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One knows that the general term of a recurrent series of which the generating frac-
tion is a′

1−ax is a′anxn. One knows also that in order to find the general term of any
recurrent series, it is necessary to equate to zero the denominator of the generating
fraction, to seek the roots of this equation, to raise each of these roots to the power n,
to multiply each of them by an appropriate constant & to add all these products. This
method has all the inconveniences attached to the seeking of the roots of the equations,
& besides the form of these roots can be such that their elevation to the power n is
very painful. I am going to expose here a method which leads to the same end, without
that there be need to know separately the roots of which we just spoke & which give
immediately the general term by means of series regular & easy to form.
§ 1. Let the fraction be a′+b′x

1−ax+bx2 , which is the general generating fraction of all
the recurrent series of the second order, that is to say of all those where any term is
formed by means of the two preceding. Let m & p be the roots of the equation

a− bx+ cx2 = 0,

I make according to the ordinary method of the decomposition of the fractions,

a′ + b′x

1− ax+ bx2
=

A

1−ms
+

B

1− px
whence I deduce

A =
b′ + a′m

m− p
, B = − (b′ + a′p)

m− p
.

One has also m + p = a, mp = b. The general term of these sorts of series being
as we just said it = Amn + Bpn, n being any number, in order to have the first term
of the series, I make n = 0, this which gives this term

= A+B =
a′(m− p)
m− p

= a′.

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. December 22, 2009
†Read to the Academy 23 November 1797.
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In order to have the second term, I make n = 1, & I have this term

= Am+Bp =
a′(m2 − p2) + b′(m− p)

m− p
= a′(m+ p) + b′ = a′a+ b′.

In order to have the third term, I make n = 2, & I have this term

= Am2 +Bp2 =
a′(m3 − p3) + b′(m2 − p2)

m− p
= a′(m2 +mp+ p2) + b′(m+ p) = a′((m+ p)2 −mp) + b′(m+ p)

= a′(a2 − b) + b′a.

In order to have the fourth term, I make n = 3, & I have this term

= Am3 +Bp3 =
a′(m4 − p4) + b′(m3 − p3)

m− p
= a′(m3 +m2p+mp2 + p3) + b′(m2 +mp+ p2)

= a′((m+ p)3 − 2(m+ p)mp) + b′((m+ p)2 −mp))
= a′(a3 − 2ab) + b′(a2 − b).

One will find likewise the fifth term

= Am4 + bp4 = a′(a4 − 3a2b+ b2) + b′(a3 − 2ab),

the sixth term

= Am5 +Bp5 = a′(a5 − 4a3b+ 3ab2) + b′(a4 − 3a2b+ b2),

the seventh term

= Am6 +Bp6 = a′(a6 − 5a4b+ 6a2b2 − b3) + b′(a5 − 4a3b+ 3ab2),

the eighth

= Am7 +Bp7 = a′(a7 − 6a5b+ 10a3b2 − 4ab3) + b′(a6 − 5a4b+ 6a2b2 − b3),

the ninth

= Am8 +Bp8

= a′(a8 − 7a6b+ 15a4b2 − 10a2b3 + b4) + b′(a7 − 6a5b+ 10a3b2 − 4ab3),

The law of these terms being now manifest, one sees that one will have in general
the (n+ 1)st term

= Amn +Bpn

=a′(an − (n− 1)an−2b+
(n− 3)(n− 2)

1.2
an−4b2

− (n− 5)(n− 4)(n− 3)

1.2.3
an−6b3 +

(n− 7)(n− 6)(n− 5)(n− 4)

1.2.3.4
an−8b4 &c.)xn

+ b′(an−1 − (n− 2)an−3b+
(n− 4)(n− 3)

1.2
an−5b2

− (n− 6)(n− 5)(n− 4)

1.2.3
an−7b3 +

(n− 8)(n− 7)(n− 6)(n− 5)

1.2.3.4
an−9b4 &c.)xn.
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One continues these series until one arrives to some terms = 0. One sees first that
the second series which is multiplied by b′ is the same as the first which is multiplied
by a′, by changing only n into n− 1, thus all that which I will say on the first of these
series will apply to the second with this single observation. The law of the same terms
of the first series, setting aside their coefficients, is quite simple since the exponent of
a diminishes by two units at each term, while the one of b increases by one unit. As
for the coefficients, they are so easy to form that there is no need to write them in the
general formula, a single rule suffices to form all of them. This rule is that if one has
the term aµbν , the coefficient of this term will be equal to the number of permutations
of µ + ν, letters of which the µ are the same & the ν others are also the same, this
which gives by the theory of permutations

1.2.3 . . . µ+ ν

1.2.3 . . . µ.1.2.3 . . . ν
=
µ+ 1.µ+ 2 . . . µ+ ν

1.2.3 . . . ν
=
ν + 1.ν + 2 . . . µ+ ν

1.2.3 . . . µ
.

Thus, for example, the coefficient of the 4th term an−6b3 is

=
1.2 . . . n− 3

1.2 . . . n− 6.1.2.3
=
n− 5.n− 4.n− 3

1.2.3
.

The coefficient of the 5th term an−8b4 is

=
1.2 . . . n− 4

1.2 . . . n− 8.1.2.3.4
=
n− 7.n− 6.n− 5.n− 4

1.2.3.4

& thus in sequence, this which agrees with the terms of the series reported above, &
which I had first deduced from that consideration that the coefficients of the first term
were the figurate numbers of the first order, that the coefficients of the second were
the figurate numbers of the second, & that in general the coefficients of the nth term
were the figurate numbers of the nth order. We can therefore in the general formula set
aside the coefficients that one will form always easily for each term according to the
preceding rule, & one will have by making

A(n) = an − an−2b+ an−4b2 − an−6b3 + an−8b4,

the (n+ 1)th term of the recurrent series of the second order

= (a′A(n) + b′A(n−1))xn.

