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1. We can imagine thus the formation of a recurrent series: if φ expresses any
function of x, and if we substitute successively in it, in place of x, 1, 2, 3, . . ., we
will form a series of terms of which I designate by y x the one which corresponds to
the number x; this put, if in this series each term is equal to any number of preceding
terms, each multiplied by a function of x at will, the series is then recurrent.

Such is the most general idea that is able to be formed from it, and it is under
this point of view that I have considered them in a memoir previously presented to the
Academy.1

I suppose now that φ is a function of x and of n, and that we substitute successively
in place of x and of n the numbers 1, 2, 3, . . .: we will form for each value of n a
series in which I designate the term corresponding to the numbers x and n by ny x :
now, if ny x is equal to any number of preceding terms taken in any number of these
series and each multiplied by a function of x and of n, these series will be what I call
suites récurro-récurrentes; they differ from recurrent series in that their general term
has two variable indices.

As the consideration of these series has seemed very useful to me in the Theory of
chances, and as they have not yet been examined by persons, that I know, I have belief
that it would not be useless to develop them here to some extent.

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. August 14, 2010

1See Book IV of the Mémoires de Turin. Translator’s note: “Recherches sur le calcul intégral aux
différences infiniment petites, & aux différences finies.” Misc. Taurinensia 4, 273–345 (1766–1766).
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2. PROBLEM I. — I suppose that we have a series of equations of this form

1y x +A. 1y x−1+B. 1y x−2 + · · · +N = 0,

2y x +A2. 2y x−1 +B2. 2y x−2 + · · · +N2

= H2. 1y x +M2. 1y x−1 + P2. 1y x−2 + · · · ,

3y x +A3. 3y x−1 +B3. 3y x−2 + · · · +N3

= H3. 2y x +M3. 2y x−1 + P3. 2y x−2 + · · · ,
...

(1)

{
ny x +An.ny x−1 +Bn.n y x−2 + · · · +Nn

= Hn.n−1y x +Mn.n−1y x−1 + · · ·

It is necessary to determine the value of ny x ; An, Bn, . . . , Nn, Hn, . . . being any
functions of n, and A2, B2, . . . , A3, B3, . . . being that which these functions become
when we substitute successively in them, in place of n, 1, 2, 3, . . ., finallyA, B, N, . . .
being any constants.

We suppose first that we have

(a) 1y x +A. 1y x−1 = 0,

(b) 2y x +A2. 2y x−1 = H2. 1y x +M2. 1y x−1 .

The second of these equations will give

2y x−1 +A2. 2y x−2 = H2. 1y x−1 +M2. 1y x−2 ,

but equation (a) gives

1y x−2 = − 1y x−1
A

,

hence

(c) 2y x−1 +A2. 2y x−2 = H2. 1y x−1 − M2

A 1y x−1 ;

multiplying equation (a) by −α, equation (c) by β, and adding them with equation (b),
we will have

2y x + 2y x−1 (A2 + β) + βA2. 2y x−2

= 1y x (α+H2) + 1y x−1

[
αA+M2 + β

(
H2 −

M2

A

)]
.

We will make 1y x and 1y x−1 vanish by means of the equations

α+H2 = 0

αA+M2 + β

(
H2 −

M2

A

)
= 0;
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we see that, by following this process, it is always possible to transform equation (1)
of the problem into the following

(2) ny x = an.ny x−1 + bn.ny x−2 + cn.ny x−3 + · · · + un,

an, bn, . . . , un being some functions of n and of constants that we will determine by
the following method.

Equation (2) will give the following:

Hn.n−1y x = Hn(an−1.n−1y x−1 + bn−1.n−1y x−2 + · · · + un−1),

Mn.n−1y x−1 = Mn(an−1.n−1y x−2 + bn−1.n−1y x−3 + · · · + un−1),

Pn.n−1y x−2 = Pn(an−1.n−1y x−3 + bn−1.n−1y x−4 + · · · + un−1),

...

By comparing these equations with equation (1), we will have

ny x +An.ny x−1 +Bn.ny x−2 + · · · +Nn = an−1(ny x−1 +An.ny x−2 + · · · +Nn)

+ bn−1(ny x−2 +An.ny x−3 + · · · +Nn)

+ · · ·
+ un−1(Hn +Mn + Pn + · · · ).

