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We are often led in analysis, and principally in that of chance, to some formulas of
which usage becomes impossible when we substitute some large numbers into it. The
numerical solution of the problems of which they are the analytic solution presents then
great difficulties that we are yet successful in overcoming only in some particular cases,
of which the two chief are related to the product of the natural numbers 1, 2, 3, 4, . . .
and to the mean term of the binomial raised to a great power. If we suppose this power
even and equal to 2s, this term will be, as we know

2s(2s− 1)(2s− 2)(2s− 3) · · · (s+ 1)

1.2.3.4 . . . s
.

Although this expression is quite simple, however if s is very large, for example, equal
to 10000, it becomes very difficult to reduce in numbers, because of the multiplication
of these factors. Mr. Stirling has happily attained in transforming into some series
the more so convergent as s is a greater number (see his good work De summatione
et interpolatione serierum). This transformation, which we can regard as one of the
most ingenious discoveries that one has made in the theory of series, is especially
remarkable in that in one research, which seems to admit only some algebraic quan-
tities, it introduces a transcendent quantity: namely the square root of the ratio of the
semi-circumference to the radius. But the method of Mr. Stirling, founded on the inter-
polation of the series and on some theorems of Wallis, leaves wanting a direct method
which extends to all functions composed of a great number of terms and of factors. I
have given, in our Mémoires for the year 1778, p. 289,1 a general method to reduce in a
convergent series the integrals of the differential functions which contain some factors
raised to some great powers; but, occupied by a different object, I myself am content
now to draw from this method the beautiful theorems of Mr. Stirling, in reserving to
myself the resumption and the more thorough study in another Memoir. Some new re-
flections have lead me to extend it generally to any functions of very great numbers and
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1“Mémoire sur la probabilités.”
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to reduce these functions to some series so much more convergent as these numbers are
greater, so that this method is the better approximation as it becomes more necessary.
I intend to develop it in this Memoir with all the detail due to the novelty of the subject
and to its importance in the applications of Analysis.

The difficulty which the reduction of numbers presents in very composite analytic
formulas comes from the multiplication of their terms and of their factors: we will
make it therefore vanish, if we come to reduce these formulas to some convergent
enough series in order that we have need to consider only the first terms, and if, more-
over, each of these terms contains only a small number of factors which can be raised
moreover to some great powers. It will be easy then to have these factors and their prod-
ucts, by the known artifices, in order to obtain, by means of Tables, the logarithms of
very great numbers and the numbers of very great logarithms. The question is reduced
therefore to transform the composite functions into convergent series. This appears
impossible when we consider them under their natural form; but, as little that we are
versed in the infinitesimal Analysis, we have often observed differential functions of
a very simple form, and which contain some factors raised to some great powers, to
produce, by their integration, some very composite functions, that which gives occa-
sion to think that each composite function is reducible to some similar integrals which
there will be no more further concern but to convert to convergent series. The problem
that we propose to resolve, considered under this point of view, is divided thus into
two others, of which one consists to integrate by approximation the differential func-
tions which contain some very elevated factors, and of which the other has for object
to restore to this kind of integrals the functions of which we seek some approximate
values.

In article I of this memoir, I give the solution of the first problem, which, by itself, is
very useful in this branch of the Analysis of hazards, where we propose to go back from
the observed events to their causes and to recognize, by these events, the probability
of future events (see the Mémoires de l’Académie for the year 1778). This solution
leads me to different series which serve to supplement the ones to the others, the first
needing to be employed for the points of the integral extended from the maximum of
the differential function, and the second needing to serve for the points neighboring
this maximum: these last series contain the transcendent quantities which, most often,
are reduced to this one ∫

dt e−t
2

,

e being the number of which the hyperbolic logarithm is unity; and, as this integral,
taken from t = 0 to t = ∞, is the half of the square root of the ratio of the semi-
circumference to the radius, there results that the approximate value of the integrals
determined from the differential functions which contain some very elevated factors
depends nearly always on this root, even in the case where these integrals are algebraic;
thus this transcendent quantity that Mr. Stirling has introduced first in the approximate
value of the mean term of the binomial is not particular to it, but it enters equally in the
approximate values of a great number of other algebraic functions.

I consider in article II the problem which consists in restoring the functions in
which one seeks the approximate values in the integration of differential functions
multiplied by some factors raised to some great powers; in order to arrive to a general
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method, I represent by ys,y′s, y
′′
s , . . . some functions of s, very composite and in which

s is a great number. I suppose these functions given by some linear equations in the
differences, either finite, or infinitely small, of which the coefficients are some rational
functions of s; by making next, in these equations

ys =

∫
xsφdx, y′s =

∫
xsφ′dx, . . . ,

and by preparing them in a convenient manner, each of them is divided into two parts,
of which the one is affected by an integral sign

∫
of which the other is outside of this

sign: equating to zero of the parts under the sign gives as many linear equations in the
infinitely small differences as there are variables φ, φ′, φ′′, . . .. We can, consequently,
determine at their mean these variables in functions of x; as for the parts under the
integral sign, by equating them to zero and by eliminating the arbitrary constants of the
values of φ, φ′, φ′′, . . ., we arrive to a final equation in x, of which the roots serve to
determine the limits in which we must take the integrals

∫
xsφdx,

∫
xsφ′dx, . . .A very

important remark in this analysis, and which gives the means to extend to some func-
tions of frequent usage, is that the series which we obtain for ys,y′s, . . . holds generally
by changing in it the sign of the constants which they contain, although, by this change,
the final equation in x, which determines the limits of the integrals, ceases to have many
real roots. The principal obstacle which we encounter in the application of this method
comes from the nature of the differential equations in φ, φ′, φ′′, . . ., which can not
be integrable: we can often obviate this inconvenience by representing the functions
ys,y

′
s, . . . by some multiple integrals such as

∫
xsx′sφdxdx′,

∫
xsx′sφ′dxdx′, . . . ; we

will arrive thus to determine φ, φ′, . . . by some equations of an order less elevated and
susceptible to being integrated by known methods.

The preceding analysis, applied to linear equations in partial differentials, gives
likewise their integrals in convergent series, so that it extends generally to very com-
posite functions which can be represented by some differential equations linear in the
ordinary or partial differences, finite or infinitely small, or by finite parts and by in-
finitely small parts, this which embraces all the functions which are met in the ordinary
use of Analysis.

In article III, I apply the preceding method to diverse differential equations; I de-
duce from them the values, by highly convergent series, the product of the natural
numbers 1, 2, 3, 4, . . .of the mean term of the binomial, of that of the trinomial, etc.,
of very elevated differences, either finite or infinitely small of the functions or of any
part whatever of these differences.

Finally, in article IV, I give the solution of many interesting problems in the Analy-
sis of chances, which it would be impossible to resolve numerically by known means.

ARTICLE I.
On the integration by approximation of differential functions

which contain factors raised to some great powers.
I.

If we designate by u, u′, u′′, . . . and φ some arbitrary functions of x, and by
s, s′, s′′, . . . some large numbers, each differential function which contains some fac-
tors raised to some great powers will be comprehended in this form usu′s

′
u′′s

′′ · · ·φdx.
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In order to have by convergent series its integral taken from x = θ to x = θ′, we
will make usu′s

′ · · ·φ = y, and, by designating by Y that which y becomes when
we change x to θ in it, we will suppose y =Ye−t, e being the number of which the
hyperbolic logarithm is unity; we will have thus

log
Y
y

= t.

If we consider x as a function of t given by this equation, we will have, by supposing
dt constant,

x = θ + t
dx

dt
+

t2

1.2

d2x

dt2
+

t3

1.2.3

d3x

dt3
+ · · · ,

t needing to be supposed null, after the differentiations, in the values of dx
dt , d

2x
dt2 , . . ..

Now we have generally
dnx

dtn
=

1

dt
d

1

dt
d

1

dt
· · · ddx

dt
,

the differential characteristic d relating to all that which follows it, and dt being able
to vary in any manner whatever in the second member of this formula; moreover, if we
differentiate the equation log Y

y = t, and if we designate −y dxdy by ν, we will have

dt =
dx

ν
;

therefore, we will have
dnx

dtn
=
νd[ν d(ν . . . dν)]

dxn−1
,

dx being supposed constant in the second member of this equation. By naming there-
fore U that which ν becomes when we change x to θ, the value of dnx

dtn , which corre-
sponds to x = θ, or, what returns to the same, to t = 0, will be equal to U d[U d(U...dU)]

dθn−1 ;
we will have thus

x = θ + Ut+
U dU
1.2 dθ

t2 +
U d(U dU)

1.2.3 dθ2
t3 + · · · ,

whence we deduce

dx = U dt

[
1 +

dU
dθ
t+

d(U dU)

1.2 dθ2
t2 + · · ·

]
and, consequently,∫

y dx = UY
∫
dt e−t

[
1 +

dU
dθ
t+

d(U dU)

1.2 dθ2
t2 + · · ·

]
.

If we take the integral from t = 0 to t =∞, we will have generally∫
tndt e−t

n

= 1.2.3 . . . n,
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therefore ∫
y dx = UY

{
1 +

dU
dθ

+
d(U dU)

dθ2
+
d[U d(UdU)]

dθ3
+ · · ·

}
,

the integral relative to x being taken from x = θ to the value of x which agrees to t
infinity.

We name Y′ and U′ that which y and ν become when we change x to θ′; we will
have likewise∫

y dx = U′Y′
{

1 +
dU′

dθ′
+
d(U′ dU′)
dθ′2

+
d[U′ d(U′dU′)]

dθ′3
+ · · ·

}
,

the integral relative to x being taken from x = θ′ to the value of x which corresponds
to t infinity; by subtracting therefore these two expressions from one another, we will
have

(A)


∫
y dx =UY

{
1 +

dU
dθ

+
d(U dU)

dθ2
+
d[U d(UdU)]

dθ3
+ · · ·

}
− U′Y′

{
1 +

dU′

dθ
+
d(U′ dU′)
dθ2

+
d[U′ d(U′dU′)]

dθ3
+ · · ·

}
,

the integral relative to x being taken from x = θ to x = θ′, so that the consideration
of t disappears in this formula. If θ and θ′ were originally contained in y, it would
be necessary to vary only the quantities θ and θ′ which introduce into U and U′ the
changes of x to θ and to θ′ in the function ν.

Formula (A) will be very convergent if ν or −y dxdy is a very small quantity; now, y

being, by assumption, equal to usu′s
′
u′′s

′′ · · ·φ, we have

ν = − 1
s du
u dx + s′ du

′

u′dx + · · ·+ dφ
φ dx

;

thus, in the case where s, s′, s′′, . . . will be very great numbers, ν will be very small;
and, if we make 1

s = α, α being a very small coefficient, the function ν will be of the
order α and the successive terms of formula (A) will be respectively of the orders α,
α2, α3,. . ..

This formula will cease to be convergent if the assumption of x = θ rendered very
small the denominator of the expression of ν. We suppose, for example, that (x−a)µ is
a factor of this denominator; it is clear that the successive terms of the series, which, in
formula (A), multiplied UY, will be divided respectively by (θ−a)µ, (θ−a)2µ+1, (θ−
a)3µ+2, . . . and will become very large if θ is little different from a. The convergence
of this formula requires therefore that (θ − a)µ and (θ′ − a)µ be greater than α; it
cannot, consequently, be used in the interval where (x − a)µ is equal or less than α;
but, in this case, we can make use of the following method.
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II.

If we name Y that which y becomes when we change x to a, it is clear that, (x−a)µ

being a factor of − dy
y dx or, what returns to the same, of

d log Y
y

dx , (x − a)µ+1 will be a
factor of log Y

y . Let therefore

y = Ye−t
µ+1

and
ν =

x− a
(log Y− log y)

1
µ+1

;

we will have
x− a = νt,

ν at no point becoming infinity by the assumption x = a. If we designate next by U,
dU2

dx ,
d2U3

dx2 , . . . that which ν, dν
2

dx ,
d2ν3

dx2 , . . . become when we change x to a, after the
differentiations, we will have

x = a+ Ut+
dU2

1.2 dx
t2 +

d2U3

1.2.3 dx2
t3 + · · · ,

whence it is easy to conclude

(B)
∫
y dx = Y

∫
dt e−t

µ+1

[
U +

dU2

dx
t+

d2U3

1.2 dx2
t2 +

d3U4

1.2.3 dx3
t3 · · ·

]
.

This formula can be used in each interval where x differs little from a; it can conse-
quently serve as supplement to formula (A) of the preceding section; but, instead of
being ordered as it with respect to the powers of α, it will be only relatively to the
powers of α

1
µ+1 , because it is clear that, in this last case, ν is only of order α

1
µ+1 .

In order to determine easily the quantities U, dU2

dx ,
d2U3

dx2 , . . ., we suppose

log Y− log y = (x− a)µ+1
[
A + B(x− a) + C(x− a)2 + · · ·

]
;

we will have, by changing x to a, after the differentiations

A = − dµ+1 log y

1.2.3 . . . (µ+ 1) dxµ+1
,

B = − dµ+2 log y

1.2.3 . . . (µ+ 2) dxµ+2
,

· · ·

We will have next, whatever be r,

νr =[A + B(x− a) + C(x− a)2 + · · · ]−
r
µ+1

=A−
r
µ+1 − r

µ+ 1
A−

r+µ+1
µ+1 B(x− a)

+

[
r(r + µ+ 1)

1.2 (µ+ 1)2
A−

r+2µ+2
µ+1 B2 − r

µ+ 1
A−

r+µ+1
µ+1 C

]
(x− a)2 + · · ·
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If we make successively in this formula r = 1, r = 2, r = 3, . . . , it will be easy
to conclude the values of U, dU2

dx ,
d2U3

dx2 , . . . , and formula (B) will present no more
difficulties other than those which result from the integration of the quantities of this
form

∫
tndt e−t

µ+1

; now we have∫
tndt e−t

µ+1

=
−etµ+1

µ+ 1

[
tn−µ +

n− µ
µ+ 1

tn−2µ−1 +
(n− µ)(n− 2µ− 1)

(µ+ 1)2
tn−3µ−2 + · · ·

+
(n− µ)(n− 2µ− 1)(n− 3µ− 2) · · · (n− rµ+ µ− r + 2)tn−rµ−r+1

(µ+ 1)r−1

]
+

(n− µ)(n− 2µ− 1) · · · (n− rµ+ µ− r + 1)

(µ+ 1)r

∫
tn−rµ−rdt e−t

µ+1

,

r being equal to the quotient of the division of n by µ+ 1 if the division is possible, or
to the whole number immediately inferior if it is not. The determination of the integral∫
y dx depends therefore on the integrals of the form∫

dt e−t
µ+1

,

∫
t dt e−t

µ+1

, . . . ,

∫
tµ−1dt e−t

µ+1

;

if it is not possible to obtain exactly these integrals by the known methods; but it will
be easy in all the cases to have their approximate values.

III.

