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One of the most extraordinary phenomena which the systetreof/orld offers to
us is the movement of the planets and of their satellites énstme sense and very
nearly in the same plane; if we picture to ourselves in falcthalse stars describing
from west to east some nearly circular orbits and very litildined to the ecliptic,
while the comets seem to be moved indifferently in every semsl with every possi-
ble inclination in some very eccentric eclipses, we peraiguite marked separation
between the planets and the comets, such that, in the movefthese great bodies,
nature does not follow this gradation by insensible nuandgsh she always observes
when its march is not interrupted by some particular causes.

We count in all six planets and ten satellites; now, if we saggpthat they have
been launched at random, it is easy to see that the prolyahdit they will rotate all in
the same sense igs = 351, SO that there is 0dd32767 against unity, that this will
not happen. If we multiply the fractio% by that which expresses the probability
that the orbits will be contained in a likewise small zonete tvhich contains them,
we will see that the actual disposition of our planetaryaystvould be infinitely less
probable if it were due to chance, and that it announces coesgly, with a certitude
equivalent or even superior to that of a great number of eveinwhich it would seem
absurd to us to doubt, the existence of a regular cause whiHdtermined the planets
and their satellites to be moved in the same sense and neatiyeisame plane; |
suppress that analysis, that M. Daniel Bernoulli has givlemg time ago, and which
besides is quite simpfe.

Now what is the cause which is able to have determined thusitdvement of the
planets and of the satellites? Has it been particular teetbess, or indeed has it had an
influence on the movement of all those which rotate aroundtin® The first of these
questions seems to me quite difficult to resolve; and | cartfest after having reflected
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on it alongtime, and after having examined with attentidthed hypotheses imagined
until now in order to explain this phenomenon, | have founthimg satisfying. As
for the second question, we can easily answer it; it suffioeshfis: 1° to calculate
the mean inclination of the orbits of all the observed comatsl to see how much it
deviates from 45° ; because, by supposing the comets ladrathandom, there is as
much to wager that it will be above as below 45°; 2° to know thtéorof the number
of direct comets to that of the retrogrades, and to see by hawhrit deviates from
unity; because it is as probable that it will be greater as. I@hese calculations have
been made by M. du Séjour in his excellent work on the contleislearned author has
found that the mean inclination of the sixty-three cometseobed to the present was
46° 16', which deviates little fromt5 ° , and that the ratio of the direct comets to the
retrogrades wag, which deviates little from unity. Thence he concludeshweéason,
that there exists for the comets no cause which determimes tbh be moved in one
sense rather than in another, and very nearly in the same,@ad that in this way that
which determines the movement of the planets is entirelgpetident of the general
system of the universe.

This interesting observation of M. du Séjour has suggetsteddea of submitting
to Analysis the probabilities that the mean inclination loé tomets and the ratio of
the number of direct to that of the retrogrades, will be ciorgd between some given
limits, by supposing that they have been projected at randlaisicalculation is even
necessary in order to give more certitude to this obsematiecause if, for example,
the mean inclination of the comets w&s’® +«, and if it were a very great number, as
a million, to wager against unity that it must be below, weldaonclude from it with
much likelihood that there exists a cause which determinecomets to be moved
in one plane rather than in another; it is therefore esdantianow the probabilities
that the mean inclination will be above or beld&’ +«. The same reasoning can be
applied to the ratio of the number of direct comets to thahefretrogrades. It is easy
to calculate the probability that this ratio will be betwem given limits; it suffices,
for this, to raise the binomie{l% + %) to the power indicated by the number of comets;

let n be this number, by developir{g + )", the term

n(n—l)(n—,u—i—l) l n—p 1 12
1.23...u 2 2

will express the probability that there will be — i direct comets, ang retrograde

comets; therefore, if we wish to determine the probabiligtthe ratio of the direct to