This last form of which one was able to happen in this case here, will be useful to
us in the more composed cases.
§ 2. In order to give an example of our formula, I take in the introduction to the

calculus of the infinite of Mr. Euler T. 1 p. 179 the recurrent series

1 + 3z + 4z2 + 7z3 + 11z4 + 18z5 + 29z6 + 47z7 &c. =
1 + 2z

1− z − 2z
.

By comparing the terms of this generating fraction with those of our general frac-
tion, one has a′ = 1, b′ = 2, a = 1, b = −1, in order to have the 7th term we will
make n+ 1 = 7, this which gives n = 6, & we will have

A(6) = a6 − a4b+ a2b2 − b3,
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& by forming the coefficients,

A(6) = a6 − 5a4b+ 6a2b2 − b3 = 1 + 5 + 6 + 1 = 13,

A(5) = a5 − 4a3b+ 3ab2 = 1 + 4 + 3 = 8.

The 7th term will be therefore

= 13a′ + 8b′ = 13 + 16 = 29z6

as this is effectively. In order to have the 8th term, we will make n = 7, & we will have

A(7) = a7 − 6a5b+ 10a3b2 − 4ab3 = 1 + 6 + 10 + 4 = 21,

it will be therefore
= 21a′ + 26b′ = 47z7,

this which is true. The advantage of this method is that it is the same, whether the roots
are equals or they are not. If one seeks the terms by the method of the general term that
Mr. Euler finds, one will find the method longer at least in all the parts which consist
in finding the roots of the scale of relation, & if one compares the general form which
results from the method of Mr. Euler (p. 180) & which is by taking our denominations(

a′(
√
aa+ 4b+ a) + 2b′

2
√
aa+ 4b

)(
a+
√
aa+ 4b

2

)n
zn

+

(
a′(
√
aa+ 4b− a)− 2b′

2
√
aa+ 4b

)(
a−
√
aa+ 4b

2

)n
zn

one will find it more complicated & less convenient.
§ 3. Let the fraction be a′+b′x+c′x2

1−ax+bx2−cx3 which is the generating fraction of all the
recurrent series of third order, that is to say of those where any term is formed by means
of the three preceding. Letm, p, q be the roots of the equation 1−ax+bx2−cx3 = 0,
I make according to the ordinary method

a′ + b′x+ c′x2

1− ax+ bx2 − cx3
=

A

1−mx
+

B

1− px
+

C

1− qx
,

whence I deduce

A =
c′ + b′m+ a′m2

(m− p)(m− q)
, B = − (c′ + b′p+ a′p2)

(m− p)(p− q)
, C =

c′ + b′q + a′q2

(m− q)(p− q)
.

One has also m+ p+ q = a, mp+mq + pq = b, mpq = c. The general term of
these series is Amn + Bpn + Cqn. In order to have the first term of the series I make
n = 0, this which gives me this term = A+B + C =

c′p+ b′mp+ a′m2p+ c′q + b′pq + a′p2q + c′m+ b′mq + a′mq2

(m− p)(m− q)(p− q)

− (c′p+ b′pq + a′pq2 + c′q + b′mq + a′m2q + c′m+ b′mp+ a′mp2)

(m− p)(m− q)(p− q)

=
a′(m2p−m2q −mp2 + p2q +mq2 − pq2)

(m− p)(m− q)(p− q)
= a′.
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In order to have the second term I make n = 1, this which gives me this term

=
a′(m3p−m3q −mp3 + p3q +mq3 − pq3) + b′(m2p−m2q −mp2 + p2q +mq2 − pq2)

(m− p)(m− q)(p− q)
= a′(m+ p+ q) + b′ = a′a+ b′.

In order to find the third term, I make n = 2, this which gives this term=

a′(m4p−m4q −mp4 + p4q +mq4 − pq4) + b′(m3p−m3q −mp3 + p3q +mq3 − pq3)
+c′(m2p−m2q −mp2 + p2q +mq2 − pq2)

(m− p)(m− q)(p− q)

= a′(m2 +mp+mq + p2 + pq + q2) + b′(m+ p+ q) + c′

= a′((m+ p+ q)2 − (mp+mq + pq)) + b′(m+ p+ q) + c′

= a′(a2 − b) + b′a+ c′.

In order to have the fourth term I make n = 3, this which gives me this term

a′(m5p−m5q −mp5 + p5q +mq5 − pq5) + b′(m4p−m4q −mp4 + p4q +mq4 − pq4)
+c′(m3p−m3q −mp3 + p3q +mq3 − pq3)

(m− p)(m− q)(p− q)

=a′(m3 +m2p+mp2 + p3 +m2q +mpq + p2q +mq2 + pq2 + q3)

+ b′(m2 +mp+mq + p2 + pq + q2) + c′(m+ p+ q)

=a′((m+ p+ q)3 − 2(m+ p+ q)(mp+mq + pq) +mpq)

+ b′((m+ p+ q)2 − (mp+mq + pq)) + c′(m+ p+ q)

= a′(a3 − 2ab+ c) + b′(a2 − b) + c′a.