If we compare this equation with equation (2), we will have

an = an−1 −An,

bn = bn−1 + an−1An −Bn,

cn = cn−1 + bn−1An + an−1Bn − cn,

...
un = un−1(Hn +Mn + Pn + · · · ) −Nn(1 − an−1 − bn−1 − cn−1 − · · · ).

Equation (1) of the problem will be therefore in this way transformed into equation (2)
which is ordinary in the recurrent series, and that we will integrate easily by the method
explained in the memoir cited above.

3. PROBLEM II. — We propose to integrate the differentio-differential equation

(3)


ny x +An.ny x−1 +Bn.ny x−2 + · · · +Nn

= Hn.n−1y x +Mn.n−1y x−1 + Pn.n−1y x−2 + · · ·
+ αn.n−2y x + βn.n−2y x−1 + γn.n−2y x−2 + · · · ,

by supposing that we have

2y x +A. 2y x−1+B. 2y x−2 + · · · +N = H. 1y x +M. 1y x−1+P. 1y x−2 + · · ·
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We will show easily, as in the preceding problem, that it is always possible to
transform equation (3) into another, such that

(4)

{
ny x = an.ny x−1 + bn.ny x−2 + cn.ny x−3 + · · · + un

+ hn.n−1y x + ln.n−1y x−1 + pn.n−1y x−2 + · · · ;

we will have therefore

αn.n−1y x = αn(an−1.n−1y x−1 + bn−1.n−1y x−2 + cn−1.n−1y x−3 + · · · + un−1

+ hn−1.n−2y x + ln−1.n−2y x−1 + pn−1.n−2y x−2 + · · · );
βn.n−1y x−1 = βn(an−1.n−1y x−2 + bn−1.n−1y x−3 + cn−1.n−1y x−4 + · · · + un−1

+ hn−1.n−2y x−1 + ln−1.n−2y x−2 + pn−1.n−2y x−3 + · · · );
γn.n−1yx−2 = γn(an−1.n−1y x−3 + · · · + un−1

+ hn−1.n−2y x−2 + · · · );
...,

which will give, by combining these equations with equation (3) of the problem,

αn.n−1y x + βn.n−1y x−1 + γn.n−1yx−2 + · · ·
= an−1(αn.n−1y x−1 + βn.n−1y x−2 + · · · )
+ bn−1(αn.n−1y x−2 + · · · )
+ · · ·
+ hn−1(ny x +An.ny x−1 +Bn.ny x−2 + · · ·

−Hn.n−1y x −Mn.n−1y x−1 − · · ·
+ ln−1(ny x−1 +An.ny x−2 +Bn.ny x−3 + · · ·

−Hn.n−1y x−1 −Mn.n−1y x−2 − · · ·
+ · · ·
+ un−1(αn + βn + γn + · · · )
+Nn(hn−1 + ln−1 + · · · ).

Therefore

ny x =ny x−1

(
−An − ln−1

hn−1

)
+ ny x−2

(
−Bn − ln−1An

hn−1
− pn−1
hn−1

)
+ · · ·

+ n−1y x

(
αn
hn−1

+Hn

)
+ n−1y x−1

(
βn
hn−1

+Mn + ln−1
Hn

hn−1
− αnan−1

hn−1

)
+ n−1y x−2

(
γn
hn−1

+ Pn +
ln−1Mn

hn−1
+
pn−1Hn

hn−1
− αnbn−1

hn−1
− an−1βn

hn−1

)
+ · · ·

− un−1
αn + βn + · · ·

hn−1
−Nn

hn−1 + ln−1 + · · ·
hn−1

;
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whence we will deduce, by comparing with equation (4),

(I) αn

hn−1
+Hn = hn,

(II) an = −An − ln−1

hn−1
,

(III) ln = βn

hn−1
+Mn + ln−1Hn

hn−1
− αnan−1

hn−1
,

(IV) bn = −Bn − ln−1An

hn−1
− pn−1

hn−1
,

(V) pn = γn
hn−1

+ Pn + ln−1Mn

hn−1
+ pn−1Hn

hn−1
− αnbn−1

hn−1
− an−1βn

hn−1
,

· · ·

From the first of these equations, we will conclude hn, the second will give

ln = −an+1hn −An+1hn;

this value of ln, substituted into the third, will give

−an+1hn −An+1hn =
βn
hn−1

+Mn −Hnan −HnAn − αnan−1
hn−1

,

whence we will conclude an, and hence ln; by combining in the same manner the
fourth and the fifth, . . . equation, we will have the expression of bn, cn, pn, and thus
the rest, and we will determine un by the equation

un = −un−1
αn + βn + · · ·

hn−1
−Nn

hn−1 + ln−1 + · · ·
hn−1

.