the retrogrades will be contained between the two Iirﬂﬁé and”;f‘/ , itis necessary
to take the sum of the terms of the binom@a}l+ %) raised to the powet, contained

between the term
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this sum will express the probability demanded; but it is mowre difficult to deter-
mine the probability that the mean inclination of the orlii§ be contained between
two given limits; this problem seems to be to me one of the mostplicated of all the
analysis of chances, especially when one intends, at the 8are as | have made it, to
find a general formula for any number of comets. | confessittratuld have been im-
possible for me to attain it without the help of a method thiaave given elsewhete
in order to find directly the general expression of the quigstisubjugated to a law
which serves to form them. | hope that the application of théthod to the problem
in question will not be useless in order to make known theneadnd the advantages.

Theorem 1. | suppose an indefinite number of bodies launched at randtorspace
and circulating about the Sun; the question is to find the phility that the mean
inclination of their orbits on a given plane, such as the gtiti, will be contained
between two given limits, a$° and50°.

By mean inclinationl intend the sum of all the inclinations divided by the numbe
of orbits.

Fig. 1

M

In order to solve this problem, | consider first only two badi¢ and N, and | sup-
pose that the straight lindB (fig. 1) represent80° or the greatest mean inclination of
the two orbits; | begin by tracing a linéZ M B, of which each ordinate is proportional
to the probability that the mean inclination will be equathe corresponding abscissa
AY’; I will name this linecurve of the probabilitiesNow, if we makeAY = x and
Y Z =y, y will be proportional t®2z, from A to the middleP of the straight lined B;
because if the mean inclination of the two orbitsjsc being less thar%a, it is clear
that this can happen in as many ways as there are points itréighs line2x; in fact,
the inclination of the orbit of\/ can, in this case, be equally eith&ror dz, or 2dz,
or 3dx, or etc. as far a8z, by representing byz the infinitely small increase of the
inclination of this orbit. We can therefore makeZ = 2A4Y’; and henceAZ M will
be a straight line, and PM a right triangle such tha? M = 2AP = a.

20euvres de LaplageT. VIII, p. 97. This is the paper “Recherchés sur l'intdigma of equations
differentielles aux différences finies et sur leur usagesda théorie des hasards.” This occupies pages 69 to
197. All further page references are to this memoir.



Presently, the lind3 M must be entirely equal to the straight lidé//, because, at
equal distance from pointd and B, the ordinates must be equal, seeing that it is as
probable that the mean inclination approach to the lihis to the limitB; the line
AM B will be therefore composed of two equal straight line%/ and BM, such that
PM = a.

If we wish to see now the probability that the mean inclinatvall be contained
between two limitsY” andy, it will be necessary to divide the ar&aZ M zy by the
entire aread M B, and the quotient will represent this probability.

Fig. 2

We suppose that there be three bodiés N and P; let the straight lineAB = «
be divided fig. 2) into three equal partsia, ab, bB;and we seek the probability that
the mean inclination will be equal to any abscistH, or, what comes to the same,
we trace the curvelm Mn B of the probabilities; letdY = x, x being supposed first
less thanda or %a. | suppose that any one of the three bodigsfor example, has an
inclination that | designate by; it is necessary consequently that the mean inclination
of the two others igmg—_f, since, by hypothesis, the mean inclination of the threedsod
is z; now, % being less thar§, it is easy to see, by the preceding article, that the
number of cases in which this can happeBas— f. It is necessary to multiply now
this quantity bydf, and to take the integral, frofh= 0 to f = 3z, in order to have the
total number of cases in which the mean inclination of thed¢hyodies can be, and
we will find %:c? for this number; we can therefore, framto a, suppose the ordinate
Y Z equal to %; which gives
— 9 2
ay = 21’
for the equation of the curvd Z M, and hence likewise for that of the curé#, by
makingz to begin at the poinB.
We determine now the nature of the cume\/n; | observe first that it must be

composed of two entirely equal parts M andMn, P being the middle of the straight

3Translator’s note Figures 2, 3 and 4 of Laplace are incorrect. A reproductibRigures 2 and 3 are
placed on the left. The corrected figures using the formuldsaplace are placed to the right. Figure 4 as
given by Laplace is retained. One should expect, as the nuoilodservations increase, the distribution of
the mean approach more nearly the normal distribution.