We will have principally need in the following of the value of
∫
y dx for the whole

interval contained between two consecutive values of x which render y null; we are
going consequently to expose the simplifications of which this value is thus susceptible.
y having been supposed in the preceding section equal to Ye−t

µ+1

, it is clear that the
two values of xwhich render y null render similarly null the quantity e−t

µ+1

, that which
supposes that µ + 1 is an even number, and that one of these values of x correspond
to t = −∞ and the other to t = ∞; Y is therefore then the maximum of y contained
between these values. Let µ + 1 = 2i; if we take the integral

∫
t2n+1dt e−t

2i

from
t = −∞ to t = ∞, its value will be null, because it is clear that the elements of this
integral which correspond to the negative values of t are equal and of contrary sign to
those which correspond to the positive values of t. The integral

∫
t2n dt e−t

2i

will be
equal to 2

∫
t2n dt e−t

2i

, this latter integral being taken from t = 0 to t = ∞, and, in
this case, we have, by the preceding number,∫

t2n dt e−t
2i

=
(2n− 2i+ 1)(2n− 4i+ 1) · · · (2n− ri+ 1)

(2i)r

∫
t2n−2rdt e−t

2i

,

r being equal to the quotient of the division of n by i if the division is possible, or to
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the whole number immediately smaller if the division is not possible. Let therefore

K =

∫
dt e−t

2i

,

K(1) =

∫
t2 dt e−t

2i

,

K(2) =

∫
t4 dt e−t

2i

,

· · ·

K(i−1) =

∫
t2i−2 dt e−t

2i

;

formula (B) of the preceding number will become

(C)



∫
y dx =2KY

(
U +

1

2i

d2iU2i+1

1.2.3 . . . 2i dx2i
+

2i+ 1

4i2
d4iU4i+1

1.2.3 . . . 4i dx4i
+ · · ·

)
+ 2K(1)Y

[
d2U3

1.2 dx2
+

3

2i

d2i+2U2i+3

1.2.3 · · · (2i+ 2) dx2i+2

+
3(2i+ 3)

4i2
d4i+2U4i+3

1.2.3 · · · (4i+ 2) dx4i+2
+ · · ·

]
+ · · ·

+ 2K(i−1)Y
[

d2i−2U2i−1

1.2.3 · · · (2i− 2) dx2i−2
+

2i− 1

2i

d4i−2U4i−1

1.2.3 · · · (4i− 2) dx4i−2

+
(2i− 1)(4i− 1)

4i2
d6i−2U6i−1

1.2.3 · · · (6i− 2) dx6i−2
+ · · ·

]
.

This formula is the sum of a number i of different series, decreasing as the powers
of α, since U is of the order α

1

α2i , and multiplied respectively by the transcendents
K,K(1),K(2), . . . which it is consequently important to know. Let us see that which the
analysis takes us in this regard.

IV.

We will consider generally the integral∫
ds dx dx(1) dx(2) · · · dx(r−2) e−s(1+x

n+x(1)n+···+x(r−2)n),

the successive integrals being taken from s, x, x(1), x(2), . . . , equal to zero to the infi-
nite values of these variables. By integrating first with respect to s, we will reduce the
preceding integral to this∫

dx dx(1)dx(2) + · · ·+ dx(r−2)

1 + xn + x(1)n + · · ·+ x(r−2)n
.
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Let
x(

1 + x(1)n + x(2)n + · · ·+ x(r−2)n
) 1
n

= z;

we will have ∫
dx

1 + xn + x(1)n + · · ·+ x(r−2)n

=
1(

1 + x(1)n + x(2)n · · ·+ x(r−2)n
)n−1

n

∫
dz

1 + zn
,

the integral relative to z being taken from z = 0 to z =∞. Let next

x(1)(
1 + x(2)n + · · ·+ x(r−2)n

) 1
n

= z(1);

we will have ∫
dx(1)(

1 + x(1)n + · · ·+ x(r−2)n
)n−1

n

=
1(

1 + x(2)n + · · ·+ x(r−2)n
)n−2

n

∫
dz(1)(

1 + z(1)n
)n−1

n

,

the integral relative to z(1) being taken from z(1) = 0 to z(1) = ∞. By continuing to
operate so, we will find∫

ds dx dx(1) · · · dx(r−2) e−s(1+x
n+x(1)n+···+x(r−2)n)

=

∫
dz

1 + zn

∫
dz

(1 + zn)
n−1
n

∫
dz

(1 + zn)
n−2
n

· · ·
∫

dz

(1 + zn)
n−r+2
n

,

the integrals relative to z being taken from z = 0 to z =∞.
We integrate presently, in another way, the differential

ds dx dx(1) · · · e−s(1+x
n+x(1)n+··· ),

and, instead of beginning the integrations with s, we terminate them with this variable;
for this, we will observe that we have∫

dx e−sx
n

=
1

s
1
n

∫
s

1
n dx e−sx

n

=
1

s
1
n

∫
dt e−t

n

,

t being supposed equal to s
1
nx. The integral relative to x must be taken from x = 0

to x = ∞, the integral relative to t must be taken from t = 0 to t = ∞. Let therefore∫
dt e−t

n

=K, we will have ∫
dx e−sx

n

=
K
s

1
n

;
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we will have similarly ∫
dx(1) e−sx

(1)n

=
K
s

1
n

;

and thus in sequence; therefore,∫
ds dx dx(1) · · · dx(r−2) e−s(1+x

n+x(1)n+···+x(r−2)n)

= Kr−1
∫
ds e−s

s
r−1
n

= nKr−1
∫
tn−rdt e−t

n

,

t being here equal to s
1
n , and the integral relative to t being taken, as the integral

relative to s, from the null value of this variable of this variable to its infinite value. By
comparing the two expressions of∫

ds dx dx(1) · · · e−s(1+x
n+x(1)n+··· )

and by observing that ∫
dz

1 + zn
=

π

n sin π
n

,

π being the ratio of the semi-circumference to the radius, we will have

n2Kr−1
∫
tn−rdt e−t

n

=
π

sin π
n

∫
dz

(1 + zn)
n−1
n

∫
dz

(1 + zn)
n−2
n

· · ·
∫

dz

(1 + zn)
n−r+2
n

,

all the integrals being taken from the null values of the variables to their infinite values.
If we make 1 + zn = 1

1−un , we will have

dz =
du

(1− un)
n−1
n

;

the preceding formula will become thus

(Z)


n2Kr−1

∫
tn−rdt e−t

n

=
π

sin π
n

∫
du

(1− un)
2
n

∫
du

(1− un)
3
n

· · ·
∫

du

(1− un)
r−1
n

,

the integrals relative to u being taken from u = 0 to u = 1, because the assumption
of z = 0 gives u = 0 and because that of z = ∞ gives u = 1. It is necessary in this
formula to take as many of the factors affected by the integral sign as there are units in
r − 2.

Formula (Z) offers many interesting corollaries which we are going to develop; if
we suppose r = n in it, the integral

∫
tn−rdt e−t

n

will be changed to K, and we will
have

(V) n2Kn =
π

sin π
n

∫
du

(1− un)
2
n

∫
du

(1− un)
3
n

· · ·
∫

du

(1− un)
n−1
n

.
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Thus K or
∫
dt e−t

n

will be given by this equation in functions of algebraic integrals,
and formula (Z) will give the value of

∫
tn−rdt e−t

n

in similar functions, r being any
positive whole number whatever and less than n; these values depend on n−2 algebraic
integrals ∫

du

(1− un)
2
n

∫
du

(1− un)
3
n

· · ·
∫

du

(1− un)
n−1
n

;

but we can diminish to half the number of these integrals by the following method.
If, in formula (Z), we make r = 2, it will give

n2
∫
dt e−t

n

∫
tn−2dt e−t

n

=
π

sin π
n

.

This equation is generally true, whatever be n, supposing it even fractional; therefore,
if we change n into n

r−1 , we will have

n2
∫
dt e−t

n
r−1

∫
t
n
r−1−2dt e−t

n
r−1

=
(r − 1)2π

sin (r−1)π
n

.

and, if in this new equation we change t into tr−1, it will become

(T) n2
∫
tr−2dt e−t

n

∫
tn−rdt e−t

n

=
π

sin (r−1)π
n

.

If, in this equation, we suppose r − 2 = n − r, that which gives r = n
2 + 1, we will

have

n2
(∫

t
n
2−1dt e−t

n

)2

= π,

and, if we change t
n
2 into t, we will have this remarkable result∫

dt e−t
2

=
1

2

√
π,

that is that the integral
∫
dt e−t

2

, taken from t = 0 to t infinity, is the half of the square
root of the ratio of the semi-circumference to the radius.

We suppose now n even and equal to 2i; if we make r = i + 1 in formula (Z), it
will become

4i2Ki
∫
ti−1dt e−t

2i

=
π

sin π
2i

∫
du

(1− u2i)
2
2i

∫
du

(1− u2i)
3
2i

· · ·
∫

du

(1− u2i)
1
2

.

Now, by changing ti into t, the integral
∫
ti−1dt e−t

2i

will become

1

i

∫
dt e−t

2i

=

√
π

2i
;

we will have therefore

(R) 2iKi =

√
π

sin π
2i

∫
du

(1− u2i)
2
2i

· · ·
∫

du

(1− u2i)
1
2

;
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thus K will be given as function of the first i−1 algebraic integrals of formula (Z), and
this same formula will give the values of all the transcendent integrals

∫
t2i−rdt e−t

2i

,
in functions of these same integrals, when r will be equal or less than i + 1 or, what
returns to the same, when the exponent 2i− r will be equal or greater than i−1. If this
exponent is less, then r− 2 will be greater than i− 1, and formula (T) giving the value
of the integral

∫
t2i−rdt e−t

2i

, by means of this one here
∫
tr−2dt e−t

2i

, this value will
depend only on the first i − 1 algebraic integrals of formula (Z); thus all the values of
the integral

∫
t2i−rdt e−t

2i

will depend, whatever be r, only on these first i algebraic
integrals, and, as the values corresponding to r greater than i are given by formula (Z)
in functions of these integrals and of the following∫

du

(1− u2i)
i+1
2i

,

∫
du

(1− u2i)
i+2
2i

, . . . ,

∫
du

(1− u2i)
2i−1
2i

,

there results that each of these last integrals will be given as function of the i − 1 first
algebraic integrals of formula (Z).

If n is odd and equal to 2i + 1, formula (Z) will give, by making successively
r = i+ 1 and r = i+ 2,

(2i+ 1)2Ki
∫
tidt e−t

2i+1

=
π

sin π
2i+1

∫
du

(1− u2i+1)
2

2i+1

∫
du

(1− u2i+1)
3

2i+1

· · ·
∫

du

(1− u2i+1)
i

2i+1

,

(2i+ 1)2Ki+1

∫
ti−1dt e−t

2i+1

=
π

sin π
2i+1

∫
du

(1− u2i+1)
2

2i+1

· · ·
∫

du

(1− u2i+1)
i+1
2i+1

;

by multiplying these two equations by one another and by observing that equation (T)
gives, by making r = i+ 1,

(2i+ 1)2
∫
ti−1dt e−t

2i+1

∫
tidt e−t

2i+1

=
π

sin iπ
2i+1

,

we will have

(2i+ 1)2K2i+1

π sin iπ
2i+1(

sin π
2i+1

)2
[∫

du

(1− u2i+1)
2

2i+1

· · ·
∫

du

(1− u2i+1)
i

2i+1

]2 ∫
du

(1− u2i+1)
i+1
2i+1

.

K will therefore be given as a function of the i first algebraic integrals of formula (Z),
and this same formula will give the values of

∫
t2i+1−rdt e−t

2i+1

, as a function of the
same integrals, when r will be equal or less than i + 2; formula (T) will give next the
value of this transcendent integral when r will be greater than i + 2, whence we can

12



conclude that each of the integrals∫
du

(1− u2i+1)
i+2
2i+1

,

∫
du

(1− u2i+1)
i+3
2i+1

, · · ·
∫

du

(1− u2i+1)
2i

2i+1

will be given as a function of the first i algebraic integrals of formula (Z).
Thence it follows generally that all the values of

∫
trdt e−t

n

will depend, whatever
be r, only on n

2 − 1 algebraic integrals taken in formula (Z) if n is even, or on n−1
2 of

these same integrals if n is odd.

V.

We take now formula (C) of No. III; if we make i = 1, it will contain the sole
transcendent K or

∫
dt e−t

2

, which, by the preceding section, is equal to 1
2

√
π or to

0.886227.
If we make i = 2, this formula will contain the two transcendents K and K(1),

which are respectively equal to
∫
dt e−t

2

and to
∫
t2dt e−t

4

; now formula (R) of the
preceding section gives, by making i = 2 and by observing that then sin π

2i = 1√
2

,

4

(∫
dt e−t

4

)2

=
√

2π

∫
du

(1− u4)
1
2

.

This last integral represents the length of the elastic curve which M. Stirling has found
equal to

1.31102877714605987;

by designating therefore π′ this value, we will have

K =

∫
dt e−t

4

=
1

2

√
π′
√

2π;

formula (Z) will give next, by making n = 4 and r = 2,

16

∫
dt e−t

4

∫
t2dt e−t

4

= π
√

2,

therefore

K(1) =

∫
t2dt e−t

4

=
π

3
4

4
√

2π′
√

2π
.

We will not push further this examination of the values of K,K(1), . . . correspond-
ing to the different values of i, because the case where i surpasses unity are very rare
in the applications of Analysis.

VI.

The case in which i = 1 being most ordinary, we are going to exhibit here the sim-
plest formulas in order to determine in this case the approximate value of the integral∫
y dx.

13



If we suppose ν = −y dxdy and if we name Y and U that which y and ν become
when x changes to θ, and Y′ and U′ that which these same quantities become when we
change x to θ′, we will have

(a)


∫
y dx =YU

{
1 +

dU
dθ

+
d(U dU)

dθ2
+
d[U d(U dU)]

dθ3
+ · · ·

}
− Y′U′

{
1 +

dU′

dθ′
+
d(U′ dU′)
dθ′2

+
d[U′ d(U′ dU′)]

dθ′3
+ · · ·

}
,

the integral
∫
y dx being taken from x = θ to x = θ′. This formula will be very

convergent all the time that dy
dx will be very great with respect to y, that which takes

place when, the factors of y being raised to some great powers, the integral
∫
y dx is

taken in the intervals distant from the maximum of y.
In order to have this same integral in the intervals near this maximum, we suppose

that it corresponds to x = a, and name Y the maximum of y or that which it becomes
when we change x into a; we suppose next, as this occurs most often, that the value a
of x makes only the first difference of y vanish: in this case, we will make

t =
√

log Y− log y, ν =
x− a√

log Y− log y
,

and, by designating by U, dU2

dx ,
d2U3

dx2 , . . . that which ν, du
2

dx ,
d2u3

dx2 , . . . become when
we change x into a, we will have

(b)
∫
y dx = Y

∫
dt e−t

2

(
U +

dU2

dx
t+

d2U3

1.2 dx2
t2 +

d3U4

1.2.3 dx3
t3 + · · ·

)
.

If in formula (a) we suppose log y, and consequently −y dxdy very small of order
α, this formula cannot serve in any interval where (x − a)2 is less than α; in this
case, we can make use of formula (b), which itself ceases to be convergent when νt
or, that which reverts to the same, x − a is not a very small quantity of order αλ, λ
being positive; but, in the interval where it is not, the series (a) can be employed, so
that these two series serve to supplement each other; there are likewise some intervals
where both can be used, because, since the convergence of series (a) requires that x−a
be of order α

1
2−λ, λ being positive, and since that of the series (b) requires that 1

2 − λ
is positive, these two series can serve all at once for all the positive values of λ less
than 1

2 . The first will be ordered with respect to the powers of α2λ, and the second will
be with respect to the powers of α

1
2−λ; it will be necessary to prefer the first or the

second, according as 2λ will be greater or lesser than 1
2 − λ, that is according as we

will have λ greater or lesser than 1
2 .

Formula (b) gives, by integrating from t =T to t =T′,

(c)



∫
y dx =Y

(
U +

1

2

d2U3

1.2 dx2
+

1.3

22
d4U5

1.2.3.4 dx4
+ · · ·

)∫
dt e−t

2

+
Y
2
e−T2

[
dU2

dx
+ T

d2U3

1.2 dx2
t2 + (T2 + 1)

d3U4

1.2.3 dx3
t3 + · · ·

]
+

Y
2
e−T′2

[
dU2

dx
+ T′

d2U3

1.2 dx2
t2 + (T′2 + 1)

d3U4

1.2.3 dx3
t3 + · · ·

]
,
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the integral
∫
y dx being taken from the value of x which agrees with t =T to that

which agrees with t =T′.
If we suppose T= −∞ and T′ =∞, we will have generally

Tre−T2

= 0, T′re−T′2 = 0;

we have besides in this case (no. IV)∫
dt e−t

2

=
√
π.

