    � ( x )  =  (1/��) �
∞

0

 h f ( h ) exp [– h2 x2] dh 

where  f ( h ) was not given beforehand. 
    Eddington [63] in an extremely simple way proved that Newcomb’s distribution was not normal. Thus, 
although the normal law itself is stable (which was known to Gauss, Laplace and Bessel), a mixture of such 
laws is not. 
 
    8.2. Helmert [27; 56 - 59] 
    Helmert continued the work of Gauss. While examining normally, and sometimes uniformly distributed 
errors, he provided formulas for revealing systematic influences and estimating the precision of observations 
by means of different functions of residual free terms  vi  (§2). One of his problems led him to the chi-squared 
distribution (already known to Abbe). He also studied the plausibility of the mean square error, again for the 
normal law, and introduced the Helmert transformation, as it is now called in statistics. Finally, he reasona-
bly thought that biased estimators were admissible. The Gauss classical formula ( 11 ), in connection with 
which I mentioned Helmert in §7.2, provided an unbiased estimator of the sample variance; nevertheless, it 
was the (biased) mean square error that has always been practically referred to in geodesy. 
 
    8.3. Lévy [28] 
    Lévy [39; 65] thought that the estimation of precision was only possible if observational errors possessed a 
stable distribution. Otherwise, as he argued, the mean square error only provided a general notion about pre-
cision. He also recommended how to treat observations in case of stable laws with various values of parame-
ter  �  (1  <  �  < 2;  �  =  1;  0  <  �  <  1). His considerations were reasonable but useless since these values 
remain unknown; even the realization of a stable law with  �  =  2 (the normal law) is questionable whereas 
the worst cases (0  <  �  �  1)  should not take place at all. To recall, stable laws have variance only if  �  =  2, 
and  �  =  1 defines the Cauchy distribution.   
 
    9. The Stochastic Branch of the Error Theory and Mathematical Statistics [ 28] 
    From the 18th century, the theory of errors is based on its own theorems and principles. These theorems, 
however, now belong to the theory of probability, and the principles (of maximum likelihood and least vari-
ance) were appropriated by statistics. Nowadays, the stochastic error theory is the application of mathemati-
cal statistics to the treatment of observations; unlike statistics, it (as also the determinate error theory) ought 
to study systematic errors, which, together with some “physical” dependence between observations of one 
and the same series, lead to the insufficiency of a formal estimation of precision. Gauss, for example, ob-
served the angles of his triangulation until becoming convinced that (in contradiction with his own formulas) 
further work will be meaningless. 
    The theory of errors cannot do without the notion of true value of the constants sought whereas statisti-
cians consider estimation of parameters of the appropriate distributions. According to Fourier [66], a true 
value is the limit of the appropriate arithmetic mean as the number of observations increases unboundedly 
(§2). This definition, that seems to be akin to the Mises formula of probability of an event, has remained 
either unnoticed or forgotten, but modern metrologists introduced it independently [67, pp. 30 – 31] (and 
included the residual systematic error as a component of the true value). Here is an example from that source: 
  
    The mass of a mass standard is […] specified […] to be the mass of the metallic substance of the 
    standard plus the mass of the average volume of air absorbed upon its surface under standard 
    conditions. 
   
     Owing to systematic errors, rejection of outlying observations in accord with subtle tests is not widely 
applied in the theory of errors. In addition, practitioners cannot be sure that the errors of their observations 
obey one and the same (still less, one and the same normal) law.  
    The theory of errors differs from statistics also in that it studies above all independent magnitudes. Thus, 
as Gauss stated in 1823, the angles of a triangle are dependent only insofar as some components of their 
errors (almost) coincide. Dependence certainly appears after adjustment, when the sum of the angles becomes 
equal to a stipulated magnitude (180° plus the spheroidal excess of the triangle).  
    In 1912, being disappointed with the nascent theory of correlation, Kapteyn [68] suggested to estimate the 
dependence between two functions, whose measured arguments partly coincided, by a peculiar correlation 
coefficient. His paper had been forgotten (or unnoticed in the first place) perhaps because he had not referred 
to Gauss. 
 