line AB; letay = z (fig. 2), orAy = §a+z, and letf be the inclination of the orbit of
the bodyM; the two other bodied” and P will have therefore together the inclination
a+ 3z — f;now, let3z — f = u, so that the inclination of these two bodieiig- u,
and hence their mean inclinatign+ 3; the number of cases in which this can happen
is, by the preceding article, — v or a + f — 3z; it is necessary therefore to multiply
this quantity bydf and to integrate, fronf = 0 to f = 3z, in order to have the number
of cases which take place in this interval; we will have tBus — %22 for the number

of these cases; it is necessary now to determine the numlioase$ which take place
from f = 3z to f = a, and for this | makef = 3z + s; the total inclination of the
two bodiesNV and P will be thereforen — s, and, hence, their mean inclinatign- 3;
now, the number of cases in which this can happen is, by treedneg articleg — s;
multiplying therefore this quantitys, and integrating it frons = 0tos = a — 3z,

we will have%a2 — %22, for the number of cases which take place fr¢m= 3z to

f = a. Reassembling therefore all these cases, we will %aa?e{— 3az — 922, for the
number of those which give the mean inclination of three esédiqual tG}a+ z. Thus,

. La?+43a2—922
one can suppose the ordinate equal to 22 222=9=

mMmn will be

, and the equation of the curve

1
ay = §a2 + 3az — 922

If we wish now to have the probability that the mean inclinatof three orbits will
be contained between two given limits, we will seek the amedained between these
limits, we will divide it by the entire area of the curviM B; the quotient will express
the demanded probability.

IV.

Fig. 3

We suppose now four bodidd, N, P, @, and we divide the straight lindB (fig.
3) into four equal partsla, aP, Pb andbB; the curveAmMnB will be composed of
four partsAm, mM, Mn andnB, such, however, that we haven equal toBn, and
mM equal tonM .

We determine the nature of these curves, and, for this, lebaseAY = z, =
being less tharja, Y Z = y; let moreoverf be the inclination of the orbit of the body
M ; the sum of the inclinations of the orbits of the three othadtibs N, P and@ will



be4z— f, and hence their mean inclination will 6é;—f; now, by the preceding article,
the number of cases in which this can happenis

9 (4x—f\° 1
3 (ML) = g2

If we multiply this quantity bydf, and if we integrate fronf = 0 to f = 4, we will
have33—2:zc3 for the number of cases in which the mean inclination of the fibits can
bez; hence, we can suppose that frofrto a, the equation of the curvém is

32
2 3
ay =5

In order to have the equation of the cumwé\/, | supposery = z, hencedy =
%a + z; let f be the inclination of the body/, the sum of the inclinations of the

three other bodies will be therefotie+ 42 — f; hence, their mean inclination will be
%; now, as long adz — f is a positive quantity, the number of cases in which

this inclination is possible, is (art. preceding)

2
%a2+3a<423_f) —9(4Z_f) zla2+a(4z—f)—(4z—f)2;

3 2

if we multiply this quantity bydf, and if we integrate fronf = 0to f = 4z, we will
have2a?z +8az* — & 23, for the number of cases which can take place in this interval

In order to have the number of those which correspond to tteevial contained
betweenf = 4z andf = a, | makef — 4z = s; L?f_f becomes thereforé=;
leta — s = u, we will have g for the mean inclination of the three orbits; now the
number of cases in which this can happenis, by the precedinga(;%u2 or %(a—s)Q;
multiplying this quantity byis and integrating it, froms = 0to s = a — 4z, we will
have%a3 — %23, for the number of all possible cases frgim- 4z to f = a; therefore,
the number of all the cases in which the mean inclination@fdlur orbits can b%a—l—z

IS
1
6(13 +2a%z 4 8az? — 3223;

we can thus suppose that, franto P, the equation of the curv@ M is
2 1 3 2 2 3
a y:Ea + 2a°z + 8az” — 32z°.
V.