The preceding formula becomes thus

(d)
∫
y dx = Y

√
π

(
U +

1

2

d2U3

1.2 dx2
+

1.3

22
d4U5

1.2.3.4 dx4
+ · · ·

)
,

the integral
∫
y dx being taken between the two consecutive values of x which render

y null, and Y being the maximum of y contained between these values. The different
terms of this formula will be determined easily by observing that, if we make

A = −d
2 log y

1.2 dx2
, B = − d3 log y

1.2.3 dx3
, C = − d4 log y

1.2.3.4 dx4
, , · · · ,

x being changed into a, after the differentiations, we will have generally

νr = A−
r
2 − r

2
A−

r
2−1B(x− a)

+

[
r(r + 2)

8
A−

r
2−2B2 − r

2
A−

r
2−1C

]
(x− a)2 + · · ·

We have

d2 log y =
d2y

y
− dy2

y2
;

the assumption of x = a makes dy disappear: we will have therefore

d2 log y

dx2
= −2A =

d2Y
Ydx2

,

Y and d2Y
dx2 being that which y and d2y

dx2 become when we make x = a; therefore, if in
formula (d) we consider only the first term of the series, we will have very nearly∫

y dx =
Y

3
2

√
2π√

−d2Y
dx2

or
(∫

y dx

)2

=
2πY3

−d2Y
dx2

,

the integral
∫
y dx being taken between the two consecutive values of x which make

y disappear, Y and d2Y
dx2 corresponding to the intermediate value of x which makes dy

disappear. This expression of
∫
y dx will be as much nearer as the factors of y will be

raised to higher powers.
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Formula (c) contains the indefinite integral
∫
dt e−t

2

, which it is not possible to
obtain in finite terms; but we can, in all cases, determine it in a manner quite near by
known methods. If t is not very large, we can make use of the following series∫

dt e−t
2

= T− 1

3
T3 +

1

1.2

T5

5
− 1

1.2.3

T7

7
+

1

1.2.3.4

T9

9
− · · · ,

the integral being taken from t = 0 to t =T.
If t is large, we can be served by this series∫

dt e−t
2

=
e−T2

2T

(
1− 1

2T2 +
1.3

22T4 −
1.3.5

23T6 + · · ·
)
,

the integral
∫
dt e−t

2

being taken from t =T to t = ∞, so that, in order to have the
value of this integral from t = 0 to t =T, it is necessary to subtract the preceding
value from 1

2

√
π. This series is alternatively greater and lesser than the

∫
dt e−t

2

, in a
manner that the value of this integral, taken from t =T to t = ∞, is always contained
between the sum of any finite number of its terms and this same sum increased by
the following term. This kind of series, which we can name series of limits, has the
advantage of showing with precision the limits of the errors of the approximations. In
a great number of cases, formulas (a), (b), (c) and (d) lead to some series of this nature.

VII.

We can easily extend the preceding analysis to double, triple, . . .integrals; for that,
we will consider the double integral

∫
y dx dx′, y being a function of x and of x′ which

contains some factors raised to some great powers. We suppose that the integral relative
to x must be taken from a function X of x to another function X′ of the same variable;
by making x′ =X+uX′, the integral

∫
y dx dx′ will be changed into

∫
yX′dx du,

the integral relative to u needing to be taken from u = 0 to u = 1. We can thus
therefore reduce the integral

∫
y dx dx′ to some limits constant and independent of the

variables which it contains; we will suppose consequently that it has this form and that
the integral relative to x is taken from x = θ to x = $, while the integral relative to x′

is taken from x′ = θ′ to x′ = $′. This put, by naming Y that which y becomes when
we change x and x′ into θ and θ′, we will make

y = Ye−t−t
′
;

by supposing next x = θ + u and x′ = θ′ + u′, we will reduce the function log Y
y to a

series ordered with respect to the powers of u and of u′, and we will have an equation
of this form

Mu+ M′u′ = t+ t′,

in which M is the part of the expansion of log Y
y which contains all the terms multiplied

by u, and M′ is the other part which contains the terms multiplied by u′ and which are
independent of u. We will divide the preceding equation into the two following

Mu = t, M′u′ = t′,
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whence we will deduce this, by the reversion of the series,

u = Nt, u′ = N′t′,

N being a series ordered with respect to the powers of t and of t′, and N′ being uniquely
ordered with respect to the powers of t′ and independently of t. These two series will
be very convergent if y contains some very elevated factors. Now we have

dx dx′ = du du′,

and it is easy to be assured that this last product is equal to ∂u
∂t

∂u′

∂t′ dt dt
′, that is ∂(Nt)

∂t
∂(N′t′)
∂t′ dt dt′,

therefore ∫
y dx dx′ = Y

∫
∂(Nt)
∂t

∂(N′t′)
∂t′

dt dt′e−t−t
′.

It will be easy to integrate the different terms of the second member of this equa-
tion, since the question is only of integrating the terms of this form

∫
tndt e−t or∫

t′ndt′ e−t
′
.

If we take the integral relative to t′ from t′ = 0 to t′ = ∞, and if we name Q the
result of the integration, we will have∫

y dx′ = YQ,

the integral being taken from x′ = θ′ to the value of x′ which agrees with t′ infinity;
if we change next, in Y and Q, θ′ into $′, and if we name Y′ and Q′ that which these
quantities then become, we will have∫

y dx′ = Y′Q′,

the integral being taken from x′ = $′ to the value of x′ which agrees with t′ infinite;
we will have therefore ∫

y dx = YQ− Y′Q′,

the integral relative to x′ being taken from x′ = θ′ to x′ = $′.
By naming R and R′ the integrals

∫
Qdt and

∫
Q′dt, taken from t = 0 to t = ∞,

we will have ∫
y dx dx′ = YR− Y′R′,

the integral relative to x′ being taken from x′ = θ′ to x′ = $′, and the integral
relative to x being taken from x = θ to the value of x which agrees with t infinity. If
in Y,R,Y′,R′ we change θ into $, and if we name Y1,R1,Y′1,R

′
1 that which these

quantities then become, we will have∫
y dx dx′ = Y1R1 − Y′1R′1,
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the integral relative to x′ being taken between the limits θ′ and $’, and the integral
relative to x being taken from x = $ to the value x which agrees with t = ∞;
therefore ∫

y dx dx′ = YR− Y′R′ − Y1R1 + Y′1R′1,

the integral relative to x being taken between the limits θ and $, and the integral rel-
ative to x′ being taken between the limits θ′ and $′. This formula corresponds to
formula (A) of No. I, which is relative only to a single variable. It has the same incon-
venience, that of not being able to be extended it to the intervals near the maximum of
y; it is necessary for these intervals to use a method analogous to that of No. II. Thus,
by supposing that, in the interval contained between θ and $, y becomes a maximum
and that the condition of the maximum makes only the first difference of y vanish, as
previously, y =Ye−t−t

′
, we will make

y = Ye−t
2−t′ ;

and if, in the interval contained between θ′ and $′, y becomes a maximum, we will
make

y = Ye−t
2−t′2 .

As we will have principally need in the following of the integral
∫
y dx dx′, taken

between the limits of x and x′ which renders y null, we are going to discuss this case
in a general manner.

We will consider the integral
∫
y dx dx′ dx′′ . . ., y being a function of r variables

x, x′, x′′, . . . which contain some factors raised to some great powers. If we name
a, a′, a′′, . . . the values of x, x′, x′′, . . . which correspond to the maximum of y, and
if we designate by Y this maximum, we will make

y = Ye−t
2−t′2−t′′2−···;

by supposing next

x = a+ θ, x′ = a′ + θ′, x′′ = a′′ + θ′′, . . . ,

we will substitute these values into the function log Y
y , and, by expanding it into a

series ordered with respect to the powers of θ, θ′, θ′′, . . . we will have an equation of
this form

Mθ2 + M′θ′2 + M′′θ′′2 + · · · = t2 + t′2 + t′′2 + · · · ,

M being the part of the expansion of log Y
y multiplied by θ2; M′ being the part of this

expansion multiplied by θ′2 and independent of θ; M′′ being the part multiplied by θ′′2

and independent of θ and of θ′, and thus the rest. We will divide this equation into the
following

Mθ2 = t2, M′θ′2 = t′2, M′′θ′′2 = t′′2, · · · ,

whence we will deduce that, by the reversion of the series,

θ = Nt, θ′ = N′t′, θ′′ = N′′t′′, . . . ,
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N being a series ordered with respect to the powers of t, t′, t′′, . . . ;N′ being a series
ordered with respect to the powers of t′, t′′, . . . ; N′′ being a series ordered with respect
to the powers of t′′, . . .. These series will be so much more convergent as the factors
of y will be raised to higher powers.

Now we have
dx dx′ dx′′ . . . = dθ dθ′ dθ′′ . . . ,

and it is easy to be assured that this last product is equal to

d(Nt)
dt

d(N′t′)
dt′

d(N′′t′′)
dt′′

· · · dt dt′ dt′′ . . . ;

therefore∫
y dx dx′ dx′′ . . . = Y

∫
d(Nt)
dt

d(N′t′)
dt′

d(N′′t′′)
dt′′

· · · dt dt′ dt′′ . . . e−t
2−t′2−t′′2−···,

the integrals relative to dt dt′ dt′′ . . .being taken from these variable equal to −∞ to
these variables equal to +∞. It will be easy to have the integrals of the different terms
of the second member of this equation by observing that we have generally∫

tnt′n
′
t′′n
′′
· · · dt dt′ dt′′ . . . e−t

2−t′2−t′′2−··· = 0,

when any one of the numbers n, n′, n′′, . . . is odd, and∫
t2it′2i

′
t′′2i

n′′

· · · dt dt′ dt′′ . . . e−t
2−t′2−t′′2−···

=
1.3.5 . . . (2i− 1).1.3.5 . . . (2i′ − 1).1.3.5 . . . (2i′′ − 1) . . . π

r
2

2i+i′+i′′+···

If the powers to which the factors of y are raised are very large, we will have very
nearly

M = −
∂2Y
∂x2

Y
, M′ = −

∂2Y
∂x′2

Y
, M′′ = −

∂2Y
∂x′′2

Y
, . . . ,

∂2Y
∂x2 ,

∂2Y
∂x′2 ,

∂2Y
∂x′′2 , . . . being that which ∂2y

∂x2 ,
∂2y
∂x′2 ,

∂2y
∂x′′2 , . . . become when we change

x, x′, x′′, . . . into a, a′, a′′, . . .. We will have thus very nearly

θ =
Y

1
2√
−∂2Y
∂x2

, θ′ =
Y

1
2√
− ∂2Y
∂x′2

, θ′′ =
Y

1
2√

− ∂2Y
∂x′′2

, . . . ,

whence we deduce this general theorem:
The integral

∫
y dx dx′ dx′′ . . ., taken between the consecutive values of x, x′, x′′, . . .

which render y null, is very nearly equal to

(−2π)
r
2 Y

r+2
2√

∂2Y
∂x2

∂2Y
∂x′2

∂2Y
∂x′′2 · · ·

if the factors of y are raised to great powers.
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ARTICLE II.
On integration by approximation with linear equations

to the finite and infinitesimal differences.

We will consider the equation linear in finite differences

(1) S = Ays + B4ys + C42ys + · · · ,

S being a function of s; A,B,C being some rational and entire functions of the same
variable, and the characteristic 4 being that of the finite differences, so that 4ys =
ys+1 − ys. Let

A = a+ a(1)s+ a(2)s2 + a(3)s3 + · · · ,
B = b+ b(1)s+ b(2)s2 + b(3)s3 + · · · ,
C = c+ c(1)s+ c(2)s2 + c(3)s3 + · · · ,
· · · ,

and we represent the value of ys by the integral
∫
e−sxφdx, φ being a function of x,

independent of s, and the integral being taken between some limits independently of
this variable; we will have

4ys =

∫
e−sx(e−x − 1)φdx,

42ys =

∫
e−sx(e−x − 1)2φdx,

· · ·

Moreover, if we designate e−sx by δy, we will have

se−sx = −d δy
dx

, s2e−sx = −d
2 δy

dx2
, s3e−sx = −d

3 δy

dx3
, . . . ;

equation (1) will become thus

S =

∫
φdx{δy[a+ b(e−x − 1) + c(e−x − 1)2 + · · · ]

− d δy

dx
[a(1) + b(1)(e−x − 1) + c(1)(e−x − 1)2 + · · · ]

+
d2 δy

dx2
[a(2) + b(2)(e−x − 1) + c(2)(e−x − 1)2 + · · · ]

+ · · · }.

If we represent ys by the integral
∫
xsφdx, we will have, by designating xs by δy,

sxs = x
d δy

dx
, s(s− 1)xs = x2

d2 δy

dx2
, . . . ;

we would have next

4ys =

∫
δy (x− 1)φdx, 42ys =

∫
δy (x− 1)2 φdx, . . .
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Hence, if in this case we put the values of A,B,C, . . . under this form

A = a+ a(1)s+ a(2)s(s− 1) + a(3)s(s− 1)(s− 2) + · · · ,
B = b+ b(1)s+ b(2)s(s− 1) + b(3)s(s− 1)(s− 2) + · · · ,
C = c+ c(1)s+ c(2)s(s− 1) + c(3)s(s− 1)(s− 2) + · · · ,
· · · ,

equation (1) will become

S =

∫
φdx{δy[a+ b(x− 1) + c(x− 1)2 + · · · ]

+ x
d δy

dx
[a(1) + b(1)(x− 1) + c(1)(x− 1)2 + · · · ]

+ x2
d2 δy

dx2
[a(2) + b(2)(x− 1) + c(2)(x− 1)2 + · · · ]

+ · · · }.

By representing generally ys by
∫
δy φ dx, the two preceding forms that equation (1)

takes under the suppositions of δy = e−sx and of δy = xs will be contained in the
following

S =

∫
φdx

(
M δy + N

d δy

dx
+ P

d2 δy

dx2
+ Q

d3 δy

dx3
+ · · ·

)
,

M,N,P,Q, . . . being functions of x independent of the variable s, which enters into
the second member of this equation only as far as δy and its differences are functions
of it.

Now, in order to satisfy it, we will integrate by parts its different terms; now we
have ∫

Nφdx
d δy

dx
= δyNφ−

∫
δy
d(Nφ)

dx
dx,∫

Pφdx
d2 δy

dx2
=
d δy

dx
Pφ− δy d(Pφ)

dx
−
∫
δy
d2(Pφ)

dx2
dx,

· · ·
The preceding equation becomes thus

S =

∫
δy dx

[
Mφ− d(Nφ)

dx
+
d2(Pφ)

dx2
+
d3(Qφ)

dx3
+ · · ·

]
+ C + δy

[
Nφ− d(Pφ)

dx
+
d2(Qφ)

dx2
+ · · ·

]
+
d δy

dx

[
Pφ− d(Qφ)

dx
+ · · ·

]
+
d2 δy

dx2
[Qφ− · · · ]

+ · · ·
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C being an arbitrary constant.
Since the function φ must be independent of s and, consequently, of δy, we must

separately equate to zero the part of this equation affected by the
∫

sign, that which
produces the following two equations:

(2) 0 = Mφ− d(Nφ)

dx
+
d2(Pφ)

dx2
+
d3(Qφ)

dx3
+ · · · ,

(3)



S = C + δy

[
Nφ− d(Pφ)

dx
+
d2(Qφ)

dx2
+ · · ·

]
+
d δy

dx

[
Pφ− d(Qφ)

dx
+ · · ·

]
+
d2 δy

dx2
[Qφ− · · · ]

+ · · ·

The first equation serves to determine the function φ, and the second determines the
limits in which the integral

∫
δyφ dx must be contained.

