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Preface

The Théorie analytique des Probabilités, henceforth referenced as the TAP, was
published in 1812 with a dedication to Napoléon-le-Grand [4]. A second edition
revised and augmented by the author appeared in 1814, a third with the introduction
further expanded and the addition of four supplements was published in 1820 [5].

After the death of Laplace an edition of his works was published at national
expense between 1843 and 1847. The seventh volume, dated 1847, contains the TAP.
A printing of his complete works in 14 volumes was undertaken between 1872 and
1912 [6]. The TAP is again contained in Volume 7. This latter edition sometimes
modernized the notation of earlier papers. The translation presented here is based
upon the original third edition.

Returning then to the third edition of 1820, we find that it may be partitioned
into five parts. These are

e Introduction. This has become known as the Essai philosophique sur les
probabilités. The essay has passed through a number of editions. An English
translation as A Philosophical Essay on Probabilities was made by Frederick
Truscott and Frederick Emory in 1902 from the sixth French edition [7]. More
recently, it has been retranslated by Andrew Dale as Philosophical Essay on
Probabilities from the fifth French edition [8].

e Book I. This consists of two parts. Part 1 is essentially a reprint of the 1779
memoir “Mémoire sur les Suites” [10]. Part 2 similarly reprints his memoir
of 1782 “Mémoire sur les Approximations des Formules qui sont fonctions de
trés grands nombres” [11].

Part 1 treats of generating functions. Isaac Todhunter states that it has
been superceded by the Calculus of Operations developed by George Boole.
We disagree. Generating functions remain important in mathematics.

Part 2 extends the theory of generating functions to two variables.

e Book II. Here Laplace presents applications of the theory. For the most part,
he restricts himself to the most difficult questions. Many of the problems had
been treated by Laplace in earlier memoirs. Consequently the TAP may be
considered in one sense as a consolidation of his work in probability.

e Additions. The first addition offers a proof of Wallis” Theorem which gives
a representation of /2 as an infinite product. The second addition proves
a formula for finite differences. The third gives a demonstration of formula
(p) of §42 on page 135.

e Supplements.



ii PREFACE

This volume presents a translation of the following front matter: the dedication
to Napoleon of the first edition, the forwards to the first, second and third editions,
and the plan of the work taken from the first edition. The original table of contents
has been moved to the front matter.

Parts 1 and 2 are followed by the Additions because these are related to Book I
alone.

Book IT and the Supplements are relegated to the second volume of this transla-
tion.

The errata for the TAP are incomplete. There are clearly printer errors in the
1820 edition which are not in the official list. Where these occur, a comparison has
been made to both the 1847 and 1878 printings. On the other hand, new errors
are sometimes introduced in these also or known ones left unchanged. Nonetheless,
I believe the text here is as free as possible from them. All corrections are made
silently.

The text is for the most part reproduced faithfully. The most notable exception is
that I have generally suppressed the use of the period to separate factors in a product.
His notation overall is very clumsy. Examples of this are the following: Superscripts
are used whereas we would use subscripts. Primes are used to distinguish variables
whereas we would use different letters and reserve primes for derivatives. Care should
be taken to note that the differential dx is treated as an object and not just part of
an operator.

The reader will further note that Laplace puts a great burden on the reader to
understand and follow his arguments. He does not post guideposts except in a cursory
way. A very careful reading, however, uncovers an order and one will see how each
part develops from the previous.

The translation of the Mécanique Céleste of Laplace by Nathaniel Bowditch in-
cluded a memoir of Bowditch written by his son, Nathaniel Ingersoll Bowditch. In it
the son says,
Dr. Bowditch himself was accustomed to remark, “Whenever I meet in
La Place with the words ‘Thus it plainly appears,” I am sure that hours,
and perhaps days, of hard study will alone enable me to discover how
it plainly appears.” [1, Vol. IV, p. 62]

This applies no less to the work presented here.

Originally I had planned to comment on the TAP as Bowditch did the Mécanique
Céleste. 1t does not seem worthwhile to do so for Book I. I refer the reader rather to
Todhunter for his summaries [12].