If there were five bodied/, N, P, Q andR, by dividing the straight lined B into
five equal parts, we will obtain the curves correspondingacheof these parts, by
means of the curves relative to four bodies, as we just cdeduhis one, by means
of the curves relative to three bodies. Thence we can infeeigdly that the curves
relative ton bodies can always be deduced from those which are relative-tol
bodies. In order to establish in a general manner the relatioich exists between
these different curves, we suppose the straight Hig (fig. 3) divided inton equal



parts, and we determine the equation of the curve relativieete™ part; Iet’“n;la +z

be the distance of one of their ordinates to the pdint being less thar¥; let further

afi—,z be this ordinate, or, what amounts to the same, det . be the number of cases

in which it can happen that the mean inclination of thieodies is%la + z. This put,
if we designate by the inclination of the body/, the sum of the inclinations of the
n — 1 other bodies will bér — 1)a + nz — f; hence, their mean inclination will be

(r—1a+nz—f

b

n—1

now it can happen thatz — f is positive or negative; | suppose it first positive; the

number of cases in which it can happen that the mean indimati then — 1 bodies
is (r—l)a-ﬁ-lnz—f is

Tyn71 nz—f .
?n—1

By multiplying this quantity bydf, an integrating it fromf = 0 to f = nz, we will
have, for the number of cases which correspond to this iaterv

nz
/ rynfl,L?’df'
0 n=

If nz — f is a negative quantity, letz — f = —s, we will have% for the
mean inclination of thes — 1 bodies; now

(r—=la—s r—2 a—s

n—1 n—1 n—1"

and the number of cases in which this is possible isy, , .- ; therefore we have
‘n—1

a—nz
/0 r—lyn—l,%ds;

for the number of cases from= 0 to s = a — nz or, what amounts to the same, from
f =nzto f =a; hence

nz a—nz
(U) rYnz = / rYn_1 mdf +/ r—1Yn—1 Dds’
) 0 s Th—1 0 ‘n—1

such is the general equation by means from which, when we khewurves relative
ton — 1 bodies, we can determine those which are relative bodies.

VI.

It is necessary now, in the manner of equatie)) {o find the general expression of
Y., . forthis, I observe thaty,  _ has a value of this form

) L y,.=,A4,2"+ B "+ C "k Gt H



where A , B_,...aresome functionsefandn whichthe questionis to determine;

in order to attain it, | will make use of a method that | have@sgd elsewherséepage
97 of this volume); the preceding expression gf _ gives

n—2 n—3 0
nz — nz — nz —
rynfl,L:If = rAn—l ( f) +an—l ( f) +“.+an—1 ( f) )

n—1 n—1 n—1

therefore we will have

n—1 n—2
nz n n—1 n
e df = A n—1 B n—2
/0 rYn-1,22t f =40 (n—l) : T nln—z(”_1> :

n—3
-1
+7‘Cn 1n ( . ) Zn_3+.”+TGn—1nZ;

“n—-3\n—-1

we will have similarly

a—s n—2 a—s n—2
r—lyn—l,g = r—lAn—l (TL— 1) +7‘—an—1 (TL— 1> +- .+r—1Gn—1'

Therefore
a n—1 n n—1
_ n—1
(n — 1) (n — 1) “ ]

—1
i B

n_2r71 n—1

a—ns
/0 7‘yn—l,a*S ds :r—lAn—l

n—1

+

+,.,G, (a—nz).