We can observe here that equation (2) is the equation of condition which must hold
in order that the differentiable function

φdx

(
M δy + N

d δy

dx
+ P

d2 δy

dx2
+ · · ·

)
is an exact difference, whatever be δy, and, in this case, the integral of this function is
equal to the second member of equation (3); φ is therefore the factor in x alone which
must multiply the equation

0 = M δy + N
d δy

dx
+ P

d2 δy

dx2
+ · · ·

in order to render it integrable. If φ were known, we could lower this equation by
a degree, and reciprocally; if this equation were lowered by a degree, the coefficient
of δy, in its differential, divided by Mdx, would give a value of φ; this equation and
equation (2) are consequently linked between them, in a manner that the integral of one
of the two gives the integral of the other.

IX.

We will consider particularly equation (3), and we make first S= 0; if we suppose
that δy, d δydx , d

2 δy
dx2 ,. . . become null, by means of one same value of x, which we will

designate by h, and which is independent of s, it is clear that by supposing C= 0
this value will satisfy equation (3), and that thus it will be one of the limits between
which we must take the integral

∫
δyφ dx. The preceding supposition holds clearly in

the two cases of δy = xs and of δy = e−sx; because, in the first case, the equation
x = 0, and, in the second case, the equation x = ∞, render null the quantities δy,
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d δy
dx , d2 δy

dx2 ,. . .. In order to have some other limits of the integral
∫
δyφ dx, we will

observe that, these limits needing to be independent of s, by the preceding section, it
is necessary, in equation (3), to equate separately to zero the coefficients of δy, d δydx ,
d2 δy
dx2 ,. . ., that which gives the following equations:

0 = Nφ− d(Pφ)

dx
+
d2(Qφ)

dx2
− · · ·

0 = Pφ− d(Qφ)

dx
+ · · ·

0 = Qφ− · · ·
· · ·

These equations will be in number i if i is the order of the differential equation (2);
we can therefore eliminate, by their means, all the arbitrary constants of the value
of φ, less one, and we will have a final equation in x, of which the roots will be as
many as limits of the integral

∫
δyφ dx; we will seek, by means of this equation, a

number of different values of x, equal to the degree of the differential equation (1). Let
q, q(1), q(2), . . . be these values, they will give as many different values of φ, since
the arbitrary constants of φ, less one, are determined by functions of these values. We
can thus represent the values of φ, corresponding to the limits q, q(1), q(2), . . ., by
Bλ,B(1)λ(1),B(2)λ(2), . . . ; B,B(1), B(2), . . . being some arbitrary constants, and we
will have for the complete value of ys

ys = B
∫
δyλ dx+ B(1)

∫
δyλ(1)dx+ B(2)

∫
δyλ(2) dx+ · · · ,

the integral of the first term being taken from x = h to x = q, that of the second
term being taken from x = h to x = q(1), that of the third term being taken from
x = h to x = q(2),. . ., and thus the rest. We will determine the arbitrary constants
B,B(1), B(2), . . . by means of as many particular values of ys.

X.

We suppose now that in equation (3) S is not null; if we take the integral
∫
δyφ dx

from x = h to x equal to any quantity p, it is clear that we will have C= 0 and that S
will be that which the function

δy

[
Nφ− d(Pφ)

dx
+ · · ·

]
+
d δy

dx
(Pφ− · · · ) + · · ·

becomes when we change x into p; thus, for the success of the preceding method, it is
necessary that S be the form of this function. We suppose, for example, δy = xs, and

S = ps[l + l(1)s+ l(2)s(s− 1) + l(3)s(s− 1)(s− 2) + · · · ];

by comparing this value of S to the preceding, we will have

l = Nφ− d(Pφ)

dx
+ · · · ,

l(1)p = Pφ− · · · ,
· · · ,

23



x needing to be changed into p in the second members of these equations of which the
number is equal to the degree of the differential equation (2): we can therefore, by their
means, determine all the arbitrary constants of the value of φ; and, if we designate by
ψ that which φ becomes when we have thus determined its arbitrary constants, we will
have

ys =

∫
xsψ dx.

Thence, and because equation (1) is linear, it is easy to conclude that, if S is equal
to

ps[l + l(1)s+ l(2)s(s− 1) + l(3)s(s− 1)(s− 2) + · · · ]

+ ps1[l1 + l
(1)
1 s+ l

(2)
1 s(s− 1) + l

(3)
1 s(s− 1)(s− 2) + · · · ]

+ ps2[l2 + l
(1)
2 s+ l

(2)
2 s(s− 1) + l

(3)
2 s(s− 1)(s− 2) + · · · ]

+ · · ·

by namingψ1, ψ2, . . . that whichψ becomes when we change successively p, l, l(1), . . .
into p1, l1, l

(1)
1 , . . . , p2, l2, l

(1)
2 , . . . , we will have

ys =

∫
xs ψ dx+

∫
xs ψ1 dx+

∫
xs ψ2 dx+ · · · ,

the first integral being taken from x = 0 to x = p, the second integral being taken from
x = 0 to x = p1, etc. This value of ys, contains no arbitrary constant; but, by joining
it to that which we just found in the preceding section, for the case of S= 0, we will
have for the complete expression of ys

(4)


ys = B

∫
xs λ dx+ B(1)

∫
xs λ(1) dx+ B(2)

∫
xs λ(2) dx+ · · ·

+

∫
xs ψ dx+

∫
xs ψ1 dx+

∫
xs ψ2 dx+ · · ·

It will be easy, by the methods of No. VI, to have in convergent series the different
terms of this expression when s will be a large number.

XI.

In order to determine the function ys of s, that we arrive thus to reduce to a conver-
gent series, we return to equation (1) of No. VIII and we suppose that it is differential
of order n; if we designate by us, 1us,

2us, . . . the n particular values which satisfy
it, when we make S= 0, so that its complete integral is then

ys = Hus + 1H 1us + 2H 2us + · · ·+ n−1Hn−1us;
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if we form next the following quantities

u1s = us4
1us−1

us−1
,

1u1s = us4
2us−1

us−1
,

2u1s = us4
3us−1

us−1
,

· · · ,

u2s = u1s4
1u1s−1
u1s−1

,

1u2s = u1s4
2u1s−1
u1s−1

,

2u2s = u1s4
3u1s−1
u1s−1

,

· · · ,

u3s = u2s4
1u2s−1
u2s−1

,

· · · ;

by continuing thus to that which we arrive to form un−1s , let

un−1s =
1

n−1zx−n
,

and we name 1
n−2ux−n

, 1
n−3ux−n

, . . . that which un−1s becomes when we change
n−1us successively into n−2us, n−3us, . . . and reciprocally; finally we designate by
L the coefficient of 4nys in equation (1). The complete integral of this equation will
be, as I have shown moreover (Vol. VII of the Mémoires des Savants étranges, p. 562)

ys = us

(
H +

∑ S
L
zx

)
+ 1us

(
H +

∑ S
L

1zx

)
+· · ·+n−1us

(
H +

∑ S
L
n−1zx

)
,

the characteristic Σ being that of finite integrals; we can therefore always reduce to
convergent series all the functions of this nature, provided that S has the form which
we have assigned to it in the preceding section.

XII.

We will consider generally the case where we have any number of equations linear
in the finite differences, among a like number of variables ys, y′s, y

′′
s , . . ., and of which

2“Recherches sur l’intégration des équations différentelles aux différences finies, et sur leur usage dans
la théorie des hasards.” Oeuvres de Laplace, T. VIII, p. 87.
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the coefficients are some rational and entire functions of s. If we suppose

ys =

∫
xsφdx,

y′s =

∫
xsφ′ dx,

y′′s =

∫
xsφ′′ dx,

· · · ,

these different integrals being all extended into the same limits independent of s, we
will have

4ys =

∫
xs(x− 1)φdx,

42ys =

∫
xs(x− 1)2φdx,

· · · ,

4y′s =

∫
xs(x− 1)φ′ dx,

42y′s =

∫
xs(x− 1)2φ′ dx,

· · · ,

We can therefore put the equations of which there is concern under the following forms

S =

∫
xsz dx,

S′ =

∫
xsz′ dx,

S′′ =

∫
xsz′′ dx,

· · · ,

S,S′,S′′, . . . being functions of s, and z, z′, z′′, . . . being some rational and entire func-
tions of the same variable, and of x, φ, φ′, φ′′, . . ., in which φ, φ′, φ′′, . . .are under a
linear form.

We will consider first the equation

S =

∫
xsz dx;

we have

z = Z + s4Z +
s(s− 1)

1.2
42Z +

s(s− 1)(s− 2)

1.2.3
43Z + · · · ,
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Z, 4Z, 42Z, . . . being that which z, 4z, 42z, . . . become when we suppose s = 0
in it. Hence, we will have

S =

∫
xsdx

[
Z + s4Z +

s(s− 1)

1.2
42Z + · · ·

]
.

Now, if we make xs = δy, we will have

sxs = x
d δy

dx
, s(s− 1)xs = x2

d2 δy

dx2
, . . .

The preceding equation will become thus

S =

∫
dx

(
Z δy + x4Z

d δy

dx
+
x242Z

1.2

d2 δy

dx2
+ · · ·

)
,

whence we deduce, by integrating by parts as in No. VIII, the following two equations:

(a) 0 = Z− d(x4Z)

dx
+
d2(x242Z)

1.2 dx2
− · · · ,

(b)



S = C + δy

[
x4Z− d(x242Z)

1.2 dx
+
d2(x343Z)

1.2.3 dx
+ · · ·

]
+
d δy

dx

[
x242Z

1.2
− d(x343Z)

1.2.3 dx
+ · · ·

]
+
d2 δy

dx2

(
x343Z
1.2.3

− · · ·
)

+ · · ·

The equation

S′ =

∫
xs z′ dx,

treated in the same manner, will give the following two:

(a′) 0 = Z′ − d(x4Z′)
dx

+
d2(x242Z′)

1.2 dx2
− · · · ,

(b′)


S′ = C′ + δy

[
x4Z′ − d(x242Z′)

1.2 dx
+ · · ·

]
+
d δy

dx

(
x242Z′

1.2
− · · ·

)
+ · · ·

The equations

S′′ =

∫
xs z′′ dx, S′′′ =

∫
xs z′′′ dx, . . .
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will produce some similar equations which we will designate by (a′′), (b′′), (a′′′), (b′′′),
. . .

Equations (a), (a′), (a′′), . . .will determine the variables φ, φ′, φ′′, . . . in x, and the
equations (b), (b′), (b′′), . . .will determine the limits in which we must take the integrals∫
xsφdx,

∫
xsφ′ dx, . . .. For this, we will suppose first S,S′,S′′, . . . nulls; by making

next C,C′,C′′, . . . nulls in equations (b), (b′), (b′′), . . .and by equating separately to
zero the coefficients of δy, d δydx , . . . in these equations, we will have the following:

0 = x4Z− d(x242Z)

1.2 dx
+ · · · ,

0 =
x242Z

1.2
− · · · ,

· · · ,

0 = x4Z′ − d(x242Z′)
1.2 dx

+ · · · ,

0 =
x242Z′

1.2
− · · · ,

· · · ,

We will eliminate by means of these equations all the arbitrary constants, less one, of
the values of φ, φ′, φ′′, . . . and we will arrive to one final equation in x of which the
roots are the limits of the integrals

∫
xsφdx,

∫
xsφ′ dx, . . .; we will determine as many

of these limits as it will be necessary in order that the values of ys, y′s, . . . are complete.
We suppose now that S is not null and that it is equal to

ps[l + l(1)s+ l(2)s(s− 1) + · · · ];

by making C= 0 in equation (b) and by putting xs in the place of δy, we will have

ps[l + l(1)s+ l(2)s(s− 1) + · · · ]

= xs
[
x4Z− d(x242Z)

1.2 dx
+ · · ·

]
+ sxs

(
x242Z

1.2
− · · ·

)
+ · · · ,

whence we deduce first x = p, so that the integrals
∫
xsφdx,

∫
xsφ′ dx, . . . must be

taken from x = 0 to x = p. The comparison of the coefficients of s, s(s− 1), . . . will
give as many equations among the arbitrary constants of the values of φ, φ′, φ′′, . . .;
the equality to zero of these same coefficients in equations (b′), (b′′), . . . will give some
new equations among these arbitraries, which we can consequently determine by means
of all these equations. We will have thus the particular values of ys, which satisfy in
the case where, S′,S′′, . . .being nulls, S has the form which we just supposed to it, or,
more generally, is equal to any number of functions of the same form. Similarly, if we
suppose that S,S′′, . . .being nulls, S′ is the sum of any number of similar functions,
we will determine the particular values of ys, y′s, y

′′
s , . . . which they satisfy in this case,

and thus the rest. By joining next all these values to those which we have determined in
the case where S,S′,S′′, . . . are zero, we will have the complete expressions of these
variables corresponding to the case where S,S′,S′′ have the preceding form.
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XIII.

It is easy to extend the method of the preceding section to the equations linear in
infinitely small differences, or in finite parts, and in infinitely small parts and in which
the coefficients of the principal variables are some rational and entire functions of s;
because, if we designate, as previously, by ys, y′s, y

′′
s , . . . these principal values, we

will make

ys =

∫
xsφdx, y′s =

∫
xsφ′ dx, y′′s =

∫
xsφ′′ dx, . . . ,

that which gives

dys
ds

=

∫
xsφdx log x,

d2ys
ds2

=

∫
xsφdx (log x)2, . . . ,

4ys =

∫
xs(x− 1)φdx, 42ys =

∫
xs(x− 1)2φdx, . . . ,

. . . , . . . , . . . ,

dy′s
ds

=

∫
xsφ′ dx log x, . . . , . . . ,

. . . , . . . , . . . ,

The proposed equations will take thus the following forms

S =

∫
xsz dx, S′ =

∫
xsz′ dx, S′′ =

∫
xsz′′ dx, . . . ,

z, z′, z′′, . . . being some rational functions of s, in which φ, φ′, φ′′, . . . are under a
linear form. By treating them therefore as in the preceding section, we will determine
the values of φ, φ′, φ′′, . . . and the limits of the integrals

∫
xsφ dx,

∫
xsφ′ dx, . . ..

Thus the method exhibited in this section extends to all the linear differential equations
of which the coefficients are rationals.

By making ys =
∫
e−sxφdx, y′s =

∫
e−sxφ′ dx, . . ., we would arrive to some

similar results. In many circumstances, these forms of ys, y′s, . . . will be more suitable
than the previous.

XIV.

The principal difficulty which the application of the preceding method presents
consists in the integration of the linear differential equations which determine φ, φ′, φ′′, . . .
in x. The degree of these equations depends not at all on that of the proposed equations
in ys, y′s, y

′′
s , . . .: it depends uniquely on the highest powers of s in their coefficients.

Thus, relatively to the finite differential equation of the first order,

0 = Ays + B4ys,

in which A and B are some rational and entire functions of s, if we suppose ys =∫
xsφdx,and if we determine by No. VIII the value of φ in x, we will arrive to a

differential equation of an order equal to the highest exponent of s in A and B.
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We can, in this particular case, prevent this inconvenience by decomposing the
proposed equation into finite differences. For it to happen, we will put it under this
form

ys+1 =
q(s+ a)(s+ a′)(s+ a′′) · · ·
(s+ b)(s+ b′)(s+ b′′) · · ·

ys.