One will find likewise for the 5th, 6th, 7th, 8th terms,
Am4 +Bp4 + Cq4 = a′(a4 − 3a2b+ b2 + 2ca)

+ b′(a3 − 2ab+ c) + c′(a2 − b),
Am5 +Bp5 + Cq5 = a′(a5 − 4a3b+ 3ab2 + c(3a2 − 2b))

+ b′(a4 − 3a2b+ b2 + 2ca) + c′(a3 − 2ab+ c),

Am6 +Bp6 + Cq6 = a′(a6 − 5a4b+ 6a2b2 − b3 + c(4a3 − 6ab+ c))

+ b′(a5 − 4a3b+ 3ab2 + c(3a2 − 2b)) + c′(a4 − 3a2b+ b2 + 2ca),

Am7 +Bp7 + Cq7 = a′(a7 − 6a5b+ 10a3b2 − 4ab3

+ c(5a4 − 12a2b+ 3b2 + 3ca)) + b′(a6 − 5a4b+ 6a2b2 − b3

+ c(4a3 − 6ab+ c)) + c′(a5 − 4a3b+ 3ab2 + c(3a2 − 2b)),

Am8 +Bp8 + Cq8 = a′(a8 − 7a6b+ 15a4b2 − 10a2b3 + b4

+ c(6a5 − 20a3b+ 12ab2 + c(6a2 − 3b)) + b′(a7 − 6a5b

+ 10a3b2 − 4ab3 + c(5a4 − 12a2b+ 3b2 + 3ca))

+ c′(a6 − 5a4b+ 6a2b2 − b3 + c(4a3 − 6ab+ c)) &c.
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One can now discover the law of these terms, & one will have in general the (n+1)st

term = Amn +Bpn + Cqn =

a′(an − (n− 1)an−2b+
(n− 3)(n− 2)

1.2
an−4b2

− (n− 5)(n− 4)(n− 3)

1.2.3
an−6b3 +

(n− 7)(n− 6)(n− 5)(n− 4)

1.2.3.4
an−8b4 + &c.)

+ c((n− 2)an−3 − (n− 4)(n− 3)an−5b

+
(n− 6)(n− 5)(n− 4)

1.2
an−7b2 − (n− 8)(n− 7)(n− 6)(n− 5)

1.2.3
an−9b3&c.)

+ c2
(
(n− 5)(n− 4)

1.2
an−6 − (n− 7)(n− 6)(n− 5)

1.2
an−8b

+
(n− 9)(n− 8)(n− 7)(n− 6)

1.2 1.2
an−10b2 − (n− 11)(n− 10)(n− 9)(n− 8)(n− 7)

1.2 1.2.3
an−12b3&c.

)
+ c3

(
(n− 8)(n− 7)(n− 6)

1.2.3
an−9 − (n− 10)(n− 9)(n− 8)(n− 7)

1.2.3
an−11b

+
(n− 12)(n− 11)(n− 10)(n− 9)(n− 8)

1.2.3 1.2
an−13b2&c.

)
+ c4(&c. + &c.)

+ b′(the terms which must multiply b′ are the preceding by changing n to n− 1

+ c′(the terms which must multiply c′ are the preceding by changing n into n− 2).

One continues the terms of these series until one arrives to zero. The law of the
coefficients of these terms is the same as we have found for the series of the second
order, as one can see it immediately. We take for example, the term an−13b2c3, the
number of permutations will be

=
1.2.3 . . . n− 8

1.2.3 . . . n− 13.1.2 1.2.3
=
n− 12.n− 11.n− 10.n− 9.n− 8

1.2.3 1.2

as one sees it in our formula; thus one can set aside some coefficients which one will
find easily for each term, & this done one will find without pain the law of the same
terms, as one is going to see. We take the value of A(n) enunciated in the preceding
problem, & we will have in general for the (n+1)st term of the series of the third order,

a′(A(n) + cA(n−3) + c2A(n−6) + c3A(n−9) + c4A(n−12) + &c.)

+ b′(A(n−1) + cA(n−4) + c2A(n−7) + c3A(n−10) + c4A(n−13) + &c.)

+ c′(A(n−2) + cA(n−5) + c2A(n−8) + c3A(n−11) + c4A(n−14) + &c.)

One will continue the values of A(n) until the exponents become negative. We
make now

B(n) = A(n) +A(n−3)c+A(n−6)c2 +A(n−9)c3 +A(n−12)c4 + &c.

one will have for the (n+1)st term of the recurrent series of the third order the following
formula,

(a′B(n) + b′B(n−1) + c′B(n−2))xn.
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There will be therefore only to form the terms A(n), A(n−1), A(n−2) &c. & next
after these the terms B(n), B(n−1), B(n−2) &c. & to form in measure the coefficient
of each term according to the rule which we have given above.
§ 4. In order to give an example of this formula, I take in the work cited of Mr. Euler

p. 180 the recurrent series

1 + z + 2z2 + 2z3 + 3z4 + 3z5 + 4z6 + 4z7 &c. =
1

1− z − zz + z3
.

By comparing the generating fraction with ours, I find

a′ = 1, b′ = 0, c′ = 0, a = 1, b = −1, c = −1;

in order to find the seventh term I make n + 1 = 7, therefore n = 6, & our formula
will be reduced to

a′B(6) = A(6) +A(3)c+ c2;

now
A(6) = a6 − a4b+ a2b2 − b3, A(3) = a3 − ab,

therefore
B(6) = a6 − a4b+ a2b2 − b3 + a3c− abc+ c2,

& by forming the coefficients,

B(6) =a6 − 5a4b+ 6a2b2 − b3 + 4a3c− 6abc+ c2

=1 + 5 + 6 + 1− 4− 6 + 1 = 4,

& it is effectively the seventh term.
§ 5. In order to give a second example, I take the recurrent series

1 + 2x+ 3x2 + 3x3 + 7x4 + 5x5 + 15x6 + 9x7 + 31x8 + 17x9 + 63x10 &c.

=
1 + 3x+ 3x2

1 + x− 2x2 − 2x3
.

In comparing the generating fraction with ours, I obtain

a′ = 1, b′ = 3, c′ = 3, a = −1, b = −2, c = 2.