DEDICATION

First Edition
To Napoleon-le-grand,

Lord,

The benevolence with which YOUR MAJESTY has deigned to recieve graciously the
homage of my Traité de Mécanique Céleste, has inspired me the desire to dedicate this
Work on the Calculus of Probabilities to You. This delicate calculus is extended to the
most important questions of life, which are in fact, for the most part, only problems
of probability. It must, in this respect, interest YOUR MAJESTY of whom genius
knows to value so well and to encourage so worthily all that which can contribute to
the progress of knowledge and of public prosperity. I dare to beg Him to approve this
new homage dictated by the sharpest recognition, and by the profound sentiments of
admiration and of respect, with which I am,

LORD,
OF YOUR MAJESTY,

The very humble and very obedient,
servant and faithful subject,
LAPLACE.
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FORWARD

To the first edition

I myself propose to expose in this work, the analysis and the principles necessary
in order to resolve the problems concerning probabilities. This analysis is composed
of two theories that I have given, thirty years ago, in the Mémoires de I’Académie
des Sciences. One of them is the Theory of generating Functions; the other is the
Theory of the approrimation of Formulas functions of very great numbers. They are
the object of the first Book, in which I present them in a manner yet more general
than in the Memoirs cited. Their comparison shows evidently, that the second is only
an extension of the first, and that they are able to be considered as two branches of
one same calculus, that I designate by the name of Calculus of generating Functions.
This calculus is the foundation of my Théorie des Probabilités, which is the object of
my second Book. The questions relative to events due to chance, amount most often
with facility, to some linear equations in simple or partial differences: the first branch
of the calculus of generating functions gives the most general method to integrate
this kind of equations. But when the events that we consider, are in great number,
the expressions to which we are led, are composed of a so great multitude of terms
and factors, that their numerical calculation becomes impractical; it is therefore then
indispensable to have a method which transforms them into convergent series. It is
this that the second branch of the Calculus of generating Functions does with so much
more advantage, as the method becomes more necessary.

My object being to present here the methods and the general results of the theory
of probabilities, I treat especially the most delicate questions, the most difficult, and
at the same time the most useful of this theory. I apply myself especially, to determine
the probability of the causes and of the results indicated by the events considered in
great number, and to seek the laws according to which that probability approaches its
limits, in measure as the events are multiplied. This research merits the attention of
the Geometers, by the analysis that it requires: it is there principally that the theory
of approximation of the formulas functions of large numbers, finds its most important
applications. This research interests observers, by indicating to them the means that
they must choose among the results of their observations, and the probability of the
errors that they have yet to fear. Finally, it merits the attention of the philosophers,
by showing how the regularity completes by being established in the same things
which appear to us entirely delivered by chance, and by revealing the hidden, but
constant causes, on which this regularity depends. It is on this regularity of the mean
results of the events considered in great number, that diverse establishments repose,
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vi FORWARD

such as life annuities, tontines, assurances, etc. The questions which are related to
them, such as inoculation of vaccine, and to the decisions of electoral assemblies,
offer no difficulty according to my theory. I limit myself here to resolve the most
general; but the importance of these objects in civil life, the moral considerations of
which they complicate themselves, and the numerous observations that they suppose,
require a work apart.

If we consider the analytical methods to which the theory of probabilities has
already given birth, and those that it is able to yet give birth; the justice of the
principles which serve as foundation to it, the rigorous and delicate logic that their
use requires in the solution of the problems; the establishments of public utility which
depend on it: if we observe next that in the same things which are not able to be
submitted to the calculation, this theory gives the most certain outline which is able
to guide us in our judgments, and that it teaches to guard against illusions which
often mislead us; we will see that there is no science more worthy of our meditations,
and of which the results are more useful. It owes birth to two French Geometers of
the seventeenth century, so fecund in great men and in great discoveries, and perhaps
of all the centuries the one which gives most honor to the human spirit. Pascal and
Fermat proposed and resolved some problems on probabilities. Huygens united these
solutions, and extended them in a small treatise on this matter, which next had been
considered in a more general manner by Bernoulli, Montmort, Moivre, and by many
celebrated Geometers of these last times.