If we suppose next

zs+1 = q(s+ a)zs, z′s+1 = q(s+ a′)z′s, z′′s+1 = q(s+ a′′)z′′s , . . . ,

ts+1 = q(s+ b)ts, t′s+1 = q(s+ b′)t′s, t′′s+1 = q(s+ a′′)t′′s , . . . ,

we will have

ys =
zsz
′
sz
′′
s · · ·

tst′st
′′
s · · ·

.

It will be easy to have zs, z′s, z
′′
s ,. . .,ts, t′s, t

′′
s , . . . in convergent series, and we will have

need for that only to integrate the equations linear in the infinitely small differences of
the first order. Every time that we can decompose thus a proposed equation into other
linear equations, in which the variable s will not pass the first degree, we will have
always in convergent series the value of its integral, if s is a large number.

In many cases where we are led to a differential equation in φ, of an order superior
to the first, we can make use of multiple integrals by representing ys by the double
integral

∫
xsx′sφdx dx′, in which φ is a function of x and of x′, or by the triple integral∫

xsx′sx′′sφdx dx′ dx′′, φ being a function of x, x′, x′′, and thus in sequence. We
will arrive often to determine φ directly or by an equation of the first order; we will see
some examples in the following article.

XV.

The case in which the equation which determines the value of φ is differential of
the first order being the only one which is generally solvable, we are going to develop
it here by applying directly the method of approximation of article I.

We suppose that we have a linear equation of any order in finite or infinitely small
differences, or in finite parts and in infinitely small parts, in the coefficients of which
the variable s does not pass the first degree; this equation will have the following form

0 = V + sT,

V and T being some linear functions in the principal variable ys and of its differences.
If we make ys =

∫
δy φ dx, δy being equal to xs or to e−sx, it will become

0 =

∫
φdx

(
M + N

d δy

dx

)
,

M and N being some functions of x; we will have therefore, by the method of No. VIII,
the two equations

0 = Mφ− d(Nφ)

dx
,

0 = C + δyNφ.
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The first gives, by integrating it,

φ =
H
N
e
∫ M

N dx,

H being an arbitrary constant. We suppose, in the second equation, C= 0; if we desig-
nate by a the value of x given by the equation

0 = d(Nφ δy),

and by Q that which the function Nφ δy becomes when we change x into a in it, we
will make

Nφ δy = Qe−t
2

;

we will have thus
t =

√
log Q− log(Nφ)− log δy

log δy being of order s, if we make 1
s = α, α being a very small coefficient, the

quantity under the radical will take this form (x−a)2
α X, X being a function of x−a; we

will have therefore, by the reversion of the series, the value of x in t by a series of this
form

x = a+ α
1
2ht+ αh(1)t2 + α

3
2h(2)t3 + · · ·

Now, ys being equal to
∫
δy φ dx, if we substitute into this integral in the place of

δy φ its value Qe−t
2

N , it will become Q
∫
dx
N e
−t2 , and if in dx

N we put in the place of x
its preceding value in t, we will have ys by a series of this form

ys = α
1
2 Q
∫
dt e−t

2
(
l + α

1
2 l(1)t+ αl(2)t2 + α

3
2 l(3)t3 + · · ·

)
.

The limits of the integral relative to tmust be determined by this condition, that at these
limits the quantity Nφ δy or its equivalent Qe−t

2

is null; whence it follows that these
limits are t = −∞ and t =∞. We will have therefore, by article I,

ys = α
1
2 Q
√
π

(
l +

1

2
αl(2) +

1.3

22
α2l(4) +

1.3.5

23
α3l(6) + · · ·

)
.

This expression has the advantage of being independent of the determination of the
limits in x which render null the function Nφ δy, so that it would subsist always in
the same case where this function equated to zero will not have many real roots. This
remark is important in this analysis and gives the means to extend it to a great number
of cases in which it seems first to be refused.

The preceding value of ys contains only one arbitrary constant H, and consequently,
if the proposed equation is differentiable of order n, it will be only one particular value
of it. In order to have the complete integral, it will be necessary to seek n different
values of x in the equation

0 = d(Nφ δy).

Let a, a′, a′′, . . . be these n values; we will change successively, in the preceding ex-
pression of ys, a to a′, a′′,. . . and H to H′,H′′, . . .; we will have thus n particular values
of ys, which will contain each an arbitrary constant; their sum will be the complete ex-
pression of this variable.
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XVI.

We can obtain directly by the preceding method the value of ys in the differential
equation 0 =V+sT, by means of definite integrals; in order to show by a very general
example, we will consider the differential equation

0 = (a+ bs)ys + (a′ + b′s)
dys
ds

+ (a′′ + b′′s)
d2ys
ds2

+ (a′′′ + b′′′s)
d3ys
ds3

+ · · · ;

if we suppose

ys =

∫
δy φ dx,

δy being equal to e−sx, we will have

0 =

∫
φdx[δy(a− a′x+ a ′′x2 − a′′′x3 + · · · )

− d δy

dx
(b− b′x+ b′′x2 − · · · )],

whence we deduce the two equations

0 = φ(a− a′x+ a ′′x2 − a′′′x3 + · · · ) +
d[φ(b− b′x+ b′′x2 − · · · )]

dx
,

0 = e−sxφ(b− b′x+ b′′x2 − · · · ).

We decompose the function b− b′x+ b′′x2 − · · · into its factors, and we suppose that
it is equal to

b(1− qx)(1− q′x)(1− q′′x) · · · ,
the first equation will give for φ an expression of this form

φ = Helx(1− qx)r(1− q′x)r
′
(1− q′′x)r

′′
· · · ,

H being an arbitrary constant; hence

ys = H
∫
e−(s−l)xdx(1− qx)r(1− q′x)r

′
(1− q′′x)r

′′
· · · ;

and the equation which will determine the limits of the integral will be

0 = e−(s−l)x(1− qx)r+1(1− q′x)r
′+1(1− q′′x)r

′′+1 · · ·

These limits will be consequently x = 1
q and x = ∞, or x = 1

q′ and x = ∞, etc., so
that the complete expression of ys will be

ys =H
∫
e−(s−l)xdx(1− qx)r(1− q′x)r

′
(1− q′′x)r

′′
· · ·

+ H′
∫
e−(s−l)xdx(1− qx)r(1− q′x)r

′
(1− q′′x)r

′′
· · ·

+ H′′
∫
e−(s−l)xdx(1− qx)r(1− q′x)r

′
(1− q′′x)r

′′
· · ·

+ · · ·

32



the first integral being taken from x = 1
q to x = ∞; the second integral being taken

from x = 1
q′ to x = ∞; the third being taken from x = 1

q′′ to x = ∞, and thus in
sequence, H,H′,H′′, . . . being some arbitrary constants.

It can happen that the numbers s − l, r + 1, r′ + 1, . . . are negatives and, in this
case, the equation

0 = e−(s−l)x(1− qx)r+1(1− q′x)r
′+1 · · ·

is not satisfied by making x =∞, x− 1
q , x = 1

q′ ,. . .; but we can observe that the results
obtained under the assumption where these numbers are positive take place equally
when these numbers are negative. Thus, by designating by S the integral, either finite,
or reduced to a series, by the method of article I, of the differential function

e−(s−l)xdx(1− qx)r(1− q′x)r
′
· · · ,

integrated from x = 1
q to x = ∞ in the case where s − l and r are positives, if we

change, in S, r into −r, and if we designate by S′ that which S becomes, the function
HS′ will be a particular value of ys in the case where the number r, instead of being
positive, is negative and equal to −r; because it is clear that the equation ys =HS,
satisfying the proposed equation, r being positive and anything, the equation ys =HS′

must similarly satisfy it, r being negative and anything. Thus, we will not hesitate at
all in the series to extend generally to all possible cases the results obtained in the case
where the equation which determines the limits of the integrals is satisfied.

It is easy to extend the preceding method to the equation in finite differences

0 = (a+ bs)ys + (a′ + b′s)4ys + (a′′ + b′′s)42ys + · · ·

or to the equation in the differences in finite parts and in infinitely small parts,

0 = (a+ bs)ys + (a′ + b′s)4ys + (a′′′ + b′′′s)42ys + · · ·

+(a′′ + b′′s)
dys
ds

+ (aiv + bivs)4dys
ds

+ · · ·

+ · · ·

We can always obtain, by the preceding method, the integral of these equations by defi-
nite integrals, and its approximate value by some series which will be highly convergent
when s will be a large number.

XVII.

The same method can be further extended to the equations linear in the partial dif-
ferentials, either finite, or infinitely small. For this, we will consider first the equation
linear in the partial differences of which the coefficients are constants; by designating
by ys,s′ the principal variable, s, s′ being the two variables of which it is a function,
we can represent this equation by this one 0 =V,V being a linear function of ys,s′ and
of its partial differences, either finite, or infinitely small. We suppose now

ys,s′ =

∫
xsus

′
φdx;
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by substituting this value into the preceding equation, it will become

0 =

∫
Mxsus

′
φdx,

M being a function of x and of u, with neither s nor s′; by equating it to zero, we will
have the value of u in x, and this value, substituted into the integral

∫
xsus

′
φdx, will

give the general expression of ys,s′ , φ being an arbitrary function of x, and the limits
of the integral being indeterminate. If the proposed equation 0 =V is of order n, it will
be necessary, by means of the equation M= 0, to determine n values of u in x, and
the sum of the n integrals

∫
xsus

′
φdx which will result from it will be the complete

expression of ys,s′ .
We will consider presently the equation in the partial differences

0 = V + sT + s′R,

in which V,T,R are some linear functions any whatsoever of ys,s′ and of its finite and
infinitely small partial differences. If we suppose

ys,s′ =

∫
xsx′s

′
φdx,

x′ being a function of x which the concern is to determine, we will have an equation in
this form

0 =

∫
xsx′s

′
φdx(M + Ns+ Ps′),

M,N,P being some functions of x and x′, with neither s nor s′; now we have

d(xsx′s
′
)

dx
= xsx′s

′
(
s

x
+
s′dx′

x′dx

)
.

Therefore, if we determine x′ by this equation

dx′

x′
=

P dx
Nx

,

we will have

xsx′s
′
(Ns+ Ps′) = Nx

d(xsx′s
′
)

dx
;

consequently, if we designate xsx′s
′
by δy, we will have

0 =

∫
φdx

(
M δy + Nx

d δy

dx

)
.

This equation gives the following two

0 = Mφ− d(Nxφ)

dx
,

0 = Nxφ δy;
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the first determines the function φ in x, and the second determines the limits of the
integral

∫
δy φ dx. This value of ys,s′ contains no arbitrary function at all, it is only

a particular integral of the proposed equation in the partial differences; in order to
render it complete, we will observe that the integral of the equation dx′

x′ = Pdx
Nx , which

determine x′ in x, is
x′ = uQ,

Q being a function of x and u being an arbitrary constant. By designating therefore by
ψ an arbitrary function of u, we will have

ys,s′ =

∫∫
us
′
Qs
′
xsφψ dx du,

the integral relative to x being taken between the limits determined by the equation
0 =Nxφδy, and the integral relative to u being taken between some limits any whatso-
ever. This value of ys,s′ will be, because of the arbitrary ψ, the complete integral of the
proposed equation if this equation is of first order; but, if it is of a superior order, it will
be necessary, by means of the equation 0 =Nxφδy, to determine as many values of x
in u as there are units in that order; and the sum of the expressions of ys,s′ to which we
will arrive will be the complete value of ys,s′ .

XVIII.

By considering with attention the form of the series in which the preceding method
leads in order to determine ys,s′ , we see that it can always be reduced to the following

Hpssis+r
(

1 +
q

sr′
+

q′

sr′′
+ · · ·

)
,

H being an arbitrary constant and the numbers r′, r′′, . . . being positives and forming
an increasing series. If the proposed equation in ys is in infinitely small differences,
then i = 0, since, without this, the differences of ys would introduce the logarithmic
quantities log s, (log s)2, . . ., which, by assumption, are encountered not at all in the
coefficients of this equation; we will have therefore then

ys = Hpssr
(

1 +
q

sr′
+

q′

sr′′
+ · · ·

)
,

and it will be easy, by known methods, to determine the exponents r, r′, r′′, . . . and
the constants p, q, p′, q′, . . .

If the proposed equation in ys is in finite differences, i can not be null, and the deter-
mination of the quantities r, r′, r′′, . . .; p, q, q′, . . . can then present some difficulties
which we are going to resolve.

For this, we will observe that

log(s+ n)is+in+r = (is+ in+ r)
[
log s+ log

(
1 +

n

s

)]
= (is+ in+ r)

(
log s+

n

s
− n2

2s2
+

n3

3s3
− · · ·

)
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that which gives

(s+ n)is+in+r = sis+in+rein+
in2+2rn

2s +···.

We can put the second member of this equation under this form

sis+in+rein
(

1 +
an
s

+
bn
s2

+ · · ·
)
,

an, bn, . . . being some functions of n; we will have therefore

ys+n = Hps+nsis+in+rein
(

1 +
an
s

+
bn
s2

+ · · ·
)[

1 +
q

sr′

(
1− s

r′n
+ · · ·

)
+
q′

sr′′

(
1− s

r′′n
+ · · ·

)
+ · · ·

]
,

whence it is easy to conclude the values of ys+1, ys+2, ys+3, . . ., by making succes-
sively in this expression n = 1, n = 2, n = 3, . . .. Now, if we substitute these values
into the proposed equation in finite differences, we will determine easily by the known
methods the exponents i, r, r′, . . . and the constants p, q, q′, . . ..

This new method has the advantage of being independent of all integration and of
being extended to the case where the coefficients of the proposed equation in ys would
be irrational; but the arbitrary constants H,H′, . . . which we introduce can be deter-
mined then only by means of given values of ys, when s is already a large number,
instead that, following the method exhibited in the preceding sections, these constants
can be determined by means of the first values of ys, that which gives the means to
know that which this function becomes when s is very great or even infinite, by sup-
posing that it has begun in a determined manner; it is in this that the principal advantage
of this method consists.

ARTICLE III.
Application of the preceding method to the approximation

of diverse functions of very great numbers.

XIX.

We propose to integrate by approximation the equation in finite differences

0 = (s+ 1)ys − ys+1.

If we suppose

ys =

∫
xsφdx,

we will have, by designating xs by δy,

0 =

∫
φdx

[
(1− x)δy + x

d δy

dx

]
,
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whence we deduce, by the preceding article, the following two equations:

0 = φ(1− x)− d(xφ)

dx
,

0 = φxs+1.

The first equation gives, by integrating it,

φ = Ae−x,

and the second gives, in order to determine the limits of the integral
∫
xsφdx,

0 = xs+1e−x;

these limits are, consequently, x = 0 and x =∞. Thus we have

ys = A
∫
xse−xdx,

the integral being taken from x = 0 to x =∞.
In order to have this integral in a series, we make, following the method of article

I,
xse−x = sse−se−t

2

,

s being the value of x which corresponds to the maximum of the function xse−x; if we
suppose next x = s+ θ, we will have(

1 +
θ

s

)s
e−θ = e−t

2

,

hence

t2 = −s log

(
1 +

θ

s

)
+ θ =

θ2

2s
− θ3

3s2
+

θ4

4s3
− · · · ,

that which gives, by the reversion of the series,

θ = t
√

2s+
2t2

3
+

t3

9
√

2s
+ · · ·

and, consequently,

dx = dθ = dt

(√
2s+

4t

3
+

t2

3
√

2s
+ · · ·

)
;

the function
∫
xs dx e−x will become therefore

sse−s
∫
dte−t

2

(√
2s+

4t

3
+

t2

3
√

2s
+ · · ·

)
,

the integral being taken from t = −∞ to t = ∞. By integrating by the method of
article I, we will have∫

xs dx e−x = ss+
1
2 e−s

√
2π

(
1 +

1

12s
+ · · ·

)
,
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hence

ys = Ass+
1
2 e−s

√
2π

(
1 +

1

12s
+ · · ·

)
.