4. If we call equation of the first order an equation in recurrent series, equation
of the second order an equation such as that of problem I, equation of the third order
an equation such as that of problem II, and thus in sequence, we see that it is always
possible to reduce by the preceding method an equation of any order r to another of an
inferior order, provided that, in one particular assumption for n, the equation of order
r becomes of order r − 1, and the same method would take place again if the constant
difference, instead of being unity, was any number q; it would be useless for us to pause
on this further: we are going presently to give some applications of this theory.

5. The most complicated problems in all the theory of chances have for object the
duration of events, and we will see with what facility they are able to be resolved by
the method of the récurro-récurrente series.

PRINCIPLE

The probability of an event is equal to the sum of the products of each favorable
case by its probability divided by the sum of the products of each possible case by its
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probability, and if each case is equally probable, the probability of the event is equal
to the number of favorable cases divided by the number of all possible cases.

PROBLEM III. — Two players A and B play on this condition, that on each trial the
one who will lose will give an écu to the other; I suppose that the skill of A be to that
of B as a : b, and that A has a number m of écus and B a number n; we ask what is the
probability that the game will not end before or at the number x of trials.

I suppose first a = b, m = n, and that n is an even number; it is clear that x must
be then even; let 0y x be the number of possible cases according to which, on trial x,
the gain of the two players is zero; 2y x the number of cases according to which it is
equal to 2, and thus in sequence; it is evident that the number of all the possible cases
is 2x; if therefore we call nz x the probability that the game will not end at trial x, we
will have

nz x = 0y x + 2y x + 4y x + · · · + n−2y x
2x

;

but it is easy to form the following equations, according to the conditions of the prob-
lem,

0y x = 2. 0y x−2 + 2y x−2 ,

2y x = 2. 2y x−2 + 2. 0y x−2 + 4y x−2 ,

4y x = 2. 4y x−2 + 2y x−2 + 6y x−2 ,

6y x = 2. 6y x−2 + 4y x−2 +8 y x−2 ,

...

n−2y x = 2.n−2y x−2 + n−4y x−2 ,

whence we deduce

0y x+ 2y x+ 4y x+· · ·+n−2y x = 4. 0y x−2+4. 2y x−2+· · ·+4.n−2y x−2−n−2y x−2 ,

which gives

nz x = nz x−2 − n−2y x−2
2x

or
2x∆.nz x−2 = −n−2y x−2 ,

∆.nz x−2 designating the finite difference of nz x−2 , by regarding x alone as variable,
the constant difference being 2.

We take now the two equations

0y x = 2. 0y x−2 + 2y x−2 ,

2y x = 2. 2y x−2 + 2. 0y x−2 + 4y x−2 .(1)

The first gives

(2) 0y x−2 = 2. 0y x−4 + 2y x−4 ,
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and the second gives

(3) 2y x−2 = 2. 2y x−4 + 2. 0y x−4 + 4y x−4 .

If we multiply equation (2) by α, and equation (3) by β, and if next we add them
with equation (1), we will have

2y x = (2 − β). 2y x−2 + (α+ 2β). 2y x−4 + (2 − α). 0y x−2

+ (2α+ 2β). 0y x−4 + 4y x−2 + β. 4y x−4 .

Let

2 − α = 0 or α = 2, and 2α+ 2β = 0 or β = −2;

we will have thus the following equations:

(h)



2y x = 4. 2y x−2 − 2. 2y x−4 + 4y x−2 − 2. 4y x−4 ,

4y x = 2. 4y x−2 + 2y x−2 + 6y x−2 ,

...

qy x = 2. qy x−2 + q−2y x−2 +q+2 y x−2 ,

...

n−2y x = 2.n−2y x−2 + n−4y x−2 .