FORWARD vii

To the second edition

This Work has appeared in the course of 1812, namely, the first Part towards the
beginning of the year, and the second Part some months after the first. Since that
time, the Author has occupied himself especially in perfecting it, either by correcting
slight faults which had slipped there, or by useful additions. The principal is a quite
extended Introduction, in which the principles of the Theory of Probabilities and
their most interesting applications are exposed without the help of the calculus. This
Introduction, which serves as preface to the Work, appears further separately under
this title: Essai philosophique sur les Probabilités. The theory of the probability of
witnesses, omitted in the first edition, is here presented with the development that
its importance requires. Many analytic theorems, to which the Author had arrived
by some indirect paths, are demonstrated directly in the Additions, which contain,
moreover, a short extract from the Arithmetica infinitorum of Wallis, one of the
Works which have most contributed to the progress of Analysis and where we find
the germ of the theory of definite integrals, one of the bases of this new Calculus
of Probabilities. The Author desires that his Work, increased by at least a third by
these diverse Additions, merits the attention of the geometers, and excites them to
cultivate a branch so curious and so important in human knowledge.



viii FORWARD

To the third edition

This third Edition differs from the preceding: 1° by a new Introduction which has
appeared last year, under this title: FEssai philosophique sur les Probabilités, fourth
Edition; 2° by three Supplements which are related to the application of the Calculus
of Probabilities to the natural sciences and to geodesic operations. The first two have
been published already separately; the third, relative to the operations of leveling, is
terminated with the exposition of a general method of the Calculus of Probabilities,
whatever be the number of the sources of error.
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PLAN OF THE WORK

It is divided into two Books: the first has for object, the Calculus of generating
Functions, which serve as base to the Theory of Probabilities, exposed in the Work.
This calculus is divided into two branches of which the one is the same theory of
generating functions, and of which the other is the extension of this theory to the
approximations of formulas (which are) functions of great numbers. The exposition
of the principles of the theory of probabilities, and the application of these principles
and of the analysis exposed in the first Book, to the most difficult and the most
important questions of the probabilities, are the object of the second Book. (1812
Edition)

Part 1. GENERAL CONSIDERATIONS ON THE ELEMENTS OF MAGNITUDES 1

The notation of exponents, imagined by Descartes, has led Wallis and Newton, to
the consideration of fractional exponents, positive and negative, and to the inter-
polation of series. Leibnitz has rendered these exponents variables, that which has
given birth to the exponential calculus, and has completed the system of elements
of finite functions. These functions are formed of exponential, algebraic and log-
arithmic quantities; quantities essentially distinct from one another. Integrals are
not often reducible to finite functions. Leibnitz having adapted to his differential
characteristic, of the exponents, in order to express the repeated differentiations;
he has been led by the analogy of the powers and of the differences, an analogy that
Lagrange has followed by way of induction, in all its developments. The theory of
generating functions, extends this analogy to some unspecified characteristics, and
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IAnym = <Ca% - 1)77', /Enyﬂc = (CQ% - 1) _na
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'\ and 'Y correspond to the variation «, of x. We transform the expression of
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( o Mot ng o Mainp )n
C2 dx —C 2 dx .
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Part 1

(GENERAL CONSIDERATIONS ON THE ELEMENTS
OF MAGNITUDES



§1. Magnitudes considered in general, are expressed commonly by the letters of
the alphabet, and it is to Viete that this handy notation is due which transports the
alphabets of the common languages to the analytic language.! The application that
Viete makes of this notation, to Geometry, to the theory of equations and to the angu-
lar sections, forms one of the remarkable periods of the history of Mathematics. Some
very simple signs express the correlations of magnitudes. The position of a magnitude
one after another, suffices to express their product. If these magnitudes are the same,
this product is the square or the second power of that magnitude. But, instead of
writing it twice, Descartes imagined writing it only once, by giving to it the number 2
for exponent; and he expressed the successive powers, by increasing successively this
exponent by one unit. This notation, by considering it only as an abbreviated way to
represent these powers, seems a little thing; but such is the advantage of a well-made
language, that its most simple notations have become often the source of the most
profound theories; and it is that which has held for the exponents of Descartes. Wallis
who applied himself especially to the line of induction and analogy, has been led by
this means, to express the radical powers, by some fractional exponents; and likewise
as Descartes expressed by the exponents 2, 3, etc., the second, third, etc. powers of
a magnitude; he expressed its second, third, etc. roots by the fractional exponents %,
%, etc. In general, he expressed by the exponent * the root n of a magnitude raised
to the power m. Indeed, following the notation of Descartes, this expression holds
in the case where m is divisible by n; and Wallis, by analogy, extended it to all the
cases. He noted next that the multiplication of the powers of one same magnitude,
reverts to adding the exponents of those powers, that it is necessary to subtract in
their division; so that the exponent n — m indicates the quotient of the power n of
a magnitude, divided by its power m; whence it follows that this quotient becomes
unity, when m is equal to n, each magnitude having zero for exponent, is the unit
itself. If m surpasses n, the exponent n — m becomes negative, and the quotient be-
comes unity divided by the power m —n of the magnitude. Wallis supposed therefore
generally that the negative exponent —* expresses the unit divided by the n'™® root
of the magnitude raised to the power m.