In order to find the tenth term, I make n+ 1 = 10, therefore n = 9 & the formula
is reduced to

a′B(9) + b′B(8) + c′B(7) = B(9) + 3B(8) + 3B(7).

Now I find
B(9) = A(9) +A(6)c+A(3)c2 + c3,

B(8) = A(8) +A(5)c+A(2)c2,

B(7) = A(7) +A(4)c+A(1)c2;

A(9) = a9 − a7b+ a5b2 − a3b3 + ab4,

A(6) = a6 − a4b+ a2b2 − b3,
A(3) = a3 − ab;
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therefore

B(9) =a9 − a7b+ a5b2 − a3b3 + ab4 + a6c− a4bc+ a2b2c− b3c+ a3c2 − abc2 + c3

=(by forming the coefficients)

a9 − 8a7b+ 21a5b2 − 20a3b3 + 5ab4 + 7a6c− 30a4bc+ 30a2b2c− 4b3c

+ 10a3c2 − 12abc2 + c3

=− 1− 16− 84− 160− 80 + 14 + 120 + 240 + 64− 40− 96 + 8

=− 31.

We will have likewise

A(8) = a8 − a6b+ a4b2 − a2b3 + b4,

A(5) = a5 − a3b+ ab2,

A(2) = a2 − b,

therefore by forming the coefficients immediately,

B(8) = a8 − 7a6b+ 15a4b2 − 10a2b3 + b4 + 6a3c− 20a3bc+ 12ab2c+ 6a2c2 − 3bc2

= 1 + 14 + 60 + 80 + 16− 12− 80− 96 + 24 + 24 = 31.

We will have finally

A(7) = a7 − a5b+ a3b2 − ab3,
A(4) = a4 − a2b+ b2,

A(1) = a,

therefore

B(7) =a7 − 6a5b+ 10a3b2 − 4ab3 + 5a4c− 12a2bc+ 3b2c+ 3ac2

=− 1− 12− 40− 32 + 10 + 48 + 24− 12 = −15.

The tenth term will be therefore

= −31 + 3.31− 3.15 = 93− 76 = 17,

as this is really.
§ 6. Let be a′+b′x+c′x2+d′x3

1−ax+bx2−cx3+dx4 which is the generating fraction of all the recurrent
series of the fourth order, that is to say of all those where any term is formed by means
of the preceding four, one finds by a process analogous to the one which I just used &
which I suppress because of its length, that by leaving to A(n) & B(n) the same values
as above, & making

C(n) = B(n) −B(n−4)d+B(n−8)d2 −B(n−12)d3 +B(n−16)d4 &c.

one will have in general the (n+ 1)st term of a recurrent series of the fourth order

= (a′C(n) + b′C(n−1) + c′C(n−2) + d′C(n−3))xn.
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In order to give an example, let the series

1 + x+ x2 + 2x3 + 4x4 + 6x5 + 7x6 + 7x7 + 7x8 + 8x9 + &c.

=
1− 2x+ 2x2

1− 3x+ 4x2 − 3x3 + x4
,

we will have by comparing this generating fraction with our general fraction

a′ = 1, b′ = −2, c′ = 2, d′ = 0, a = 3, b = 4, c = 3, d = 1.

In order to have the tenth term, we make n + 1 = 10, this which gives n = 9, & this
term will be

= C(9) − 2C(8) + 2C(7).

Now we have
C(9) = B(9) −B(5)d+B(1)d2,

C(8) = B(8) −B(4)d+ d2,

C(7) = B(7) −B(3)d.

Now one will find as in the preceding problem,

B(9) =a9 − 8a7b+ 21a5b2 − 20a3b3 + 5ab4 + 7a6c− 30a4bc

+ 30a2b2c− 4b3c+ 10a3c2 − 12abc2 + c3;

B(5) = a5 − a3b+ ab2 + a2c− bc,

therefore (by forming the coefficients)

B(5)d = 6a5d− 20a3bd+ 12ab2d+ 12a2cd− 6bcd,

B(1) = a,

therefore B(1)d2 = 3ad2, therefore

C(9) =a9 − 8a7b+ 21a5b2 − 20a3b3 + 5ab4 + 7a6c− 30a4bc

+ 30a2b2c− 4b3c+ 10a3c2 − 12abc2 + c3 − 6a5d

+ 20a3bd− 12ab2d− 12a2cd+ 6bcd+ 3ad2

=19683− 69984 + 81684− 34560 + 3840 + 15309− 29160

+ 12960− 768 + 2430− 1296 + 27− 1458 + 2160− 576

− 324 + 72 + 9 = 12.

One will have also

B(8) =a8 − 7a6b+ 15a4b2 − 10a2b3 + b4 + 6a5c− 20a3bc

+ 12ab2c+ ba2c2 − 3bc2,

B(4) = a4 − a2b+ b2 + ac,
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therefore
B(4)d = 5a4d− 12a2bd+ 3b2d+ 6acd,

therefore

C(8) =a8 − 7a6b+ 15a4b2 − 10a2b3 + b4 + 6a5c− 20a3bc+ 12ab2c

+ 6a2c2 − 3bc2 − 5a4d+ 12a2bd− 3b2d− 6acd+ d2

=6561− 20412 + 19440− 5760 + 256 + 4374− 6480 + 1728

+ 486− 108− 405 + 432− 48− 54 + 1 = 11.