The equationd) will give therefore

n—1
n—1 n \"?
n—2
+z n—2 (n_l) (anfl rlenfl)
n_gn —1 n \"®
z n—3 n—1 (rcn—l _r—lcn—l)




By comparing this equation with equatio#),(we will have the following:

n—1
n
rAn = (TL— 1> (rAnfl - rflAn71)7
B - n—1 n n—2( B B B )
r—n n—2\n—-1 r = n—1 r—1"mn—-1/
@ {.o, =222 ) e )
r~n n—-3\n-1 r~ n—1 r—1"n—-1/
an = n(an—l - r—lGn—l)’
g a n—1 A +TL—1 a n—2 5 N
rn n—1 r—1"n—1 n—2\n—-1 r—1"n-1

These equations are in finite partial differences, excgjtia last which gives with-
out any integration the value off  whenwe know A , B ,....
One can determine furtherf7 = by the following consideration: it is clear that

that is that the ordinate of the curve of probabilities, whiorresponds to the extremity
of the (r — 1)st part of the straight linel B divided inton equal parts, is the same as
the ordinate which corresponds to the beginning ofifh@art; therefore we have

H

r—1 n

) H = A (ﬁ)"* L B (z)”*2+...+

n n

or
n—1 n—2
an_rlen:rflAn (g) +rlen (g) +o
n n

Hence, by integrating with respecttalone, we have

=S () ()]

the characteristid . being the sign of integration for the finite differences. Véted-
mine presently A _, B, ,.
The first of the equationsl() gives

n—1
n
1An: (n—l) lAnfl;

and by integrating, by the method of page 74 of this volumewilldhave

- @ (- (2




H being an arbitrary constant; now, putting= 2, we have, A, = 2; therefore
H = 1; we have besides

ANNE A S GRTE

1 2 n—1 S 123...(n—1) V(n-1)
by designating, as | have elsewhesedpage 74 of this volume), the produc.3 . .. (n—
1) by V(n — 1); we will have therefore

nn—l
A —
n V(n—-1)’
hence, )
n \" (n—1)"2
A = A
2°"n <n_1) |:2 n—1 V(TL—Q) ’
let )
n"-
A =-— mny
2n Vn — 1)u
we will have
Up = Up—1 — 15
therefore
Uy, = —n—+ H;
hence, )
A =———(n—H);
2°%n V(n _ 1) (n )7
now, puttingn = 2, we have, A = —2, because we have, by article II,
9Yo, = -2z + a;
therefore
nn—l )
H=1 and A =————(n—1);
27 n V(n _ 1) (n )a
hence,
n—1 _
n (n—1)n=2
A = A 2
A= (55) et Sty e 2)
let .
Y U,

and we will have

whence we deduce
(n—1)(n—2)

Up =

10



now, puttingn = 2, we have, A = 0; therefore

n 1l (n—1)(n—-2)
H=0 and 3A”__V(n—1) 19 .

By continuing to operate thus, we will find

B nl (n—1)(n-2)---(n—r+1)
rAn _iV(n—l) 1.23---(r—1)

or

4 nn—l
==
roon V(r—1)V(n-—r)
the+sign having place if is odd, and the-sign if it is even.
| observe here, relative to the produ\%}_—l, that we have

1
E—
V(in—r) '
whenn — r = 0 and whem — r» = 1; in fact
1 _n(n—1)---(n—r+1)
Vin—r) 1.23---n v

Now, this last quantity is equal g whenn —r = 1 and whem —r = 0; if r is greater
thann, these two numbers being supposed positive and whole, we hav

because then we have evidently
nn—1)---(n—r+1)=0.

We determine now B .
It is easy to see, by the preceding articles, that we have

B,=0 ,C =0,

17 n n

Next the second of the equationg)(give

n—1 n ne2
2B, = ( ) 2B, _1;

n—2\n—1

whence | deduce, by integrating

B - Hnn72 ’
27n V(n-2)

H being an arbitrary constant. In order to determine it, | obs¢hat the differential
equation in, B begins to exist only when = 3, so that, in order to havé/, it

11



is necessary to knowB ,; now it is clear that, B, is the only constant term in the
expression of,y, _, and hence, the last of the equatiods gives

o By = 4,a=2q

therefore )
n""“a

H = and ,B = ———.