It was in his work entitled Arithmetica infinitorum,?> that Wallis exposed those
remarks which led him to sum z", x being supposed formed of an infinity of elements
taken for unity; that which, according to the actual notations, reverts to integrating
the differential 2"dx. He showed that this integral taken from x null, is %, that
which gave to him the integral of a series formed of similar differentials. By considering
thus the integral [ daz(1 —zw)*, when n and s are whole numbers, and when it is taken

= o 1.2.3-n B
from z null to x = 1, he found that it is equal to I+ If the indices n and

s are fractional and equal to %, this integral expresses the ratio of the surface of the

IThere is an English translation of Francois Vidte by T. Richard Witmer. The Analytic Art,

Kent State U. Press (1983), reprinted by Dover Publications.

2The relevant passage may be found in A Source Book in Mathematics, 1200-1800, pages 244—
253. See also The Arithmetic of Infinitesimals: John Wallis 1656 by Jacqueline Stedall, Springer
(2004).
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circle to the square of its diameter. Wallis applied himself therefore to interpolate
the preceding product, in the case where n and s are fractional numbers; a problem
entirely new at the period where this illustrious Geometer busied himself with it, and
that he arrived to resolve by a quite ingenious method which contains the germs of
the theories of interpolations and definite integrals, of which the geometers have so
much occupied themselves, and which are the object of a great part of this work. He
obtained in this manner, the expression of the ratio of the surface of the circle to the
square of its diameter, as a product of an infinity of factors, which give values more
and more near to this ratio, in measure as we consider a greater number of these
factors; a result one of the most singular of Analysis. But it is remarkable that Wallis
who had so well considered the fractional indices of radical powers, had continued
to note these powers, as one had done before him. We see the notation of radical
powers, by fractional exponents, employed for the first time in the letters of Newton to
Oldenburg, inserted into the Commercium epistolicum. By comparing by the path of
induction of which Wallis had made such beautiful usage, the exponents of the powers
of the binomial, with the coefficients of the terms of its development, in the case where
these exponents are whole numbers; he determined the law of these coefficients, and
he extended it by analogy, to fractional powers and to negative powers. These diverse
results founded on the notation of Descartes, show the influence of handy notation
on all analysis.

This notation has further the advantage to give the simplest and most just idea of
logarithms, which are in fact, only whole and fractional exponents of one same mag-
nitude of which the diverse powers represent all numbers. But the most important
extension that this notation has received, is that of variable exponents; that which
constitutes the exponential calculus, one of the most fertile branches of modern anal-
ysis. Leibnitz has indicated first, in the Actes de Leipzig for 1682,® the transcendents
to variable exponents, and thence he has completed the system of elements of which
a finite function can be composed. For every explicit finite function is reduced in last
analysis, to some simple magnitudes, added or subtracted from one another, multi-
plied or divided among them, raised to some constant or variable powers. The roots
of equations formed of these elements, are implicit functions of them. It is thus that
¢ being the number of which the hyperbolic logarithm is unity, the logarithm of a
is the root of the transcendent equation ¢ —a = 0. We can consider further the
logarithmic quantities, as exponential functions of which the exponents are infinitely

small. Thus X log X’ is equal to X/);iz’l. All the modifications of magnitude that
we can imagine to the exponents, are found therefore represented by the exponential,
algebraic and logarithmic quantities. These quantities and their functions embrace
consequently, all the explicit finite functions; and the roots of the equations formed
of similar functions, embrace all the implicit finite functions.