One has finally

B(7) = a7 − 6a5b+ 10a3b2 − 4ab3 + 5a4c− 12a2bc+ 3b2c+ 3ac2,

B(3) = a3 − ab+ c,

therefore
B(3)d = 4a3d− 6abd+ 2cd,

therefore

C(7) =a7 − 6a5b+ 10a3b2 − 4ab3 + 5a4c− 12a2bc+ 3b2c

+ 3ac2 − 4a3d+ 6abd− 2cd

=2187− 5852 + 4320− 768 + 1215− 1296 + 144 + 81− 108 + 72− 6

=9,

therefore
C(9) − 2C(8) + 2C(7) = 12− 22 + 18 = 8,

& it is effectively the tenth term.
§ 7. Let there be the fraction a′+b′x+c′x2+d′x3+e′x4

1−ax+bx2−cx3+dx4−ex5 which is the generating
fraction of all the recurrent series of the fifth order, one will find that by leaving to
A(n), B(n), C(n) their values found above, & making

D(n) = C(n) + C(n−5)e+ C(n−10)e2 + C(n−15)e3&c.

one will have in general the (n+ 1)st term of a recurrent series of the fifth order

= (a′D(n) + b′D(n−1) + c′D(n−2) + d′D(n−3) + e′D(n−4)xn.

In order to give an example I take in the work cited of Euler p. 188 the series

1+ 2z+3z2 +3z3 +4z4 +5z5 +6z6 +6z7 +7z8 +8z9 + &c. =
1 + z + z2

1− z − z4 + z5
.

We will have by comparing this generating fraction with our general fraction,

a′ = 1, b′ = 1, c′ = 1, d′ = 0, e′ = 0; a = 1, b = 0, c = 0, d = −1, e = −1.
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In order to have the tenth term we will make n + 1 = 10, this which gives n = 9, &
this term will be = D(9) +D(8) +D(7). Now we have

D(9) = C(9) + C(4)e,

D(8) = C(8) + C(3)e,

D(7) = C(7) + C(2)e.

Now
C(9) = B(9) −B(5)d+B(1)d2,

C(4) = B(4) − d,
B(9) = A(9) = a9,

B(4) = A4 = a4,

therefore
C(9) = a9 − a5d+ ad2,

C(4)e = a4e− de,

&
D(9) = a9 − 6a5d+ 3ad2 + 5a4e− 2de = 1 + 6 + 3− 5− 2 = 3.

One has likewise

C(8) = B(8) −B(4)d+ d2 = a8 − a4d+ d2,

C(3) = B(3) = a3,

C3)e = a3e,

therefore
D(8) = a8 − 5a4d+ d2 + 4a3e = 1 + 5 + 1− 4 = 3.

One has finally
C(7) = B(7) −B(3)d = a7 − a3d,
C(2) = B(2) = a2,

therefore
D(7) = a7 − 4a3d+ 3a2e = 1 + 4− 3 = 2.

The tenth term will be therefore

= D(9) +D(8) +D(7) = 3 + 3 + 2 = 8,

as this is effectively.
§ 8. Let the fraction be a′+b′x+c′x2+d′x3+e′x4+f ′x5

1−ax+bx2−cx3+dx4−ex5+fx6 which is the generating frac-
tion of all the recurrent series of the sixth order, one will find by conserving the values
of A(n), B(n), C(n), D(n) & making

E(n) = D(n) −D(n−6)f +D(n−12)f2 −D(n−18)f3 +D(n−24)f4 + &c.

11



the (n+ 1)st term of a recurrent series of the sixth order

= (a′E(n) + b′E(n−1) + c′E(n−2) + d′E(n−3) + e′E(n−4) + f ′E(n−5)xn.

In order to give an example, we take in the work cited of Mr. Euler p. 186 the series

1+z+2z2+3z3+4z4+5z5+7z6+8z7+10z8+12z9+&c. =
1

1− z − z2 + z4 + z5 − z6
,

we will have by comparing this generating fraction with our general fraction,

a′ = 1, b′ = 0, c′ = 0, d′ = 0, e′ = 0, f ′ = 0; a = 1, b = −1, c = 0, d = 1, e = −1, f = −1.

In order to have the tenth term we will make n = 9, & this term will be = E(9).
But E(9) = D(9) − D(3)f, D(9) = C(9) + C(4)e, D(3) = C(3), C(9) = B(9) −
B(5)d+B(1)d2, C(4) = B(4) − d, C(3) = B(3), B(9) = A(9), B(5) = A(5), B(1) =
A(1), B(4) = A(4), B(3) = A(3), therefore

C(9) =a9 − a7b+ a5b2 − a3b3 + ab4 − a5d+ a3bd− ab2d+ ad2

= (by forming the coefficients)

a9 − 8a7b+ 21a5b2 − 20a3b3 + 5ab4 − 6a5d+ 20a3bd− 12ab2d+ 3ad2.

One will have likewise

C(4)e = 5a4e− 12a2be+ 3b2e− 2de.

One will have finally
D(3)f = 4a3f − 6abf.

Therefore reuniting these values, one will have

E(9) =a9 − 8a7b+ 21a5b2 − 20a3b3 + 5ab4 − 6a5d+ 20a3bd− 12ab2d

+ 3ad2 + 5a4e− 12a2be+ 3b2e− 2de− 4a3f + 6abf

=1 + 8 + 21 + 20 + 5− 6− 20− 12 + 3− 5− 12− 3 + 2 + 4 + 6

=12,

as this must be.
§ 9. In order to have the general term of the series of the seventh order of which the

generating fraction is a′+b′x+c′x2+d′x3+e′x4+f ′x5+g′x6

1−ax+bx2−cx3+dx4−ex5+fx6−gx7 , it is necessary by conserving
all the preceding denominations to make

F (n) = E(n) − E(n−7)g + E(n−14)g2 − E(n−21)g3 + E(n−28)g4 + &c.