“ 27n V(n-2)

Thence we will have
n" 2q

SBn = _v(n_2)(n+H)7

H being an arbitrary constant; now, putting= 2, we have, B = 0; therefore
H=-2

and

3B, = —ma(n— 2).

We will have, in the same manner
n"2a [(n—2)(n—-3)

B - ml;
Pn T Fmo2) 12 U

now, puttingn = 2, , B = 0; therefore
H=0.
By continuing to operate thus, we will find generally

n"2a (n—-2)(n—-3)---(n—r+1)

By =Fgm—y 123 (r—2)

T n

or
nn—2

V(r—2)V(n—r)
The third of the equationsl) gives

n—1 n \"®
C = C ;
27 n n_3<n_1> 27 n—-1"

whence | deduce, by integrating,

an::F

n"3H
C =——.
27n V(n-3)

In order to determiné/, | observe that the differential equation i’ begins to exist
only whenn = 4; it is necessary therefore, in order to haveto know ,C ,; now it

12



is clear that, C', is the only constant term of the expression,gf, _; hence, the last
of the equations¥) gives

205 =14, (3)25

a® a?

C an 5

therefore

w
[N}
—

thus

n T 12V(n-3)
Thence we will deduce
nn—3a2

3Cn = "Tavmop T H)

In order to determing/, it is necessary to knowC , ; now this quantity is the only
constant term of the expressign , _; thus the last of the equationg) gives

2

a\?2 a a
o=y (5) 4285 =
hence, 4 o
n""°q n—3
H=-4 and .C =-— -1).
37 n 12vm—m< 1 >

Thence | deduce

ne

n"3q> {(n -3)(n—4) n-3
) 1.2 1

= — Hi:
" T 12v(n-3 * }’

now we have, C', = 0; thereforeH = 0. By continuing to operate thus, we will find
generally

Cc =7 =342 [(n—3)(n—4)...(n—r) (n_3)...(n_r+1)}

1.2.V(n —3) 123 (r—2) 1.2 (r=23)

or
n"3a? 1 1
C =+ - )
ron 1.2 |Vor-2)Vin—r—-1) V(@ -3)V(n—-r)
the upper sign having placerifis odd, and the lower if it is even. | have found, in the
same manner,

n74a3

1
1.2.3 [V(r —2)V(n—r—-2)

n

’I‘D’ﬂ/:q:

B 4 N 1 }
Vir-3Vin—r—-1) V(@& -4)V(n-r)|’

the upper sign always having place-ifs odd, and the lower if it is even.
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VII.

We will have thus, by the preceding method, the law of eaain terhatever be:
andn, but this does not yet suffice; it is necessary, moreoverate lthe law of these
terms with respect to one another, that is, the law oftheerm of the sequence

-1 -2
rAnZn +anZn +o

We nameﬂq”nz”*q this term;Tiq”n will be a function ofg, of » and ofn; we can
already know, by that which precedes, in what manner it imatfan ofr and ofn; it
is necessary presently to determine in what manner it is @ifumof ¢; for that, | take
the terms already found

4 nnfl
==
oo V(r—1)V(n—-r)
n""2a
B
ron $V(7’—2)Vn—7’)
n"3q? 1 1
C =7F —
ron 1.2 |V(r—=2)Vin—r—-1) V(@ —-3)V(n—r)
n—4_.3
D :$n a 1
ron 123 |[V(r—=2)V(n—r—-2)
4 1

Yo —3)V—r—1  Vr—2V(n—1)

the upper sign having placesifis odd, and the lower if it is even. Thence, | conclude
that we have generally

q n"9q11 1
o ST |V -2V —r—q+2)