These equations evidently correspond to problem II; I suppose therefore that we
have in general

(k)

{
qy x = aq. qy x−2 + bq. qy x−4 + cq. qy x−6 + · · · + uq

+ hq.q+2y x−2 + lq. q+2y x−4 + pq. q+2y x−6 + · · ·

We will have therefore

q−2y x−2 = aq−2. q−2y x−4 + bq−2. q−2y x−6 + cq−2. q−2y x−8 + · · · + uq−2

+ hq−2. qy x−4 + lq−2. qy x−6 + pq−2. qy x−8 + · · ·

Substituting into this equation, in place of q−2y x−2 , q−2y x−4 , . . ., their values which
equation (h) furnishes, we will have

qy x = (2 + aq−2). qy x−2 + (bq−2 − 2aq−2 + hq−2). qy x−4

+ (cq−2 − 2bq−2 + lq−2). qy x−6 + · · ·

+ q+2y x−2 − aq−2. q+2y x−4 − bq−2. q+2y x−6 − · · · + uq−2.

Therefore, by comparing this equation with equation (k), we will have:

1 ˚ 2 + aq−2 = aq;

7



now, as here the constant difference is 2, we will have by integrating aq = q+c, c being
a constant, and, putting q = 2, we have aq = 4; therefore c = 2, hence aq = q+2 = m,
by making q + 2 = m.

2 ˚ hq = 1.

3 ˚ bq−2 − 2aq−2 + hq−2 = bq;

whence we will conclude by integrating and adding the appropriate constant bq =

−m(m−3)
1.2 .

4 ˚ lq = −aq−2 = −(m− 2).

5 ˚ cq = cq−2 − 2bq−2 + lq−2;

therefore cq = m(m−4)(m−5)
1.2.3 · · · , finally uq = uq−2; hence uq = C; now q being 2,

we have C = 0, therefore uq = 0; thus we will have

qy x = m. qy x−2−
m(m− 3)

1.2
. qy x−4 +

m(m− 4)(m− 5)

1.2.3
. qy x−6 − · · ·

+ q+2y x−2 − m− 2

1
. q+2y x−4 + · · ·

If we suppose now q = n − 2, then it will not be necessary to take account of
the terms q+2y x−2 , q+2y x−4 ,· · · and we will have under this assumption m = n;
therefore

n−2yx = n.n−2y x−2 − n(n− 3)

1.2
.n−2y x−4 + · · ·

Substituting into this equation, in place of n−2yx, n−2y x−2 , . . ., their values −2x+2∆.nz x , −2x∆.nz x−2 , . . .,
we will have, after having integrated,

nz x =
n

4
· nz x−2 −

n(n− 3)

1.2

1

42
· nz x−4 +

n(n− 4)(n− 5)

1.2.3

1

43
· nz x−6 −· · ·+H;

in order to determine this constant H , we must observe that by supposing x = n, we
will have

nz x = 1 − 1

2n−1
, nz x−2 = 1, nz x−4 = 1, · · · ,

therefore

1 − 1

2n−1
=

1

4
n− n(n− 3)

1.2

1

42
+
n(n− 4)(n− 5)

1.2.3

1

43
− · · · +H.

Now we know that, if we call cosφ = y, we will have

cosnφ = 2n−1yn − n2n−3yn−2 +
n(n− 3)

1.2
2n−5yn−4 + · · ·
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Putting therefore φ = 0, we will have

1 − 1

2n−1
=
n

4
− n(n− 3)

1.2.42
+
n(n− 4)(n− 5)

1.2.3.43
− · · · ,

whence we conclude H = 0.
We suppose actually that n is an odd number, x will be then odd, and we will have

nz x = 1y x + 3y x + 5y x + · · · + n−2y x
2x

;

next we will form the following equations:

1y x = 3. 1y x−2 + 3y x−2 ,

3y x = 2. 3y x−2 + 1y x−2 +5 y x−2 ,

5y x = 2.5y x−2 + 3y x−2 +7 y x−2 ,

...

n−2y x = 2.n−2y x−2 + n−4y x−2 ;

by operating next as previously, we will have the equation

nz x =
n

4
· nz x−2 − n(n− 3)

1.2

1

42
· nz x−4 + · · · ,

the same as for the even numbers.
We suppose now that the numbers of écus of the two players are equal and even,

and that the skills of these players are unequal and in the ratio of a to b; by naming

0y x the number of cases according to which at the trial x the gain of the two players
is zero, 2y x the number of cases according to which the gain of A can be 2, and ′2y x
the number of cases according to which the gain of B can be 2, and thus in sequence,
we will form easily the following equations:

(t) 0y x = 2ab. 0y x−2 + b2. 2y x−2 + a2. ′2y x−2 ,

(v) 2y x = 2ab. 2y x−2 + a2. 0y x−2 + b2. 4y x−2 ,

(w) 4y x = 2ab. 4y x−2 + a2. 2y x−2 + b2. 6y x−2 ,

...

n−2y x = 2ab.n−2y x−2 + a2.n−4y x−2 ,

...
′
2y x = 2ab. ′2y x−2 + b2. 0y x−2 + a2. ′4y x−2 ,
′
4y x = 2ab. ′4y x−2 + b2. ′2y x−2 + a2. ′6y x−2 ,

...
′

n−2y x = 2ab. ′
n−2y x−2 + b2. ′

n−4y x−2 ;
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now here the number of all the cases multiplied by their particular probability is (a +
b)x: we will have therefore

∆.nz x−2 = −
a2.n−2y x
(a+ b)x

−
b2. ′

n−2y x
(a+ b)x

;

now it is easy to see that we have ′2y x = b2

a2 · 2y x ; substituting this value of ′2y x into
equation (t), we will have

0y x = 2ab. 0y x−2 + 2b2. 2y x−2 .

Eliminating from this equation2
0y x by means of equation (v), we will have

2y x = 4ab. 2y x−2 − 2a2b2. 2y x−4 + b2. 4y x−4 − ab3 · 4y x−4 .

This equation, with equation (w) and the following, will give, by a process similar to
the preceding,

n−2y x = nab.n−2y x−2 − n(n− 3)

1.2
a2b2.n−2y x−4 + · · · ,

whence we will conclude

nz x =
nab

(a+ b)2
· nz x−2 − n(n− 3)

1.2

a2b2

(a+ b)4
· nz x−4 + · · · +H.

If n was odd, the problem would be resolved exactly in the same manner; thus it
would be useless for us to delay further.

But here is another way to treat the same problem, always following the method of
the recurro-recurrente series; we will make

′
n−2y x = 0ν x ,

′
n−4y x = 2ν x , . . . ,

and we will have the equations

0ν x = 2ab. 0ν x−2 + b2. 2ν x−2 ,

2ν x = 2ab. 2ν x−2 + b2. 4ν x−2 ,

...

Whence we will deduce easily, by Problem II, an equation between n−4ν x , n−4ν x−2 ,
. . .and n−2ν x−2 , n−2ν x−4 , . . ., or, what is the same thing, between ′2y x ,

′
2y x−2 , . . .

and 0y x−2 , 0y x−4 , . . .; by aid of this equation and the two equations (t) and (v), we
will eliminate easily ′

2y x ,
′
2y x−2 and 0y x−2 , 0y x−4 , and we will have an equation

between 2y x , 2y x−2 ,. . . and 4y x−2 , 4y x−4 , . . ., whence next it will be easy, by

2It is necessary to change in this equation x into x− 2, and to eliminate
0
y
x−2

and
0
y
x−1

enters the
equation thus obtained, equation (v) and that which one deduces from it by replacing x by x − 2. (Note of
the editor.)

10



Problem II, to find an equation between n−2y x , n−2y x−2 , . . . and, changing in this
equation a to b and b to a, we will have a second equation between ′

n−2y x , n−2y x−2 , . . .,
and from these two equations we will have easily nz x .

It would be the same process if the number of écus were different for the two
players, and the problem have no other difficulty than the length of the calculation.

6. I pass now to the following Problem, which had been proposed to me on the
occasion of a wager made on the lottery of the military school.

PROBLEM IV. — A lottery being composed of a number n of tickets 1, 2, 3, . . . , n,
of which there is extracted a number p at each drawing, we ask the probability that
after x drawings all the tickets will be extracted.

We suppose that S wagers that all the tickets will not be extracted after this number
of drawings, and we seek all the cases favorable to S; it is clear that their number is
equal:

1 ˚ To the number of cases according to which the ticket 1 is not able to be extracted
after the drawing x;

2 ˚ To the number of cases according to which the ticket 2 is not able to be extracted,
the ticket 1 being extracted;

3 ˚ To the number of cases according to which the ticket 3 is not able to be extracted,
the tickets 1 and 2 being extracted, and thus in sequence; if therefore we name

qy x the sum of all these cases to the ticket q, we will have

qy n = q−1y n − q−1y n−1 +

[
(n− 1) · · · (n− p)

1.2 . . . p

]x
,

an equation which corresponds to Problem I, q and n being supposed variables and x
constant; here is how we can integrate in this particular case; putting q successively
equal to 1, 2, 3, . . . , we will have