& one will have in general the (n+ 1)st term of a recurrent series of the seventh order,

= (a′F (n)+ b′F (n−1)+ c′F (n−2)+d′F (n−3)+ e′F (n−4)+f ′F (n−5)+ g′F (n−6)xn.
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§ 10. The law of these progressions is actually manifest, & it is evident by continu-
ing to form some quantities following the same law, one will have the general term of
any series. Let therefore the generating fraction be

a′ + b′x+ c′x2 + d′x3 · · ·+ pxm−1

1− ax+ bx2 − cx3 + dx4 · · · ± pxm

(the + sign has place ifm is even, & the− sign ifm is odd) one will form the quantities
represented by the following tableau,

A(n) = an − an−2b+ an−4b2 − an−6b3 + an−8b4 + &c.

B(n) = A(n) +A(n−3)c+A(n−6)c2 +A(n−9)c3 +A(n−12)c4 + &c.

C(n) = B(n) −B(n−4)d+B(n−8)d2 −B(n−12)d3 +B(n−16)d4 + &c.

D(n) = C(n) + C(n−5)e+ C(n−10)e2 + C(n−15)e3 + C(n−20)e4 + &c.

E(n) = D(n) −D(n−6)f +D(n−12)f2 −D(n−18)f3 +D(n−24)f4 + &c.
· · ·
M (n) = K(n) ±K(n−m)p+K(n−2m)p2 ±K(n−3m)p3 +K(n−4m)p4 ±&c.

I call here K(n) the quantities corresponding to the recurrent series of order m− 1. If
m is odd all the terms are positive., if it is even they are alternately positive & negative.
It is this which I have marked by the ambiguous signs of the value of M (n) which is
the quantity corresponding to the recurrent series of order m. Now one will have in
general the (n+ 1)st term of the recurrent series of order m

= (a′M (n) + b′M (n−1) + c′M (n−2) + d′M (n−3) · · ·+ p′M (n−m+1)xn.

For example, if one makes m = 7, one will have

p′ = g′, p = g, K(n) = E(n), M (n) = F (n),

one will have therefore

F (n) = E(n) + E(n−7)g + E(n−14)g2 + E(n−21)g3 + E(n−28)g4 + &c.

& the (n+ 1)st term will be in general

(a′F (n) + b′F (n−1) + c′F (n−2) · · ·+ g′F (n−6))xn,

this which is the formula which we have found above. This general formula alone will
serve us therefore to find all the particular formulas, by descending from m to 1.
§ 11. In order to give an example of the usage of these series, I will apply them to a

problem of the theory of probabilities that Mr. de la Place has treated quite differently
in a beautiful memoir on this material inserted into T. 7 of the Memoirs1 presented to
the Academy. Here is this problem.

1“Recherches, sur l’integration des équations differentielles aux différences finies, & sur leur usage dans
la théorie des hasards.” Savants étranges, 1773 (1776) p. 37-162. This refers to Problem XII.
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If one imagines a solid composed of a number n faces perfectly equal, designated
by the numbers 1, 2, 3, . . . n, one demands the probability that in a number x coups
one will bring forth these n faces in sequence in the order 1, 2, 3, . . . n.
§ 12. In order to begin with the simplest case, I will suppose first n = 2 or that

it has only two faces. The probability that the numbers 1, 2 follow themselves in this
order, in supposing only two coups, is = 1

4 , & the probability to the contrary = 3
4 .

In order to have the probability that the same thing will arrive in three coups, it is
necessary to add to the probability found the probability that in the last two coups, one
will bring forth 1, 2 in this order, whatever had been the first coup, a probability which
is evidently = 1

4 . Thus for three coups the probability will be = 1
2 , & the probability

to the contrary = 1
2 . For four coups, it is necessary to add to that which one just

found, the probability that in the last two coups one will bring forth 1, 2 in this order,
multiplied by the probability that one will not bring them forth in the first two coups;
this probability is = 1

4 ·
3
4 = 3

16 , the total probability will be therefore = 1
2 + 3

16 = 11
16

& the probability of the contrary will be = 5
16 . For five coups, it is necessary to add to

this that one just found, the probability that in the last two coups one will bring forth
1, 2 in this order, multiplied by the probability that one will not bring them forth in the
first three coups; this probability is = 1

4 ·
1
2 = 1

8 , the total probability will be therefore
= 11

16 + 1
8 = 13

16 & the probability of the contrary will be = 3
16 = 6

32 . For six coups,
it is necessary to add to that which one just found the probability that in the last two
coups one will bring forth in this order 1, 2 multiplied by the probability that one will
not bring them forth in the first four coups; this probability is = 1

4 ·
5
16 = 5

64 , the total
probability will be therefore = 13

16 +
5
64 = 57

64 & the probability of the contrary is = 7
64 .

For seven coups it is necessary to add to that which one just found 1
4 ·

3
16 = 3

64 , the total
probability will be therefore = 57

64 + 3
64 = 60

64 & the probability of the contrary will be
= 4

64 = 8
128 . One will find likewise for eight coups the total probability = 247

256 , & the
probability of the contrary will be = 9

256 . For nine coups the total probability will be
= 251

256 , & the probability of the contrary = 5
256 = 10

512 . We form now the tableau of the
probabilities contrary to the event demanded for 2, 3, 4, 5, 6, 7, 8, 9, coups & one will
have

Coups 2 3 4 5 6 7 8 9
Contrary probability 3

4
4
8

5
16

6
32

7
64

8
128

9
256

10
512

The analogy is evident, the denominators follow a geometric progression of which the
exponent is 2, & the numerators an arithmetic progression of which the exponent is 1,
or else these numerators form a recurrent series of the second order, where each term is
equal to two times the one which precedes it, less the one which precedes the preceding.
The generating fraction of the sequence of the numerators is therefore = 1

1−2x+x2 .
§ 13. We suppose now n = 3, the probability that the numbers 1, 2, 3 follow

themselves in this order by supposing only three coups is = 1
33 = 1

27 & the probability
of the contrary is = 26

27 . In order to have the probability that the same thing will arrive
in four coups it is necessary to add to the probability found the probability that in the
last three coups one will bring forth 1, 2, 3 in this order, whatever be the first coup; this
probability is = 1

27 , the total probability will be therefore = 2
27 & the probability of

the contrary= 25
27 . For five coups, it is necessary to add to that which one just found the

probability that in the last three coups one will bring forth 1, 2, 3 in this order, whatever
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be the first two coups, now there are 32 possible cases for these first two coups, because
by admitting the combinations where two numbers of the same kind are found together,
each number can be joined to each of the three numbers; this probability is therefore
= 32

35 = 1
27 , the total probability will be therefore 3

27 , & that of the contrary = 24
27 .