These quantities are essentially distinct: the exponential a®, for example, can

never be identical with an algebraic function of x. For each algebraic function is

34De vera proportione circuli ad Quadratum circumscriptum in Numeris rationalibus,” Acta
Eruditorum, 43-46. Reprinted Mathematische Schriften, Vol V (1858), 118-122.
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reducible into a descending series of the form kz™ + k"™ + etc.: now it is easy
to demonstrate that a being supposed greater than unity, and z being infinite, a”
is infinitely greater than kx™, however great that we suppose k£ and n. Similarly,
it is easy to see that in the case of = infinite, x is infinitely greater than k(logx)".
The exponential, algebraic and logarithmic functions of an indeterminate variable,
can therefore not re-enter into one another: the algebraic quantities hold the mid-
dle between the exponential and the logarithmic; the exponents, when the variable
is infinite, can be considered as infinite in the exponentials, finite in the algebraic
quantities, and infinitely small in the logarithmic quantities.

We can further establish in principle, that a radical function of one variable,
cannot be identical with a rational function of the same variable, or with another
radical function. Thus (1 + 2%)1, is essentially distinct from (1 + #*)3 and from
(1+ ).

These principles founded on the nature itself of the functions, can be of great
utility in analytic researches, by indicating the forms of which the functions that one
intends to find, are susceptible, and by demonstrating their impossibility in a great
number of cases; but then it is necessary to be quite certain to omit none of the
possible forms. Thus differentiation leaving the exponential and radical quantities
to subsist, and by making the logarithmic quantities vanish, only as long as they
are multiplied by some constants; we must conclude from it that the integral of a
differential function can contain no other exponential and radical quantities, than
those which are contained in that function. By this means, I have recognized that
we can not obtain in the form of an explicit or implicit finite function of the variable
, the integral | \/#W’ I have demonstrated similarly that the linear equations

in partial differences of the second order among three variables, are not most often,
susceptible of being integrated under a finite form; that which has led me to a general
method in order to integrate them under this form, when it is possible. In the other
cases, we can obtain a finite integral, only by means of definite integrals.

Leibnitz having adapted to the differential calculus, a very handy characteristic, he
imagined giving to it the same exponents as to magnitudes; but then, these exponents,
instead of indicating the repeated multiplications of one same magnitude, indicate the
repeated differentiations of one same function.* This novel extension of the Cartesian
notation, led Leibnitz to this remarkable theorem, namely, that the n'" differential of
a product zyz etc., is equal to (dx+dy+dz+ etc.)”, provided that in the development
of this polynomial, we apply to the characteristic d, the exponents of the powers of dz,
dy, dz, etc., and that thus we write d"z.d" y.d"" z etc., instead of (dz)".(dy)" .(dz)""
etc., by taking care to change d’z, d’y, d°z, etc. into z, y, z, etc. This great
Geometer observed moreover, that this theorem subsists, by supposing n negative
there, provided that we change the negative differentials into integrals. Lagrange has
followed this singular analogy of powers and of differences in all his developments;
and by a sequence of very fine and fortunate inductions, he has deduced from it

4Laplace most likely refers here to “Symbolismus memorabilis calculi algebraici et infinitesimales
in comparatione potentiarum et differentiarum,” Miscellanea Berolinensia, pages 160-165, (1710).
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general formulas as curious as useful, on the transformations of the differences and of
the integrals into one another, when the variables have diverse finite increases, and
when these increases are infinitely small. His Memoir® on this object, inserted into
the Recuiel de I’Academie de Berlin for the year 1772, can be regarded as one of the
most beautiful applications that one has made, on the method of inductions. The
theory of generating functions extends the Cartesian notation to some unspecified
characteristics; it shows at the same time, evidently, the analogy of the powers and
of the operations indicated by these characteristics, and we are going to see all that
which concerns series, and the integration of linear equations in differences, rising
from it with an extreme ease.

54Sur une nouvelle espece de calcul, rélatif & la differentiation & & Dintégration des quantités
variables,” Nouveaur Mémoires de I’Académie Royale des Sciences et Belles-Lettres, pages 185-221.






CHAPTER 1

Concerning generating functions, in one variable

§2. Let y, be any function whatever of z; if we form the infinite series [9]

Yo + it + Yot 4+ yst® -+ yut” + Yy t™T Yoot ™

we can always imagine a function of ¢, which developed according to the powers of ¢,
gives this series: this function is that which I name generating function of y,.