1y n =

[
(n− 1) · · · (n− p)

1.2 . . . p

]x
,

2y n = 2

[
(n− 1) · · · (n− p)

1.2 . . . p

]x
−
[

(n− 2) · · · (n− p− 1)

1.2 . . . p

]x
,

3y n = 3

[
(n− 1) · · · (n− p)

1.2 . . . p

]x
− 3

[
(n− 2) · · · (n− p− 1)

1.2 . . . p

]x
+

[
(n− 3) · · · (n− p− 2)

1.2 . . . p

]x
,

whence we will conclude easily

ny n =n

[
(n− 1) · · · (n− p)

1.2 . . . p

]x
− n(n− 1)

1.2

[
(n− 2) · · · (n− p− 1)

1.2 . . . p

]x
+
n(n− 1)(n− 2)

1.2.3

[
(n− 3) · · · (n− p− 2)

1.2 . . . p

]x
+ · · ·
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Now here the sum of all the possible cases is
[
n(n−1)···(n−p+1)

1.2...p

]x
; naming there-

fore z x the probability of S, we will have

z x = n

[
(n− 1)(n− 2) · · · (n− p)

n(n− 1) . . . (n− p+ 1)

]x
− n(n− 1)

1.2

[
(n− 2) · · · (n− p− 1)

n . . . (n− p+ 1)

]x
+ · · ·

If we wish to apply this formula to the lottery of the military school, it is necessary,
according to the nature of this lottery, to suppose n = 90 and p = 5.

7. The notation that we have employed and the manner in which we consider the
calculus in the finite differences in two variables are, as we see, of an extended use in
the theory of chances. In order to give yet a very simple example, let us propose the
following problem:

PROBLEM V. — If in a pile of x pieces, we take a number at random, we ask the
probability that this number will be even or odd.

Let py x be the number of cases according to which this number can be even, and

p−1y x the number of cases according to which it can be odd; we will have

(1) py x+1 = py x + p−1y x ,

(2) p−1y x+1 = p−1y x + py x + 1.

This second equation will give

p−1y x = p−1y x−1 + py x−1 + 1.

The first gives

py x = py x−1 + p−1y x−1 ;

therefore we will have

py x+1 = 2py x + 1;

whence we deduce, by integrating,

py x = A2x − 1;

now, putting x = 1, we have

py x = 0;

therefore 2A−1 = 0 and A = 1
2 , hence py x = 2x−1−1, and since equation (1) gives

p−1y x = py x+1 − py x ,

we will have

p−1y x = 2x−1.
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The sum of all the possible cases is clearly

py x + p−1y x = 2x − 1.

If therefore we call pz x the probability that the number will be even, and p−1z x the
probability that it will be odd, we will have

pz x =
2x−1 − 1

2x − 1
,

p−1z x =
2x−1

2x − 1
;

whence it is easy to see that there is always greater advantage to wager on the odd
numbers than on the even.

I suppose that we are assured that the number x cannot exceed n, but that this
number and all the inferior numbers are equally possible; we will have, for the sum of
all the favorable cases on the odds,

S2x−1 = 2x + C;

now, x being 1, we have
2x + C = 1;

therefore C = −1 and 2x + C = 2x − 1; we will have similarly

S(2x−1 − 1) = 2x − x+ C;

now, x being 1, we have
2x − x+ C = 0,

therefore C = −1; hence, the sum of all the cases favorable to the odds is 2n − 1, and
the sum of all the cases favorable to the evens is 2n − n − 1; thus the probability for
the odds is

2n − 1

2n−1 − n− 2
,

and the probability for the evens is

2n − n− 1

2n−1 − n− 2
.

In the Histoire de l’Académie des Sciences, for the year 1728, we see that Mr. de
Mairan has likewise observed that there is always a greater advantage to wager for the
odds than for the evens; but it seems to me that the manner in which this ingenious au-
thor considers the problem is not correct, and that, in order to appreciate this advantage,
it is necessary to consider it under the point of view under which we have assessed it.

We can imagine in the same manner some récurro-récurrente series, of which the
general term would have three or even a greater number of variable indices, and if they
are met in the resolution of some problems, we can treat them by a method analogous
to the preceding.

[The remainder of this paper, section 8, concerns the solution of a differential equation
and is omitted.]
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