We will determine the arbitrary constant A by means of a particular value of ys; by
supposing, for example, that, s being equal to µ, we have ys =Y, we will have

Y = A
∫
xµ dx e−x,

that which gives

A =
Y∫

xµ dx e−x

and, consequently,

(q) ys = Y
ss+

1
2 e−s

√
2π
(
1 + 1

12s + · · ·
)∫

xµ dx e−x
;

if µ is a large number, we will have∫
xµ dx e−x = µµ+

1
2 e−µ

√
2π

(
1 +

1

12s
+ · · ·

)
,

that which gives

(q′) ys = Y
ss+

1
2

µµ+
1
2

eµ−s
(

1 +
µ− s
12µs

+ · · ·
)

;

thus, in this case, the ratio of the semi-circumference to the radius disappears, and there
remains only the sole transcendental quantity e.

Let us see now of what nature is the function ys; for this it is necessary to integrate
the equation in finite differences

0 = (s+ 1)ys − ys+1;

now we will find easily that its integral is

ys = Y(µ+ 1)(µ+ 2)(µ+ 3) · · · s.

We will have therefore, by comparing this expression with that of formula (q),

(q′′) (µ+ 1)(µ+ 2)(µ+ 3) · · · s =
ss+

1
2 e−s

√
2π
(
1 + 1

12s + · · ·
)∫

xµ dx e−x
.

If we suppose µ = 0, we will have∫
xµ dx e−x = 1,
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hence

1.2.3 . . . s = ss+
1
2 e−s

√
2π

(
1 +

1

12s
+ · · ·

)
.

If we make µ = m
n , m being less than n, we will have

s = s′ +
m

n
,

s′ being a whole number; thus

ss+
1
2 =

(
s′ +

m

n

)s′+m
n + 1

2

;

now it is easy to assure ourselves by the preceding number that, if s′ is a large number,
we have (

s′ +
m

n

)s′+m
n + 1

2

= s′s
′+m

n + 1
2 e

m
n

(
1 +

nm+m2

2n2s′
+ · · ·

)
.

We have moreover, by making x = tn,∫
x
m
n dx e−x = n

∫
tm+n−1dt e−t

n

= m

∫
tm−1dt e−t

n

,

the integral relative to t being taken from t = 0 to t = ∞; the formula (q′′) will give
therefore

m(m+ n)(m+ 2n)(m+ 3n) · · · (m+ s′n)

= ns
′ s
′s′+m

n + 1
2 e−s

′√
2π
(

1 + n2+6mn+6m2

12n2s′ + · · ·
)

∫
tm−1dt e−tn

so that the approximate value of the product of all the terms of the arithmetic progres-
sion m, m + n,m + 2n, . . . ,m + s′n depend on the three transcendentals e, π and∫
tm−1dt e−t

n

.

XX.

The expressions of ys, given by formulas (q) and (q′), hold further, according to
the remark of No. XVI, in the case where s and µ are negatives, although, in this case,
the equation 0 = xs+1e−x, which determines the limits of the integral

∫
xsφdx, does

not have many real roots; we can be assured of it moreover by supposing the function
xs+1e−x, which must become null at the two extremities of this integral, equal to
Qe−t

2

, according to the method of No. XV, because then we would arrive at some
expressions of ys easily reducible to formulas (q) and (q′), and we have observed in
the section cited that, by following this method, the consideration of the roots of the
equation 0 = xs+1e−x becomes useless.

Now, if in formula (q) we change s into −s and µ into −µ, we will have

y−s = Y

√
−1es

√
2π
(
1− 1

12s + · · ·
)

(−1)sss−
1
2

∫
dx e−x

xµ

,
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Y being the value of ys which corresponds to s = −µ; all the difficulty is reduced
therefore to integrating the differential function e−xdx

xµ . In order to arrive to it, it is
necessary to follow a method similar to that of which we have made use to reduce into
series the integral

∫
dx e−x

xs . We will make therefore

x = −µ+$
√
−1,

−µ being the value of x given by the condition 0 = d e
−x

xµ of the maximum or of the
minimum of e

−x

xµ ; we will have thus∫
e−xdx

xµ
=
eµ
√
−1

(−1)µ

∫
d$e−$

√
−1

(µ−$
√
−1)µ

.

The integral relative to x must extend between the two limits which return null the
quantity e−x

xµ , it is clear that the integral relative to $ must extend from $ = −∞ to

$ = ∞: by joining therefore the two quantities e−$
√
−1

(µ−$
√
−1)µ and e$

√
−1

(µ+$
√
−1)µ which

correspond to the same values of $ affected with contrary signs, we will have∫
e−xdx

xµ
=
eµ
√
−1

(−1)µ

∫
d$×

{cos$[(µ+$
√
−1)µ + (µ−$

√
−1)µ] +

√
−1 sin$[(µ−$

√
−1)µ − (µ+$

√
−1)µ]}

(µ2 +$2)µ
,

the integral relative to $ being taken from $ = 0 to $ = ∞. If we expand the
quantities under the

∫
sign, the imaginaries disappear, and there will remain only a real

function which we will designate by Qdx; we will have thus∫
e−xdx

xµ
=
eµ
√
−1

(−1)µ

∫
Qd$,

hence

y−s =
Yes−µ

√
2π
(
1− 1

12s + · · ·
)

(−1)s−µss−
1
2

∫
Qd$

.

Let us see presently which function of s is y−s. For this, we represent the proposed
equation

0 = (s+ 1)ys − ys+1;

by changing s into −s, it becomes

0 = (1− s)y−s − y1−s.

Let y−s = us; we will have

0 = (s− 1)us + us−1,

an equation of which the integral

us =
(−1)s−µY

µ(µ+ 1)(µ+ 2)(µ+ 3) · · · (s− 1)
,
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Y being equal to y−µ. We will have therefore

y−s =
(−1)s−µY

µ(µ+ 1)(µ+ 2)(µ+ 3) · · · (s− 1)
.

If we compare this expression of y−s to the preceding, we will have, by observing that
(−1)2s−2µ = 1,

1

µ(µ+ 1)(µ+ 2)(µ+ 3) · · · (s− 1)
=
es−µµ

√
2π
(
1− 1

12s + · · ·
)

ss−
1
2

∫
Qd$

;

by dividing the two members of this equation by s and by turning them upside down,
we will have

(µ+ 1)(µ+ 2) · · · s =
ss+

1
2 eµ−s

µ
√

2π

(
1− 1

12s
+ · · ·

)∫
Qd$.

By comparing this equation to formula (q′) of the preceding section, we will have this
rather remarkable result ∫

Qd$ =
2πe−µµ∫
xµe−xdx

;

we suppose, for example, µ = 1, we will have∫
Qd$ = 2

∫
d$

cos$ +$ sin$

1 +$2
= 2

∫
$d$ sin(3 +$2)

(1 +$2)2
,

these integrals being taken from $ = 0 to $ =∞; hence∫
d$ sin$(3 +$2)

(1 +$2)2
=
π

e
.

We can observe further that,
∫
e−xdx
xµ being equal to e−µ

√
−1

(−1)µ
∫

Qd$, we have

∫
e−xdx

xµ
=

2πµ(−1)µ−
1
2∫

xµdx e−x
=

2π(−1)µ−
1
2∫

xµ−1dx e−x
,

the integral of the first member of this equation being taken between the two imaginary
values of x which render null the quantity e−x

xµ , and the integral of the second member
being taken between the two real values of x which render null the quantity xµe−x,
that is from x = 0 to x =∞.

We could easily arrive to the preceding results, by considering the equation in finite
differences

0 = ys − sys+1;

but I have wished to show, by a very simple example, that the same expressions, found
in the case of s positive, subsist still when s is negative.
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XXI.

We will consider the equation in the finite differences

ps = sys − (m− s)ys+1;

by supposing there

ys =

∫
xsφdx and xs = δy,

it will become

ps =

∫
φdx

[
−mxδy + x(1 + x)

d δy

dx

]
;

whence we deduce the two equations

0 = mxφ+
d[x(1 + x)φ]

dx
,

ps = xs+1(1 + x)φ.

The first gives, by integrating it,

φ =
A

x(1 + x)m+1
,

that which changes the second into this one

Axs

(1 + x)m
= ps.

We suppose first p = 0, we will have x = 0 and x =∞ for the limits of the integral∫
xsφdx, s being supposed less than m; thus, in this case, the integral

∫
xsφdx must

be extended from x = 0 to x =∞, and we will have, with this condition,

ys = A
∫

xs−1dx

(1 + x)m+1
,

A being an arbitrary constant.
If p is not null, the two limits of x will be x = 0 and x = p; we will have next

A = (1 + p)m,

hence

ys = (1 + p)m
∫

xs−1dx

(1 + x)m+1
,

the integral being taken from x = 0 to x = p. By reuniting this value to that which we
just found in the case p = 0, we will have, for the complete expression of ys,

ys = A
∫

xs−1dx

(1 + x)m+1
+ (1 + p)m

∫
xs−1dx

(1 + x)m+1
,
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the integral of the first term being taken from x = 0 to x = ∞, and that of the second
being taken from x = 0 to x = p. We can give yet to the expression of ys this form

ys = A′
∫

xs−1dx

(1 + x)m+1
− (1 + p)m

∫
xs−1dx

(1 + x)m+1
,

the integral of the first term being taken from x = 0 to x = ∞, and that of the second
being taken from x = p to x =∞; A′ is a arbitrary constant equal to A+1.

Now, the integral of the proposed equation

ps = sys − (m− s)ys+1;

is

ys =
1.2.3 · · · (s− 1)

m(m− 1)(m− 2) · · · (m− s+ 1)

[
Q−

∑ m(m− 1) · · · (m− s+ 1)ps

1.2.3 · · · s

]
.

Q being an arbitrary and
∑

being the characteristic of the finite integrals, so that∑ m(m−1)···(m−s+1)ps

1.2.3···s is equal to

1 +mp+
m(m− 1)

1.2
p2 + · · ·+ m(m− 1)(m− 2) · · · (m− s+ 2)

1.2.3 · · · (s− 1)
ps−1,

that is to the sum of the s first terms of the expansion of the binomial (1 + p)m. If we
compare this expression of ys with that which we just found by definite integrals, we
will have

A′
∫

xs−1dx

(1 + x)m+1
− (1 + p)m

∫
xs−1dx

(1 + x)m+1

=
1.2.3 · · · (s− 1)

m(m− 1)(m− 2) · · · (m− s+ 1)

[
Q−

∑ m(m− 1) · · · (m− s+ 1)ps

1.2.3 · · · s

]
.

If we make s = 1 in this equation, we will have A′ =Q; thus A′ being arbitrary, this
equation is divided into the following two

1.2.3 · · · (s− 1)

m(m− 1)(m− 2) · · · (m− s+ 1)
=

∫
xs−1dx

(1 + x)m+1
,

1.2.3 · · · (s− 1)

m(m− 1) · · · (m− s+ 1)

∑ m(m− 1) · · · (m− s+ 1)ps

1.2.3 · · · s

= (1 + p)m
∫

xs−1dx

(1 + x)m+1
,

whence we deduce

∑ m(m− 1) · · · (m− s+ 1)

1.2.3 · · · s
ps = (1 + p)m

∫
xs−1dx

(1+x)m+1∫
xs−1dx

(1+x)m+1

,

the integral of the numerator being taken from x = p to x = ∞, and that of the
denominator being taken from x = 0 to x = ∞. It will be easy to reduce to series
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these two integrals by the method of article I, we will have thus the sum of the first s
terms of the binomial (1 + p)m, by a series as much more convergent as s and m will
be greater numbers.

XXII.

We propose again to integrate, by approximation, the equation in finite differences

0 = (2 + 4s)ys − (s+ 1)ys+1.

If we make in it
ys =

∫
xsφdx,

and if we suppose xs = δy, we will have

0 =

∫
φdx

[
(2− x)δy + (4x− x2)

d δy

dx

]
,

whence we deduce the two equations

0 = (2− x)φ− d[xφ(4− x)]

dx
,

0 = xs+1φ(4− x).

The first equation gives, by integrating it,

φ =
A√

4x− x2
;

the second becomes thus
0 = xs+

1
2

√
4− x.

The limits of the integral
∫
xsφdx or A

∫
xs−

1
2 dx√

4−x will be, consequently, x = 0 and

x = 4. Let
√

4− x = 2u, we will have

ys = A22s+1

∫
(1− u2)s−

1
2 du,

this last integral being taken from u = 0 to u = 1.
In order to determine it by approximation, we will make

1

s− 1
2

= α and 1− u2 = e−αt
2

,

that which gives
u =

√
1− e−αt2

and ∫
(1− u2)s−

1
2 du =

∫
du e−t

2

.
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We suppose√
1− e−αt2 = α

1
2 t(1 + αq(1)t2 + α2q(2)t4 + α3q(3)t6 + α4q(4)t8 + · · · );

by taking the logarithmic differences of the two members of this equation, we will have

1 + 3αq(1)t2 + 5α2q(2)t4 + 7α3q(3)t6 + · · ·
t+ αq(1)t3 + α2q(2)t5 + α3q(3)t7 + · · ·

=
αte−αt

2

1− e−αt2
=

1− αt2 + 1
1.2α

2t4 − 1
1.2.3α

3t6 + · · ·
t− αt3

1.2 + α2t5

1.2.3 −
α3t7

1.2.3.4 + · · ·
;

that which gives the general equation

0 = 2iq(i) − 2i− 3

1.2
q(i−1) +

2i− 6

1.2.3
q(i−2)

− 2i− 9

1.2.3.4
q(i−3) +

2i− 12

1.2.3.4.5
q(i−4) − · · · ,

q(0) being equal to unity. If we make successively, in this equation, i = 1, i = 2, i =
3, . . . , we will form as many equations, by means of which it will be easy to determine
the coefficients q(1), q(2), q(3), . . .Thus put, we will have∫

du(1− u2)s−
1
2 = α

1
2

∫
dt e−t

2

(1 + 3αq(1)t2 + 5α2q(2)t4 + 7α3q(3)t6 + · · · ).

The integral relative to u must be taken from u = 0 to u = 1; thus −αt2 being equal
to log(1 − u2), the integral relative to t must be taken from t = 0 to t = ∞; now we
have, in this case,∫

t2rdt e
−t2 =

1.3.5 . . . (2r − 1)

2r

∫
dte−t

2

=
1.3.5 . . . (2r − 1)

2r+1

√
π;

therefore ∫
du(1− u2)s−

1
2

=
1

2

√
απ

(
1 +

1.3

2
αq(1) +

1.3.5

22
α2q(2) +

1.3.5.7

23
α3q(3) + · · ·

)
and, consequently,

ys = A22s
√
απ

(
1 +

1.3

2
αq(1) +

1.3.5

22
α2q(2) + · · ·

)
.

Now, if s is a positive whole number, the integral of the proposed equation

0 = (2 + 4s)ys − (s+ 1)ys+1

is

ys =
y1
2

(s+ 1)(s+ 2) · · · 2s
1.2.3 . . . s

;
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but the equation

ys = A22s+1

∫
du(1− u2)s−

1
2

gives

y1 = 8A
∫
du(1− u2)

1
2 = 2Aπ,

whence we deduce
A =

y1
2π

;

by comparing therefore the two preceding values of ys, we will have

22s√
(s− 1

2 )π

(
1 +

1.3

2
αq(1) +

1.3.5

22
α2q(2) +

1.3.5.7

23
α3q(3) + · · ·

)

=
(s+ 1)(s+ 2)(s+ 3) · · · 2s

1.2.3 . . . s
.