For six coups, it is necessary to add to that which one just found the probability that
in the last three coups one will bring forth 1, 2, 3 in this order, multiplied by the
probability that one will not bring them forth in the first three coups; this probability
is = 1

33 ·
26
33 = 26

36 , the total probability will be therefore = 3
33 + 26

36 = 107
36 & the

probability of the contrary will be 622
36 . For seven coups it is necessary to add to that

which one just found the probability that in the last three coups one will bring forth 1,
2, 3 in this order, multiplied by the probability that one will not bring them forth in the
first four coups; this probability is = 1

33 ·
25
33 = 25

36 , the total probability will be therefore
= 107

36 + 25
36 = 132

36 & the probability of the contrary will be = 597
36 = 1791

37 . For eight
coups it is necessary to add to that which one just found, the probability that in the last
three coups one will bring forth 1, 2, 3 in this order, multiplied by the probability that
one will not bring them forth in the first five coups; this probability is = 1

33 ·
24
33 = 24

36 ,
the total probability will be therefore = 132

36 + 24
36 = 156

36 & the probability of the
contrary will be 573

36 = 5157
38 . For nine coups, it is necessary to add to that which one

just found 1
33 ·

622
39 = 622

39 , the total probability will be therefore = 156
36 + 622

39 = 4834
39

& the probability of the contrary will be = 14849
39 . For ten coups, it is necessary to

add to that which one just found 1
33 ·

597
39 = 597

39 , the total probability will be therefore
= 4834

39 + 597
39 = 5431

39 & the probability of the contrary will be = 14252
39 = 42756

310 . For
eleven coups, it is necessary to add to that which one just found 1

33 ·
573
36 = 573

39 , the total
probability will be therefore = 5431

39 + 573
39 = 6004

39 & the probability of the contrary
will be = 13679

39 = 123111
311 . We form now the tableau of the probabilities contrary to the

event demanded for 3, 4, 5, 6, 7, 8, 9, 10, 11 coups, we will have

Coups 3 4 5 6 7 8 9 10 11
Contrary probability 26

33
75
34

216
35

622
36

1791
37

5157
38

14849
39

42756
310

123111
311

The denominators follow a geometric progression of which the exponent is 3; as for
the numerators, each is equal to three times the one which precedes it by one place less
the one which precedes it by three places. The generating fraction of the sequence of
the numerators will be therefore = 1

1−3x+x3 .
§ 14. We make next n = 4, the probability that the numbers 1, 2, 3, 4 follow

themselves in this order, by supposing only four coups is = 1
44 = 1

256 & the probability
of the contrary is = 255

256 . In order to have the probability that the same thing will arrive
in five coups, it is necessary to add to the probability found, the probability that in the
last three coups, one will bring forth in this order 1, 2, 3, 4, whatever be the first coup,
this which gives evidently 4

45 = 1
44 . The total probability will be therefore = 2

44 = 2
256

& the probability of the contrary = 256
44 . For six coups it is necessary to add to that

which one just found, the probability that in the last three coups one will bring forth in
this order 1, 2, 3, 4 whatever are the first two coups, now there are 42 possible cases
for these first two coups, because one can join to each number, the four numbers, this
which will give 42

46 = 1
44 , the total probability will be therefore = 3

44 & the probability
of the contrary = 253

44 . For seven coups, it is necessary to add to that which one just
found the probability that in the last four coups one will bring forth 1, 2, 3, 4 in this
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order whatever are the first three coups, now there are 43 possible cases for these first
three coups, because one can combine with each number all the 42 combinations of two
numbers, this which gives 43

47 = 1
44 . The total probability will be therefore = 4

44 & the
probability of the contrary will be = 252

44 . For eight coups it is necessary to add to that
which one just found the probability that in the last four coups one will bring forth 1, 2,
3, 4 in this order, multiplied by the probability that one will not bring them forth; in the
first four coups, this probability is 1

44 ·
255
44 = 255

48 , the total probability will be therefore
= 4

44 + 255
48 = 1279

48 & the probability of the contrary will be = 64257
48 . For nine coups

it is necessary to add to that which one just found the probability that in the last four
coups one will bring forth 1, 2, 3, 4 in this order, multiplied by the probability that
one will not bring them forth in the first five coups; this probability is 1

44 ·
254
44 = 254

48 ,
the total probability will be therefore = 1279

48 + 254
48 = 1533

48 & the probability of the
contrary will be = 64003

48 = 256012
49 . For ten coups it is necessary to add to that which

one just found the probability that in the last four coups one will bring forth 1, 2, 3, 4
&c. in this order, multiplied by the probability that one will not bring them forth in the
first six coups; this probability is 1