Mq

+

Vir—3)V(in—r—q+3)

M M,

+ Vir—4)V(n—r—q+4) Tt V(ir—qV(n-r)|’

an expression in which it is necessary to deterniifig 1Mq, .... In order to attain

q
this, | observe that this value ofl’  begins to exist only when = ¢; now we have

q a?=tM,

374 V(g-1)

14



moreover, the equatiol’} gives

=a?! [— R . PR .
a Vig-2) V(g-2) 1.2V(¢-3) Vig—1)
__ai! g—1 (¢=1(g-2)

V(-1 [H T 1.2 +"'+1_q}

q
by comparing this expression gﬂ”q with the preceding, we will have
—-M,=2""1—q.
In order to findqu, | observe that we have
q YMogat
q

T =4
e V(g-1)

Moreover,
q a qg—1 a q—2
4Tq = 3Aq (5) + 3Bq (5) 4+ 4 3Tq,
which gives
q 1 1
T = g—1 _
ata =4 [+1.2.V(q—3) V(g—3)
1 n 22 -3
12V(g—4) 12V(g—3)
1 23 —4

© 1.23.V(q—5) + 1.2.3.V(q—4)

1 2072 — (g —1) 2971 —g¢q
T Ve-2 T VG- +v<q—1>}

By summing this quantity, we will have

q at”! q(g—1)
T =2 g1 _ge1y NI
174 T Y- 1) T

By comparing this value oj]q“q with the preceding, we will find

gla—1)

1 —1 —1
M =3i-1_9q
g 1t 13
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| have found, in the same manner
(¢—1) al¢g—1)(¢—2)

—PM, =4 _ga1g 4 9114

1.2 1.2.3
Itis useless to seek new terms, because their law is cletiraswe have generally
-1
M, == [(s +2)77 — (s + 1) g+ sq—liq(ql . )

—14(g—1)(¢—2)
—(s =) =0

s cannot exceed — 3, and the upper sign takes placeifs odd, and the lower if it is
zero or odd; we have therefore

q n"9q9! 1
T =%F
rom Vig—-1) [V(T—Z)V(n—r—q+2)
2071 — ¢
V(r—3)V(n—r—q+3)
N 3q—1 _ 2q—lq+ Q(‘i;l)
Vir—4)Vin—r—q+4)
- (—1D)9'—(¢=2)""q+---],
V(r—q)V(n—r) ’
hence,
(nz)"! a(nz)"2

=+
e T EGE oV m—) |

a2 (nz)nfii

N
1.2 V(ir—2)Vin—r—1) V(I —-3)V(n—r)

V(ir—2)V(n—r)

:F

a?t(nz)"4 1
Vig-1) |V(r—-2)V(n—r—q+2)
2071 — ¢
 V(r—3)V(n—r—q+3)
_ _ —1)
1ot vty 4 2

YOV —r—q+ )
(=11 —(q—=2)""g+ -
+ Vir—q)V(n—r)
+ ..
a1 n n(n —
v(n_l) (T‘—l)n_l _ T(T—Q)n_l'i‘ (1'2 1) (T—3)n_1 _ :

16



the upper sign having placerifis odd, and the lower if it is even, except for the term

(=)' —(¢—2)""q+ -]
Vir—q)V(n—r) ’

:F

for which the upper sign has place wheis odd, and the lower when it is even.

VIII.