This last quantity is the middle term of the binomial (1 + 1)2s; the preceding formula
will give therefore this term by a highly convergent series, when s will be a large
number. It follows thence that the ratio of the middle term of the binomial (1 + 1)2s to
the sum of all its terms is equal to

1√
(s− 1

2 )π

(
1 +

1.3

2
αq(1) + · · ·

)
,

and consequently, when s is quite large, this ratio is very nearly equal to 1√
sπ

.

XXIII.

We can arrive more simply to the preceding results by the following manner: for
this, we name ys the middle term of the binomial (1 + 1)2s; it is clear that this term is
equal to the term independent of e$

√
−1 in the expansion of the binomial (e$

√
−1 +

e−$
√
−1)2s; now, if we multiply this binomial by d$, and if we take next the integral

of it from $ = 0 to $ = 180 ˚ , it is clear that this integral will be equal to πys; we
will have therefore, by substituting 2 cos$ in the place of e$

√
−1 + e−$

√
−1,

ys =
22s

π

∫
d$ cos2s$.

This integral, taken from $ = 0 to $ = 180 ˚ , is evidently the double of this same
integral, taken from $ = 0 to $ = 90 ˚ , that which gives

ys =
22s+1

π

∫
d$ cos2s$,

this last integral being taken from $ = 0 to $ = 90 ˚ ; if we suppose sin$ = u, we
will have

ys =
22s+1

π

∫
du(1− u2)s−

1
2 ,
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the integral being taken from u = 0 to u = 1, that which is conformed to that which
we have found in the preceding section.

This method has the advantage of being extended to the determination of the middle
term of the trinomial (1 + 1 + 1)s, of the one of the quadrinomial (1 + 1 + 1 + 1)2s,
and thus in sequence. We will consider the trinomial (1 + 1 + 1)s, and we name ys its
middle term; ys will be equal to the term independent of e$

√
−1 in the expansion of

the trinomial
(e$
√
−1 + 1 + e−$

√
−1)s;

we will have consequently

ys =
1

π

∫
d$(2 cos$ + 1)s,

the integral being taken from $ = 0 to $ = π. The condition of the maximum of the
function (2 cos$ + 1)s gives sin$ = 0, so that the two limits $ = 0 and $ = π
correspond to the two maxima of this function; we will divide therefore the preceding
integral into two others∫

d$(2 cos$ + 1)s and (−1)s
∫
d$(2 cos$ − 1)s,

the first of these two integrals being taken from $ = 0 to the value of $ which renders
null the quantity 2 cos$ + 1, and the second integral being taken from $ = 0 to the
value of $ which renders null the quantity 2 cos$ − 1.

In order to obtain the first integral in a convergent series, we will make

(2 cos$ + 1)s = 3se−t
2

,

and, by supposing α = 1
s , we will have

3−$2 +
$4

12
− · · · = 3− 3αt2 +

3α2t4

2
− · · · ,

whence we deduce, by the reversion of the series

$ = α
1
2 t
√

3

(
1− αt2

8
+ · · ·

)
,

hence ∫
d$(2 cos$ + 1)s = α

1
2 3s+

1
2

∫
dt e−t

2

(
1− 3

8
αt2 + · · ·

)
.

The integral relative to t needing to be taken from t = 0 to t =∞, we will have∫
d$(2 cos$ + 1)s =

α
1
2 3s+

1
2
√
π

2

(
1− 3α

8
+ · · ·

)
;
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we will find in the same manner∫
d$(2 cos$ − 1)s =

α
1
2
√
π

2

(
1− 5α

16
+ · · ·

)
.

We will have therefore

ys =
3s+

1
2

2
√
sπ

(
1− 3α

16
+ · · ·

)
+

(−1)s

2
√
sπ

(
1− 5α

16
+ · · ·

)
;

s being a very large number, this quantity is reduced very nearly to 3s+
1
2

2
√
sπ

; the ratio of
the middle term of the trinomial (1 + 1 + 1)s to the sum of all the terms is therefore
then very nearly equal to

√
3

2
√
sπ

.
We can determine in the same manner the middle term of the polynomial 1 + 1 +

1 + 1 + · · · , raised to a very great power; we will content ourselves to present here the
first term of its value in series, to which it is reduced when the exponent of the power
is infinite.

If the polynomial is composed of a number of terms even and equal to 2n, it will
have of middle term only so much as the power to which it is raised will be even; let 2s
be this power and ys the middle term of the polynomial raised to this power, we will
have very nearly, by supposing n greater than unity

ys =
(2n)2s

√
3√

(2n+ 1)(n+ 1)2sπ
;

the ratio of this term to the sum of all the terms will be consequently very nearly equal
to √

3√
(2n+ 1)(n+ 1)2sπ

.

If the polynomial is composed of a number of terms odd and equal to 2n+1, by naming
s the power to which it is raised, and ys its middle term, we will have very nearly

ys =
(2n+ 1)s

√
3√

n(n+ 1)2sπ
;

thus the ratio of this term to the sum of all the terms of the polynomial is, in this case,
very nearly equal to

√
3√

n(n+1)2sπ
.

XXIV.

We propose now to determine by approximation the quite extended terms of the ex-
pansion of any function of u. By representing this expanded function by the following
series

y0 + y1u+ y2u
2 + y3u

3 + · · ·+ ysu
s + ys+1u

s+1 + · · · ,

we will seek the law which exists among the coefficients ys, ys−1, ys−2, . . . , and, if
this law can be expressed by an equation linear in finite or infinitely small differences,
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of which the coefficients are some rational and entire functions of s, we will have, by
article II, the value of ys in a highly convergent series when s will be a large number.

We suppose, for example, that the proposed function is

(a+ bu+ cu2 + hu3 + · · · )µ;

by taking the logarithmic differences of the two members of the equation

(a+ bu+ cu2 + hu3 + · · · )µ = y0 + y1u+ y2u
2 + · · ·+ ysu

s + · · · ,

we will have

µ(b+ 2cu+ 3hu2 + · · · )
a+ bu+ cu2 + hu3 + · · ·

=
y1 + 2y2u+ · · ·+ sysu

s−1 + · · ·
y0 + y1u+ y2u2 + · · ·+ ysus + · · ·

.

If we deliver this equations from fractions and if we equate to zero the coefficients of
the similar powers of u, we will have the general equation

0 = asys + b(s− 1− µ)ys−1 + c(s− 2− 2µ)ys−2 + · · · ;

if we suppose

ys =

∫
xs−1φdx

and if we designate xs−1 by δy, we will have

0 =

∫
φdx

[
a− µb

x
− (2µ+ 1)

c

x2
− · · ·+ d δy

dx

(
ax+ b+

c

x
+ · · ·

)]
,

whence we deduce the two equations

0 = φdx

[
a− µb

x
− (2µ+ 1)

c

x2
− · · ·

]
− d

[
φ
(
ax+ b+

c

x
+ · · ·

)]
,

0 = xsφ

(
a+

b

x
+

c

x2
+ · · ·

)
.

The first gives, by integrating it

φ = A
(
a+

b

x
+

c

x2
+

h

x3
+ · · ·

)µ
,

so that we will have φ by changing, in the proposed function, u into 1
x , and by mul-

tiplying it by an arbitrary constant A, that which is generally true, whatever be this
function.

The second equation will become

0 = xs
(
a+

b

x
+

c

x2
+

h

x3
+ · · ·

)µ+1

;
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whence it follows that the limits of the integral
∫
xs−1φdx is x = 0, and x equal to

any one of the roots of the equation

0 = a+
b

x
+

c

x2
+ · · ·

The number of these roots being equal to the degree of the differential equation

0 = asys + b(s− 1− µ)ys−1 + · · · ,

we have as many particular values of ys as there are units in this degree, and their sum
will be the complete expression of this variable.

This method can serve further to determine the infinitely small highly elevated
differences of the function (a+ bz+ cz2 +hz3 + · · · )µ, taken relatively to z; because,
if we name s the degree of this difference, we will have

ds(a+ bz + cz2 + hz3 + · · · )µ

dzs
=
ds[a+ b(z + u) + c(z + u)2 + h(z + u)3 + · · · ]µ

dus
,

provided that we suppose u = 0 after the differentiations in the second member of
this equation. Now, if we designate by ys the coefficient of us in the expansion of
[a+ b(z + u) + c(z + u)2 + · · · ]µ, the second member of the preceding equation will
be evidently equal to 1.2.3 . . . sys; we will have therefore

ds(a+ bz + cz2 + hz3 + · · · )µ

dzs
= 1.2.3 . . . sys.

s being a very large number, we will have, by No. XIX, the product 1.2.3 . . . s in a
highly convergent series; we have besides, by that which precedes

ys = A
∫
xs−1dx

[
a+ b

(
z +

1

x

)
+ c

(
z +

1

x

)2

+ h

(
z +

1

x

)3

+ · · ·

]µ
,

by taking as many similar terms as there are units in the degree of the function a+bz+
cz2 + · · · and by integrating them from x = 0 to x successively equal to the different
roots of the equation

0 = a+ b

(
z +

1

x

)
+ c

(
z +

1

x

)2

+ + · · ·

We will have easily these integrals in convergent series by the method of article I.
We will determine, by this method, the (s+ 1)st difference of the angle of which z

is the sine; if we name θ that angle, we will have dθ
dz = 1√

1−z2 , hence

ds+1θ

dzs+1
=
ds(1− z2)−

1
2

dzs
;
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by expanding this difference, we have

ds+1θ

dzs+1
=

1.2.3 . . . s

(1− z2)s+
1
2

[
zs +

1

2

s(s− 1)

1.2
zs−2 +

1.3

2.4

s(s− 1)(s− 2)(s− 3)

1.2.3.4
zs−4

+
1.3.5

2.4.6

s(s− 1)(s− 2)(s− 3)(s− 4)(s− 5)

1.2.3.4.5.6
zs−6

+ · · ·
]
.

The law of this expression is easy to grasp; but the calculation of it would be impractical
if s were a large number such as ten thousand. In order to have, in this case, its value
by a highly convergent series, we name ys the coefficient of us in the expansion of the
function [1− (z − u)2]−

1
2 ; we will have

ds(1− z2)−
1
2

dzs
= 1.2.3 . . . sys;

we have besides, by the preceding section,

ys = A
∫
xs−1dx

[
1−

(
z +

1

x

)2
]− 1

2

+ A′
∫
xs−1dx

[
1−

(
z +

1

x

)2
]− 1

2

,

the first integral being taken from x = 0 to one of the values of x which renders null

the function
[
1−

(
z + 1

x

)2]− 1
2

, and the second integral being taken from x = 0 to the
other value of x which renders this same function null. These two values are

z = − 1

1 + z
and x =

1

1− z
;

by supposing therefore x = z+cos$
1−z2 , we will transform the preceding expression of ys

into this one

ys =
B

(1− z2)s

∫
d$(z + cos$)s +

B′

(1− z2)s

∫
d$(z + cos$)s,

the first integral being taken from $ = 0 to the value of $, of which the cosine is −z,
and the second integral being taken from that value to $ = π. In order to determine
the two arbitraries B and B′, we will observe that

y0 =
1√

(1− z2)
= B

∫
d$ + B′

∫
d$,

y1 =
z

(1− z2)
3
2

=
B

1− z2

∫
d$(z + cos$) +

B′

1− z2

∫
d$(z + cos$);

whence it is easy to conclude

B = B′ =
1

π
√

1− z2
,
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hence

ys =
1

π(1− z2)s+
1
2

[∫
d$(z + cos$)s + (−1)s

∫
d$(cos$ − z)s

]
,

the first integral being taken from $ = 0 to z + cos$ = 0, and the second integral
being taken from $ = 0 to z − cos$ = 0. Let

1

s
= α and (z + cos$)s = (1 + z)se−t

2

;

we will have

$ = α
1
2 t
√

2(1 + z)

[
1− α(2− z)

12
t2 + · · ·

]
,

whence it is easy to conclude∫
d$(z + cos$)s =

α
1
2 (1 + z)s+

1
2

√
2π

2

[
1− α(2− z)

8
+ · · ·

]
.

By changing z into −z, we will have∫
d$(z − cos$)s =

α
1
2 (1− z)s+ 1

2

√
2π

2

[
1− α(2 + z)

8
+ · · ·

]
,

hence

ys =
1

(1− z)s+ 1
2

√
2sπ

[
1− α(2− z)

8
+ · · ·

]
+

(−1)s

(1 + z)s+
1
2

√
2sπ

[
1− α(2 + z)

8
+ · · ·

]
.

By multiplying this value by the product 1.2.3 . . . s, which, by No. XIX, is equal to

ss+
1
2 e−s

(
1 +

α

12
+ · · ·

)
,

we will have the value in series of d
s+1θ
dzs+1 , and we will find that, s being very great, this

value is reduced to very nearly sse−s

(1−z)s+
1
2

. It is remarkable that the expression which

we have given above of this difference, and which becomes very composite when s is
a great number, is reduced thus to an approximate value so simple.

XXV.

Here now is a general method to have in convergent series the differences and
the integrals quite elevated, either finite, or infinitely small of a function ys. We will
begin by reducing this function to some terms of one or of the other of these two
forms A

∫
xsφdx, A

∫
e−sxφdx; we will observe next that the infinitely small nth dif-

ference of A
∫
xsφdx is A

∫
xsdsn φdx (log x)n, and that its nth finite difference is

A
∫
xsφdx(x− 1)n. We will have therefore

dnys
dsn

= A
∫
xs φdx (log x)n + · · · ,

4nys = A
∫
xsφdx(x− 1)n + · · · ,
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the + sign being relative to the other terms of the form A
∫
xsφdx which can enter in

the expression of ys. If we make use of the form A
∫
e−sxφdx, we will have

dnys
dsn

= (−1)nA
∫
xn φdx e−sx + · · · ,

4nys = A
∫
φdxe−sx(e−x − 1)n + · · · .

In order to have the nth integrals, either finite, or infinitely small of ys, it suffices
to make n negative in these expressions; we can observe that they are generally true
whatever be n, by supposing it even fractional, so that they offer a very simple means
to interpolate the differences and the integrals of these functions.

As we are principally lead in the analysis of chances to some expressions which
are only highly elevated finite differences of functions or any part of these differences,
we are going to apply the preceding method and determine their value in convergent
series.

XXVI.

We will consider first the function 1
si ; by designating it by ys, it will be determined

by the equation in the infinitely small differences

0 = s
dys
ds

+ iys.

If we suppose in this equation

ys =

∫
e−sxφdx and e−sx = δy,

it will become

0 =

∫
φdx

(
i δy + x

d δy

dx

)
,

whence we deduce the two equations

0 = iφ− d(xφ)

dx
, 0 = xφ δy.

The first gives, by integrating it,
φ = Axi−1,

and the second, for the limits of the integral
∫
e−sxφdx,

x = 0 and x =∞;

we will have therefore then

1

si
= A

∫
xi−1dx e−sx.
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In order to determine the arbitrary constant A, we will observe that, s being 1, the first
member of this equation is reduced to unity, that which gives

A =
1∫

xi−1dx e−x
,

hence
1

si
=

∫
xi−1dx e−sx∫
xi−1dx e−x

;

we will have therefore

(µ) 4n 1

si
=

∫
xi−1dx e−sx(e−x − 1)n∫

xi−1dx e−x
,

the integrals of the numerator and of the denominator being taken from x = 0 to
x = ∞. The consideration of this formula is going to furnish us some interesting
remarks on this analysis.