The generating function of any variable v, is thus generally a function of ¢, which
developed according to the powers of ¢, has this variable for the coefficient of ¢*; and
reciprocally, the corresponding variable of a generating function, is the coefficient of ¢t*
in the development of this function according to the powers of ¢; so that the exponent
of the power of ¢, indicates the rank that the variable y, occupies in the series which
we can imagine prolonged indefinitely to the left, relative to the negative powers of ¢.

It follows from these definitions, that u being the generating function of y,, that
of y.1r is 4; because it is clear that the coefficient of ¢* in 7 is equal to the one of
t**" in u; and consequently it is equal to Y.

The coefficient of t* in u (% — 1) is therefore equal to y,.1 — ¥y, or to the difference
of the two consecutive quantities y,; and y,, a difference that we will designate by
Ay, A being the characteristic of finite differences. We have therefore the generat-
ing function of the finite difference of a variable quantity, by multiplying by % —1, [10]
the generating function of the quantity itself. The generating function of the finite

difference of Ay,, a difference that we designate by A2y, is thus u (% — 1)2; that of
the finite difference A%y, or Ady,, is u (% — 1)3; whence we can generally conclude
that the generating function of the finite difference Ay, is u (% — 1)2.
Similarly, the coefficient of ¢* in the development of

+ b e
u a — — —_— . e e R
t o2 43 {n
is
Yz + OYri1 + CYoy2 + €Yzy3 - + QYrin;

by naming therefore Vy, this quantity, its generating function will be

e

ula+-+—=---+-=].

t 2 tn

If we name V2y, that which Vi, becomes when we change 1, into Vy, there; if we
name similarly V3y, that which V?y, becomes when we change Vy, into V2y,, and

7
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so forth, their corresponding generating functions will be

e 2
u a/ —_— —_— e . —_— ;
t 12 tn

+b+c +q 3
u a — —_— . e e —_— M
t o t? )
etc.,

and generally the generating function of V', will be

oy +qi
ula+-+—=-+—1].
t 2 tn

Thence it is easy to conclude generally that the generating function of A'V*y, ., is

ulgpbpe d NE 1i
— a — —_— . e e —_— _—— .
¢ ¢ ) \t

We can generalize further these results, by supposing that Vi, represents any
finite or infinite linear function, of 4., Yst1, Ysyo, etc.; that V2y, is that which Vy,
becomes, when we change v, into Vy, there; that V3y, is that which V2y,, becomes
when we change Vy, into V?2y,, and so forth; v being the generating function of y,,
us® will be the generating function of V'y,, s being that which Vi, becomes, when
we change ¥y, into unity, y,., into %, Yzro into tig, etc. This is still true, when 7 is
a negative number, or even fractional and incommensurable, by making however in
this result, some convenient modifications.

Let us represent by ¥ the characteristic of finite integrals, and let us name z the
generating function of Xy,, u being the generating function of y,; (% — 1)Z will be
by that which precedes, the generating function of y,. But this function must, by
having regard only to the positive powers of ¢, be reduced to u which contains only
positive powers of ¢, if we extend the multiple integral X%y, only to the positive values
of x; we will have therefore then

z(l—l)l:u—i-é—l—g%—g'--—ki'
t t 23 t’
whence we deduce
ut' + At + B2+ Ct3 .+ F
- (1=t |
A, B,C, ..., F being arbitrary constants which correspond to the ¢ arbitrary constants
that the 7 successive integrations of ¥'y, introduce.

By setting aside these constants, the generating function of Xy, is u (% — 1)71;
so that we obtain this generating function, by changing 7 into —¢, in the generating
function of Ay,; Ay, is therefore then equal to ¥y, ; that is that the negative dif-
ferences are changed into integrals. But, if we have regard to the arbitrary constants,
it is necessary, in passing from the positive powers of % — 1 to its negative powers, to
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augment v with the series é + t% + t% + etc., prolonged until the number of its terms
is equal the exponent of these powers. We can apply similar considerations, to the
generating function of Viy,.