Fig. 4

If we make, as previouslydB = a = 90° (fig. 4), and if we divide this straight
line inton equal parts, we will have, for the equation of the curve cpoading to the
" part,

n—2. . _
a y= ryn,z'

If we wish next to determine the probability that the meattiiration of then orbits
is contained between any two poirdtsand@, we will determine the aredT PQ, and
the quotient of this area divided by the entire aream’M ST B will express the
demanded probability. Thus we see that the entire area afuthes is an essential
element to know. In order to attain it, | observe that the amdained between the two
abscissaé-ta andZais

A n n—
e | () s )]s

I designate by K this area; now the last of the equations ©f article VI gives

H _ TAn a " TBn a nil .
r41 g =7 n (ﬁ) +n—1(ﬁ) ol

therefore we will have

K :r+1Hn+1_
r tn na™—2 ’
hence,
a? n+1
K = no_ I R
K= g 7
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Presently, the entire area of the curve is equal to
nKn + nflKn L

Naming therefore this area, we will have

a2 n n n
t—1r =T gy 4
+(n—2)"—n—1i_1(n—3)"+ }

a2 n n

_nV(n) {n" n(n 1)"—1—%(71—2)"—---]

Now, by designating by the charact&rthe finite difference of a quantity, we have,
as we know

n"—nn-—1)"+---=A"0"
moreover, we have generally
Az™ =V (n);
hence,
CL2
S=—.
n

Remark.— The area contained between the two absci§s;é& and~a must be
equal to the area contained between the two absci‘s?s;a@a and”—*a; that is to say
that we must have

K = K

r n n—r+1 n’

because these two areas are equally situated with respiagt extremitiesd and B;
we must therefore have

Tn_”+1(r_1)n+@(r_2)n_...
() n—i.-l
=n-r+1)" - n—r)" 4+,

1

continuing in it both members of this equation, until we\ario a term which is null.
We can be assured moreover of the truth of this equation, bgreing that we have

=+ Dr-1)"+---
Fn+Dr—n)"+tn—r+1)"=A""(r—n-1)",

the +sign having place if: is odd, and the-sign if it is even; nowA” 1y = 0,
whence it is easy to conclude the equatigh (

IX.
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In order to apply the preceding theory to Nature, it would beassary to suppose
n = 63, because there exist now sixty-three comets of which we baleilated the
orbits; but this calculation would be painful because ofétggth; thus, abandoning to
those who will wish to undertake it, | will satisfy myself togpose here = 12; |
imagine therefore the straight linéB, divided into twelve equal parts, of which each
is consequently ° %; we will find, by the preceding article, that the probabilityat the
mean inclination of the twelve orbits will be contained beem45° —7° 5 and45°,
or betweent5° +7° 3 and45°, is equal to

5\ 1312 4\ 131211 3\ "
1-13(=) +==2(=2) - =2—=—(2
6 1.2 6 1.2.3 6
L 13121110 (2 131211109 /1)
1.2.34 6 1.2.3.4.5 6 ’

Now, by making the calculation, | find this quantity equabt839; whence it fol-
lows: 1° that there is odds @f39 to 161, that the mean inclination of twelve orbits
will be over37° 1; 2° that the odds are as much that it will be belé®V 1; 3° that
there is odds 0678 againsB22, that it will be between the limit87° 2 and52° 3.

Now, if we add together the information of the last twelve esnobserved of
which the table is here:

612

v(12)

Comet of the years Inclination of the orbits
1774 82° 48'0”
1773 61.25.21
1772 18.59.40
1771 11.15.29
1771 31.25.55
1770 1.44.30
1769 40.42.30
1766 8.20.00
1766 40.50.20
1764 53.54.19
1763 73.39.29
1762 85.03.02

we will find that their mean inclination i$2 ° 31’. In order to suspect in these comets a
cause which tends to make them move in the plane of the exliptiould be necessary
that there be odds of a very great number against unity thidtey were launched at
random, their mean inclination would surpdgs 30’; now we just found that there is
odds 0f839 againstl 61, that which is not odds of six against one that it will be above
37° 1, and it is considerably less odds that it will be abad2é 30’

[Section X, “La figure de la terre” concerns the figure of thetean Section XI, “Sur
les fonctions,” Laplace discusses a memoir of Lagrange, i8e nouvelle espece de
calcul relatif a I'intégration et a la différentiatiates quantités variables,” which had

been published in 1772. These sections have been omitted.]
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