44 ·
253
44 = 253

48 , the total probability will be therefore
= 1533

48 + 253
48 = 1786

48 & the probability of the contrary will be = 63750
48 = 1020000

410 . For
eleven coups, it is necessary to add to that which one just found 1

44 ·
252
44 = 252

48 ; the
total probability is therefore = 1786

48 + 252
48 = 2038

48 & the probability of the contrary is
= 63498

48 = 4063872
411 . We form now the tableau of the probabilities contrary to the event

demanded, for 4, 5, 6, 7, 8, 9, 10, 11 coups and one will have

Coups 4 5 6 7 8 9 10 11
Contrary probability 255

44
1016
45

4048
46

16128
47

64257
48

256012
49

1020000
410

4063872
411

The denominators form a geometric progression of which the exponent is 4; as for the
numerators, each is equal to four times the one which precedes it by one place less the
one which precedes it by four places. The generating fraction of the sequence of the
numerators is therefore = 1

1−4x+x4 .
§ 15. If we make n = 5, we will find by the same process that the denominators

furnish a geometric progression of which the exponent is 5, & the first term 5 & that
each numerator is equal to five times the one which precedes it by one place less the
one which precedes it by five places. The generating fraction of the sequence of the
numerators is therefore = 1

1−5x+x5 .
§ 16. One will find similarly by making n = 6 that the denominators form a geo-

metric progression of which the exponent is 6 & the first term 6, & that each numerator
is equal to six times the one which precedes it by one place, less the one which pre-
cedes it by six places. The generating fraction of the sequence of the numerators will
be therefore = 1

1−6x+x6 .
§ 17. The analogy is now evident & one sees that by leaving to n its indeterminate

value, the denominators will form a geometric progression of which the exponent will
be n, & the first term n, & that each numerator will be equal to n times the term which
precedes it by one place, less the one which precedes it by n places. The generating
fraction of the sequence of the numerators will be therefore = 1

1−nx+xn .
§ 18. Thus for a number of coups x, the denominator will be in general nx, & in

order to have the general term of the numerators, it is necessary to compare the fraction
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1
1−nx+xn with the general fraction of § 10. We will have a′ = 1, b′ = c′ =&c.= p′ =
0, a = n, b = c =&c.= 0, p = ±1, m = n, n = x. We will have therefore
A(x) = B(x) = C(x) =&c.= K(x) = nx, & the general term

M (x) =K(x) ±K(x−n)p+K(x−2n)p2 ±K(x−3n)p3 +K(x−4n)p4 &c.

=nx ± nx−np+ nx−2np2 ± nx−3np3 + nx−4np4 &c.

We form now the coefficients; the one of the first term is evidently = 1, in order to
have the one of the second, we take the combinations of x − n + 1 things, of which
x−n are the same, this which gives x−n+1; in order to have the one of the third we
take the combinations of x − 2n + 2 things, of which x − 2n are the same & the two
others the same, this which gives

(x− 2n+ 2)(x− 2n+ 1)

1.2
;

in order to have the one of the fourth term, we take the combinations of x − 3n + 3
things, of which x− 3n are the same, & the three others the same, this which gives

(x− 3n+ 3)(x− 3n+ 2)(x− 3n+ 1)

1.2.3
,

& thus in sequence. As for the signs it is necessary to observe that if n is even, one
has p = 1, & that the signs must alternate in the general formula; if on the contrary n
is odd, one has p = −1, & the general formula must have the + sign in all the terms.
Therefore in all the cases the signs must alternate, by supposing simply p = 1. The
general term of the numerators will be therefore

nx−(x− n+ 1)nx−n +
(x− 2n+ 2)(x− 2n+ 1)

1.2
nx−2n

− (x− 3n+ 3)(x− 3n+ 2)(x− 3n+ 1)

1.2.3
nx−3n

+
(x− 4n+ 4)(x− 4n+ 3)(x− 4n+ 2)(x− 4n+ 1)

1.2.3.4
nx−4n + &c.

One will have therefore finally the probability contrary to the event demanded =

(nx − (x− n+ 1)nx−n + (x−2n+2)(x−2n+1)
1.2 nx−2n − (x−3n+3)(x−3n+2)(x−3n+1)

1.2.3 nx−3n &c.)

nx

The sought probability will be therefore

(x− n+ 1)nx−n − (x−2n+2)(x−2n+1)
1.2 nx−2n + (x−3n+3)(x−3n+2)(x−3n+1)

1.2.3 nx−3n &c.

nx

§ 19. Let for example n = 2, the contrary probability will be

2x − (x− 1)2x−2 + (x−2)(x−3)
1.2 2x−4 − (x−3)(x−4)(x−5)

1.2.3 2x−6 + (x−4)(x−5)(x−6)(x−7)
1.2.3.4 2x−8 + &c.

2x
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= x+1
2x , therefore the probability demanded is = 1 − x+1

2x as Mr. de la Place finds it
in the memoir cited. This result emanated immediately from that which we have said
§ 12. that the sequence of the numerators was that of the natural numbers, but I have
taken the form of recurrent series of the second degree, because this form was the base
of the analogy which must serve to resolve the general problem.
§ 20. One would have been able to resolve the problem in another way by leaving

the terms which express the contrary probability separate, without confounding them
by addition. For example for the case of n = 2, one would have had the following
table:

Coups Probabilities

2 1− 1

22

3 1− 2

22

4 1− 3

22
+

1

24

5 1− 4

22
+

3

24

6 1− 5

22
+

6

24
− 1

26

7 1− 6

22
+

10

24
− 4

26

8 1− 7

22
+

15

24
− 10

26
+

1

28

9 1− 8

22
+

21

24
− 20

26
+

1

28
+ &c.

One sees that the numerators of the second vertical column are the natural numbers,
those of the third the triangular numbers, those of the fourth the pyramidal numbers
&c., & this consideration gives the same general term as above. One will find the same
laws for the case of 3, 4, 5 . . . n faces, whence one will draw the same general result
by the other other method, this which confirms the goodness of the solution.
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