We see by that which precedes, in what manner the generating functions are
formed from the law of the corresponding variables. Let us see now how the variables
are deduced from their generating functions. s being any function of %, if we develop s
according to the powers of %, and if we designate by tﬁn any term of this development;
the coefficient of ¢t* in ]:—Zf will be ky,.,; we will have therefore the coefficient of t*
in us’, a coefficient that we have designated previously by Viy,, 1° by substituting
into s, y, in place of %; 2° by developing that which s’ then becomes according to the
powers of y,, and by transporting to the index x, the exponent of the power of y,;
that is, by writing v, instead of (y,)'; y,42 instead of (y,)?, etc., and by multiplying
the terms independent of y,, and which can be counted to have (y,)° for factor, by
Yz- When the characteristic V is changed into A\, s is, by that which precedes, equal
to % — 1; we have therefore then

i(i—1)

Alyx = Yz+i — Z-yx+i71 +

If, instead of developing s* according to the powers of %, we develop it according to
the powers of % — 1, and if we designate by k (% — 1)”, any term of this development;
the coefficient of t* in ku (% — 1)” will be kA"y,; we will have therefore Viy,; 1°
by substituting into s, Ay, in place of % — 1, or, that which reverts to the same,
14 Ay, in place of %; 2° by developing that which s’ then becomes according to the
powers of Ay,., and by applying to the characteristic A\, the exponents of the powers
of Ay,, that is by writing Ay, instead of (Ay,)!, A%y, instead of (Ay,)?, etc., and by
multiplying by (Ay,)?, or, that which is the same thing, by y, the terms independent
of Ay,.

In general, if we consider s as a function of r,  being a function of %, such that
the coefficient of t* in ur, is Oy,; we will have Viy,, by substituting into s, Oy,, in
place of r; by developing next s* according to the powers of (i, and by applying to
the characteristic [J, the exponents of Oy, that is, by writing Oy, in place of (y,),
02y, in place of (Oy,)?, etc.; and by multiplying by v, the terms independent of [y,

The development of Vy, by a series ordered according to the successive variations
Oy,., O%y,, etc., is reduced therefore to the formation of the generating function of
Yz, in the development of that function, according to the powers of a given function;
finally, on the return of the generating function thus developed, to the corresponding
variable coefficients; the exponents of the powers of the development of the generating
function, becoming those of the characteristic of these coefficients. We see thus the
analogy of the powers with the differences, or with every other combination of the con-
secutive variable coefficients. The passage from these coefficients to their generating
functions, and the return of these developed functions to the coefficients constitute
the calculus of generating functions. The following applications will make known the
spirit and the advantages of them.

[12]

[13]
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On the interpolation of the series in one variable, and on the integration
of linear differential equations.

§3. All theory of the interpolation of series is reduced to determining, whatever be
1, the value of y,,; as a function of the terms which precede or which follow y,. For
this, we must observe that y,, is equal to the coefficient of #**% in the development
of u, and consequently equal to the coefficient of t* in the development of &; now we
have

Ezu(1+l—1>i:u 1+ (%—1)#‘( 1)(%_1)2

1.2
i(i—1)(i 1 s
+— 123 ;— + etc.

Moreover, the coefficient of ¢* in the development of wu, is y,; this coefficient in the

development of u (% — 1), is Ay,; in the development of u (% — 1)2, it is equal to
A2y, and so forth; the preceding equation will give therefore, by passing again from
the generating functions to the coefficients,

i(i=1) o ili=1)(i-2)

T A3 T .
12 Y 1.2.3 Yo+ cte

This equation holding whatever be 7, by supposing it even fractional, serves to inter-
polate the series of which the successive differences of the terms are decreasing.
If we have the equation in finite differences

Ay, =0;
the preceding series is terminated, and we have, whatever be 4, by making x null,

i(i—1)
1.2

i(i—1)...(i—n+2)

n—1
123 (=1 ~© W

Yi = Yo + i lyo + Nlyo--- +

This is the complete integral of the proposed equation in the differences, yo, Ay,
.. A" "1y, being the n arbitrary constants of this integral.
All the ways of developing the power %, give as many different methods to inter-
polate the series. Let, for example,
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by developing t% according to the powers of «, by formula (p) of §21 of the second
book of the Mécanique céleste,* we will have
i +2r—=1) 5 (i +3r—=1)E+3r—2) 4
1
L T 123 “
+z’(z’ +4r —1)(i +4r — 2)(i + 4r — 3)
1.2.34
a being equal to t” (% — 1), the coefficient of t* in the development of u« is, by §2,

Ay, _,; this same coefficient in ua? is A2y, _s,, and so forth. The preceding equation
will give therefore, by passing again from the generating functions to the coefficients,

U
U
t 4
a” + ete.