In order to expand it in series, we suppose

xi−1e−sx(e−x − 1)n = ai−1e−sa(e−a − 1)ne−t
2

,

a being the value of x which corresponds to the maximum of the first member of this
equation. If we make x = a + θ, we will have, by taking the logarithms of each
member and by expanding the logarithm of the first into a series ordered with respect
to the powers of θ,

hθ2 + h′θ3 + h′′ θ4 + · · · = t2,

the quantities a, h, h′, h′′, . . . being given by the following equations:

0 =
i− 1

a
− s− ne−a

e−a − 1
,

h =
i− 1

2a2
− n

2

e−a

e−a − 1
+
n

2

(
e−a

e−a − 1

)2

,

h′ =
i− 1

3a2
+
n

6

e−a

e−a − 1
− n

2

(
e−a

e−a − 1

)2

+
n

3

(
e−a

e−a − 1

)3

,

h′′ =
i− 1

4a2
− n

24

e−a

e−a − 1
+

7n

24

(
e−a

e−a − 1

)2

− n

2

(
e−a

e−a − 1

)3

+
n

4

(
e−a

e−a − 1

)4

,

· · ·

We will have therefore, by the reversion of the series,

θ =
t√
h

(
1− h′t

2h
√
h

+
5h′2 − 4hh′′

8h3
t2 + · · ·

)
,

and this series will be so much more convergent as one of the numbers n or i will be
greater. By substituting this value of θ into the function

∫
dθ e−t

2

and by taking the
integral from t = −∞ to t =∞, we will have∫
xi−1dx e−sx(e−x−1)n = ai−1e−sa(e−a−1)n

√
π√
h

(
1 +

15h′2 − 12hh′′

16h3
+ · · ·

)
;
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we have moreover ∫
xi−1dx e−x =

1

i

∫
xidx e−x,

and by No. XIX ∫
xidx e−x = ii+

1
2 e−i
√

2π

(
1 +

1

12i
+ · · ·

)
.

By dividing therefore the one by the other the two values of∫
xi−1dx e−sx(e−x − 1)n and of

∫
xi−1dx e−x,

we will have

4n 1

si
=

(
a
i

)i−1
ei−sa(e−a − 1)n
√

2hi

(
1 +

15h′2 − 12hh′′

16h3
+ · · · − 1

12i
+ · · ·

)
.

XXVII.

In order to have the nth finite difference of the positive power si, it suffices (No.
XVI) to change in this equation i into −i, and we will have

(µ′)



4nsi =(s+ n)i − n(s+ n− 1)i

+
n(n− 1)

1.2
(s+ n− 2)i − n(n− 1)(n− 2)

1.2.3
(s+ n− 3)i + · · ·

=

(
i
a

)i+1
esa−i(ea − 1)n√

i(i+1)
a2 − ni ea

(ea−1)2

(
1 +

15l′2 − 12ll′′

16l3
+ · · ·+ 1

12i
+ · · ·

)

a, l, l′, l′′, . . . being given by the following equations:

0 =
i+ 1

a
− s− nea

ea − 1
,

l = − i+ 1

2a2
− n

2

ea

ea − 1
+
n

2

(
ea

ea − 1

)2

,

l′ = − i+ 1

3a2
+
n

6

ea

ea − 1
− n

2

(
ea

ea − 1

)2

+
n

3

(
ea

ea − 1

)3

,

l′′ =
i+ 1

4a2
− n

24

ea

ea − 1
+

7n

24

(
ea

ea − 1

)2

− n

2

(
ea

ea − 1

)3

+
n

4

(
ea

ea − 1

)4

,

· · ·

We will arrive to the same result by resolving directly, by the method of No. XV, the
equation in the finite and infinitely small differences

0 = 4n
(
iys − s

dys
ds

)
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or this one

0 = (s+ n)4dy
′
s

ds
+ n

dy′s
ds
− i4y′s,

in which y′s = 4n−1ys.
We suppose i+ 1 rather great, relatively to n+ s, in order that e

i+1
n+s be of the same

order as i; the equation

0 =
i+ 1

a
− s− nea

ea − 1

will give very nearly

a =
i+ 1

n+ s

(
1− n

n+ s
e
−i
n+s

)
,

and if, for brevity, we make e
−i
n+s = q, we will find, by considering only the first

term of the expression of4nsi and by making all the convenient reductions, this quite
simple expression

4nsi = (n+ s)ie−nq,

so that, if i is infinite relatively to n+ s, that which gives q = 0, we will have

4nsi = (s+ n)i;

it is easy moreover to be assured of it a priori by considering that the quantity (s +
n)i − n(s+ n− 1)i + · · · is reduced then to its first term.

XXVIII.

The series (µ′) ceases to be convergent when a is a very small number of the order
1
n , because then it is clear that, the quantities l, l′, l′′, . . . forming an increasing pro-
gression, each term of the series is of the same order as the one which precedes it. In
order to determine into what case a is very small, we take the equation

0 =
i+ 1

a
− s− nea

ea − 1
;

we can transform it into the following

0 =
i+ 1

a
− s− n

a

(
1 +

a

2
+ · · ·

)
,

whence we deduce to very nearly, under the supposition of a not very large,

a =
i+ 1− n
s+ n

2

.

Thus a will be very small whenever the difference i−n will be not very large relatively
to s+ n

2 ; in this case, we will determine4nsi by the following method.
We take the equation

4nsi =

∫
dx
xi+1 e

−sx(e−x − 1)n∫
dx
xi+1 e−x

,
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into which formula (µ) is changed from No. XXVI when we make i negative and equal
to −i; we can put the factor (e−x − 1)n under this form

e−
nx
2

(
e−

x
2 − e+ x

2

)n
=(−1)ne−

nx
2 xn

(
1 +

1

1.2.3

x2

22
+

1

1.2.3.4.5

x4

24
+ · · ·

)n
=(−1)ne−

nx
2 xn

[
1 +

nx2

24
+
n(5n− 2)

15.16.24
x4 + · · ·

]
;

we will have therefore∫
dx

xi+1
e−sx(ex − 1)n = (−1)n

∫
dx

xi+1−n e
−(s+n

2 )x
(

1 +
nx2

24
+ · · ·

)
.

If we make
(
s+ n

2

)
x = x′, we will have generally∫
dx

xr
e−(s+n

2 )x =
(
s+

n

2

)r−1 ∫ dxie−x
′

x′r
,

and by No. XX we have∫
dxie−x

′

x′r
=

2π(−1)r−1∫
x′r−1dx′e−x′

=
2π(−1)r−

1
2

(r − 1)(r − 2)(r − 3) · · ·
;

hence, we will have

(µ′′)



4nsi =(i− n+ 1)(i− n+ 2) · · · i
(
s+

n

2

)i−n
×
[
1 + (i− n)(i− n− 1)

n

24
(
s+ n

2

)2
+ (i− n)(i− n− 1)(i− n− 2)(i− n− 3)

n(5n− 2)

15.16.24
(
s+ n

2

)4 ].
This series is highly convergent if i − n is not very large relatively to s + n

2 ; it can
moreover be used in the case where i is fractional; as for the product (i − n + 1)(i −
n+ 2) · · · i, it will be easy to obtain it in series by No. XIX.

In the case where i = n, the preceding formula gives

4nsi = 1.2.3 . . . i,

that which conforms to that which we know besides.

XXIX.

Formulas (µ′) and (µ′′) of the two preceding sections suppose n equal or less than
i; indeed, if we consider the expression

4nsi =

∫
dx
xi+1 e

−sx(e−x − 1)n∫
dx
xi+1 e−x

,
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of which the expansion has produced these formulas, we see that the limits of the
integrals of the numerator and of the denominator being determined by equating to
zero the quantities under the

∫
signs, these limits will be all imaginaries when i + 1

will be greater than n, instead that, in the case when i + 1 will be less than n, the
limits of the integrals of the numerator will be real, while those of the integral of the
denominator will be imaginaries; it is necessary therefore then to restore these last
limits to the real state. In order to arrive there, we will observe that we have generally∫

xi−1dx e−x =

∫
xi+rdx e−x

i(i+ 1)(i+ 2) · · · (i+ r)
;

if we make in this expression i negative and equal to −r− m
n , m being less than n, we

will have ∫
dx e−x

xi+1
=

(−1)r+1
∫
x−

m
n dx e−x

m
n

(
1 + m

n

) (
2+mn

)
· · · i

.

Now we have, by No. XIX,(
1 +

m

n

)(
2+
m

n

)
· · · i =

∫
xidx e−x∫
x
m
n dx e−x

,

hence ∫
dx e−x

xi+1
=

(−1)r+1
∫
x−

m
n dx e−x

∫
x
m
n dx e−x

m
∫
xidx e−x

;

this is the expression of
∫
dx e−x

xi+1 of which we must make use in the case which we
examine here.

If we make x = tn, we will have

m

n

∫
x−

m
n dx e−x

∫
x
m
n dx e−x =

n3

m

∫
tn−m−1dt e−t

n

∫
tn+m−1dt e−t

n

= n2
∫
tn−m−1dt e−t

n

∫
tm−1dt e−t

n

,

and equation (T) of No. IV will give, by changing r into m+ 1,

n2
∫
tm−1dt e−t

n

∫
tn−m−1dt e−t

n

=
π

sin mπ
n

;

we will have therefore ∫
dx e−x

xi+1
=

(−1)r+1π

sin mπ
n

∫
xidx e−x

,

whence we deduce, by substituting this value into the preceding expression of4nsi,

(µ′′′) 4nsi = (−1)r+1 sin mπ
n

π

∫
xidx e−x

∫
dx

xi+1
e−sx(e−x − 1)n,

the two integrals being taken from x = 0 to x =∞. If i is a very large number, we will
have the first in a convergent series by No. XIX, and the method of No. XXVI will give
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the second in a similarly convergent series when the difference n − i will be great; in
the case where it will be not very large relatively to s+ n

2 , the method of No. XXVIII
will give for the expression of 4nsi a convergent series analogous to the series (µ′′).
We can observe that, if i is a whole number, we will have m = 0; formula (µ′′′) will
give therefore then4nsi = 0, that which accords with that which we know besides.

We suppose i = m
n = 0, we will have, r being equal to zero,

r = 0, sin
m

n
π =

m

n
π = iπ

and

4nsi = 4n s
i − 1

i
= 4n log s;

formula (µ′′′) will give therefore

4n log s = −
∫
e−sxdx

x
(e−x − 1)n,

whence it is easy to conclude, by No. XXVII,

4n log s = log(s+ n)− n log(s+ n− 1) +
n(n− 1)

1.2
log(s+ n− 2)− · · ·

=
esa(ea − 1)n

√
2π√

na2ea

(ea−1)2 − 1
(1 + · · · ),

a being given by the equation

0 =
1

a
− s− nea

ea − 1
.

XXX.

We can extend the method of the preceding sections to the determination of the nth

difference of any power of a rational function of s; it suffices for this to reduce this
function to the form

∫
xsφdx; now, by designating it by ys, we will have between ys

and its difference dys and equation of this form

dys
ds

= Mys,

M being a rational function of s. By applying therefore to this equation the methods
of article II, we will have φ by a differential equation, of a degree equal to the highest
power of s in M; this last equation we be generally integrable only in the case where
the exponent of s in M does not surpass unity; but we will have in every case the nth

finite difference of ys, by means of multiple integrals, in the following manner.
We will consider the function 1

(s+p)i(s+p′)i′ ··· , to which we can restore all the pow-
ers of the rational functions of s and their products, the exponents i, i′, . . . can be sup-
posed negatives. If, in the integral

∫
xi−1dx e−(s+p)x, taken from x = 0 to x = ∞,

we suppose (s+ p)x = x′, it will become

1

(s+ p)i

∫
x′i−1dx′ e−x

′
,
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the integral relative to x′ being taken similarly from x′ = 0 to x′ = ∞; by comparing
these two integrals, we will have

1

(s+ p)i
=
∫
xi−1dx e−(s+p)x∫
xi−1dx e−x

,

the integrals of the numerator and of the denominator being taken from x = 0 to
x =∞.

It follows thence that

1

(s+ p)i(s+ p′)i′ · · ·
=
∫
xi−1x′i

′−1 · · · dx dx′ · · · e−px−p′x′−···−s(x+x′+··· )∫
xi−1x′i′−1 · · · dx dx′ · · · e−x−x′−···

,

the integrals relative to x, x′, . . . being taken from the null values of these variables to
their infinite values; we will have therefore

4n 1

(s+ p)i(s+ p′)i′ · · ·

=

∫
xi−1x′i

′−1 · · · dx dx′ · · · e−px−p′x′−···−s(x+x′+··· )(e−x−x′−··· − 1)n∫
xi−1x′i′−1 · · · dx dx′ · · · e−x−x′−···

.

We will reduce easily into convergent series the numerator and the denominator of this
expression by the method of No. VII; and, if we change in this series the signs of
i, i′, . . ., we will have the approximate values of 4n(s + p)i(s + p′)i

′ · · · , on which
we must make some remarks analogous to those which we have made in the preceding
sections on the approximate value of4nsi.

If we suppose n, i, i′, . . . some very large numbers, we will find easily, by No. VII,
that we have very nearly

4n(s+ p)i(s+ p′)i
′
· · ·

=

(
i
a

)i+1
(
i′

a′

)i′+1

· · · e(s+p)a+(s+p′)a′+···−i−i′−···(ea+a
′+··· − 1)n√[

i(i+1)
a2 − niea+a′+···

(ea+a′+···−1)2

] [
i′(i′+1)
a′2 − niea+a′+···

(ea+a′+···−1)2

]
· · ·

,

a, a′, . . . being determined by the equations

0 =
i+ 1

a
− s− p− nea+a

′+···

ea+a′+··· − 1
,

0 =
i′ + 1

a′
− s− p′ − nea+a

′+···

ea+a′+··· − 1
,

· · ·
XXXI.

The nth finite difference of 1
(s+p)i(s+p′)i′ ··· is equal to the product of (−1)n by

1

(s+ p)i(s+ p′)i′ · · ·
− n

(s+ p+ 1)i(s+ p′ + 1)i′ · · ·

+
n(n− 1)

(s+ p+ 2)i(s+ p′ + 2)i′ · · ·
− · · · ;
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we often have need, in the analysis of chances, to consider only the sum of any number
of the first terms of this function; let’s see how we can obtain it in convergent series.

We name S the sum of the r first terms of the preceding function; it is easy to be
assured by the preceding section that, if we name Q the sum of the r first terms of the
binomial (1− e−x−x′−···)n, we will have

S =

∫
xi−1x′i

′−1 · · · dx dx′ · · · e−px−p′x′−···−s(x+x′+··· )Q∫
xi−1x′i′−1 · · · dx dx′ · · · e−x−x′−···

We have, by No. XXI,

Q =
(1− e−x−x′−···)n

∫
ur−1du

(1+u)n+1∫
ur−1du

(1+u)n+1

the integral of the numerator being taken from u = −e−x−x′−··· to u =∞, and that of
the denominator being taken from u = 0 to u =∞, so that we can put this expression
of Q under the following form

Q = (−1)r−1
(1− e−x−x′−···)ne−rx−rx′−···

∫ (1−u)r−1du

[1−e−x−x′−···(1+u)]n+1∫
ur−1du

(1+u)n+1

,

the integrals of the numerator and of the denominator being taken from u = 0 to
u =∞; we will have therefore

S = (−1)r−1

∫
xi−1x′i

′−1 · · · du dx dx′ · · · e−px−p′x′−···−s(x+x′+··· )(1− e−x−x′−···)n (1−u)r−1

[1−e−x−x′−···(1+u)]n+1∫
xi−1x′i′−1 · · · du dx dx′ · · · e−x−x′−··· ur−1

(1+u)n+1

all the integrals being taken from the null values of the variables to their infinite values.
There is no longer a question now but to reduce, by the method of No. VII, the numera-
tor and the denominator of this expression into convergent series. The applications that
we make, in the following article, of these researches, to diverse problems on chances,
will shed a new day on this analysis.
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