    10. The Determinate Error Theory [5; 12] 
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    I sketch now the history of the determinate branch of the error theory and remain within traditional 
boundaries. It is not amiss, however, to note that the design of experiments and preliminary data exploration, 
if understood in a wide sense, could have also been included here. I bear in mind, above all, the study of the 
free fall of bodies (Galileo, Huygens), the development of pendulum clocks (Huygens) and optical investi-
gations (Newton).  
     
    10.1. Ancient Astronomy and the 18th Century 
    Ancient astronomers knew that errors corrupted their observations, attempted to minimize their action (§ 
2) and could not have failed to recognize the difference between random and systematic influences. All this is 
all the more true with regard to such scholars as Tycho Brahe and Kepler, but nevertheless the determinate 
branch of the error theory properly originated only in the 18th century. 
    In 1722 Cotes offered differential formulas for estimating the errors of calculated elements of plane and 
spherical triangles given the errors of their measured sides and angles. Without mentioning him, Lambert, in 
1765, published similar formulas for other geodetic figures and even invented a pertinent but forgotten term, 
Theorie der Folgen. Although his definitions were narrow, Daniel Bernoulli          (§4.6) was the first to 
separate formally the errors into the two categories. Mayer and Boscovich derived differential formulas 
connecting instrumental errors with the ensuing observational errors [69] and thus provided the possibility of 
compiling more expedient observational programs. Mayer also invented the repeating theodolite which en-
abled to lessen essentially the influence of the error of reading and to equate its order with that of the error of 
pointing. The total error was made less, and its density became closer to the normal law. 
 
    10.2. Laplace [15] 
    Laplace repeatedly described his ideas about observational programs, about the influence of errors on final 
results, etc. In 1818 – 1819 he examined the precision of a meridian arc determined by triangulation as well 
as of the so-called trigonometric levelling and thus made a further step in the investigation of geodetic net-
works. However, the reader acquainted with the work of Gauss will hardly be satisfied with Laplace’s un-
wieldy mathematical tools connected with the CLT and calculation of integrals. 
    In 1792 Laplace applied the minimax method for checking whether meridian arc measurements contra-
dicted the hypothesis of an ellipsoidal Earth. Kepler (§3.4), as it seems, applied elements of the same method 
(and for a similar aim) and, much later, Chebyshev [70] used it in the theory of mechanisms when studying 
the precision of transforming circular motion into rectilinear. 
    10.3. Gauss and Bessel [17] 
    Hipparchus, Tycho Brahe and Bradley are rightfully remembered as outstanding experimentalists, but 
the modern period in experimental science began with Gauss and Bessel. They demanded thorough examina-
tion of instruments, compensation of instrumental errors by expedient observational programs and correc-
tions for residual instrumental errors. Gauss also invented the heliotrope (the solar mirror), which allowed to 
observe triangulation angles more precisely, and essentially improved the existing method of measuring the 
difference between two approximately equal weights [71, p. 427]. 
     Bessel [72] examined the corruption of the length of a measuring bar due to its weight and the ensuing 
bending. By means of appropriate differential equations he determined the position of the bar’s supporting 
point securing its least bending. Bessel [73] also discovered the existence of the personal equation. As re-
corded by a practitioner, the moment of the passage of a star through the cross-hairs of an astronomical in-
strument strongly depends on his psychological habits; accordingly, two astronomers will hardly ever record, 
even approximately, the same moment. One of Bessel’s experiments was however faulty: its errors were of 
the same order as that of the suspected difference. 
 
10.4. Helmert [27] 
    Following Laplace, but applying the Gauss approach to the error theory, he [55] studied the configurations 
of various geodetic figures ensuring maximal weight (least variance) of their calculated elements. Helmert 
also broke fresh ground by stating his aims as “einen nothwendigen Genauigkeitgrad [of geodetic systems] 
mit möglichst wenig Zeit und Geld zu erreichen” (p. 1), or as achieving more precise results “bei gleicher 
Mühe“ (p. 60). Not all of his equations were linear (or even algebraic) and he was therefore unable to de-
velop the theory of linear programming. Nevertheless, one of his conclusions complied with this theory: the 
second aim, as he remarked, demanded that some observations be lacking altogether. Note, however, that this 
is impossible since all observations should be carried out (even with a lesser weight) for checking the entire 
work. 
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