. 14+ 2r—1
Yzrt+i = Yz + ZAya:—r + %Azyx—%“
(2 4+3r—1)(e+ 3r — 2
+ Z(Z T 1 ;(;+ ! )A3y273r + etc.

§4. Here is now a general method of interpolation, which has the advantage of
being applicable, not only to the series of which the differences of the terms conclude
by being null, but further to the series of which the ultimate ratio of the terms is that
of any recurrent series.

Let us suppose first that we have

t<%—02:z (1)

and let us seek the value of t% in a series ordered with respect to the powers of z. It

is clear that tl is equal to the coefficient of #° in the development of the fraction ﬁ
t
If we multiply the numerator and the denominator of this fraction by 1 — 0t, we will
have this here
1—6t

1—6(3+1)+62

Equation (1) gives
1
that which changes the preceding fraction into this one here

1—gt
(1—6)2—260’

See Volume I of Oeuwvres de Laplace (1843), p. 173. In his original paper of 1779 [10], Laplace
credits Lagrange with this formula: “Recherches sur les suites recurrentes dont les termes varient
de plusieurs manieres différentes, ou sur l'integration des équations linéaires aux différences finies et
partielles; et sur 'usage de ces équations dans la théorie des hazards.” This appeared in Nouveaux
Mémoires de I’Académie ... Berlin for the year 1775, published in 1777, [3, pages 183-272]. The
formula appears there on page 115.
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now we have

! = L + 4 + s + etc.;
(1—9)2—20_(1—0)2 (1—-0)* (1—0)8 v

besides the coefficient of 8" in the development of ﬁ, is

s(s+1)(s+2)...(s+r—1)
1.23...r ’

whence it follows that the coefficient of # is, 1° ¢ + 1 in the development of ﬁ;

90 i(i4+1) (1+2) 0 30 (1—1)3(i4+1)(e42)(1+3)
1.2.3 (1-6)%- 1.2.3.4.5

of ﬁ, and thus of the rest; therefore if we name Z the coefficient of % in the

, in the development of , in the development

development of the function
1

(1—0)2— 26’
we will have
i(i +1)(i+2) n (1—1)i(i+ 1)@ +2)(i + 3)22

Z=i+1
R T R 12345
(t—2)G—1)ii+1)(E+2)(i+3)(i +4) 4
tc.
* 1234567 z et
or
o (G+1)2=1]z  [(i+1)>=1][(i +1)* — 4]2* '
Z=@+1 {1 LV R 12.345 Feteps
if we name next Z’ the coefficient of #* in the development of
0
(1—6)2—26’

we will have Z’ by changing i into 7 — 1 in Z, that which gives

9 2 N2 A\ L2
(i Dz (i 1)(*—4)z 4 ete.|
1.2.3 1.2.3.4.5

7'=q |1+

we will have thus Z — tZ’ for the coefficient of % in the development of the fraction

1—6t '
(1—-6)2— 26’
this will be consequently the expression of %; therefore
% =u(Z —tZ").

This premised, the coefficient of ¢* in §, is y,4;. This same coefficient, in any term

of uZ, such as kuz" or kut" (% — 1)% is, by §2, kA%y,_,. In any term of utZ’, such
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as kutz" or kut™ ! (% — 1)2r, this coefficient is kA?"y,_,_1; we will have therefore, by
passing again from the generating functions to their coefficients,

i+1)2 -1
Yz ‘|’ %A2yux—l
[@+U—JWH4)—MA% + et
1.2.3.4.5 v '
i —1 (i —1)(i* — 4)
il Ny, AT te. .
Z{y P23t T T 345 Ya—g 7 eC

We can give the following forms to the preceding expression. Let Z” be that
which Z" becomes when we change i into ¢ — 1 there; and consequently, that which Z
becomes when we change i into ¢ — 2. The equation

1
t’L
will give
o .
i VAR Y/
hence,
l — z _ Z/I
te t '

1

By adding these two values of 7, and taking the half of their sum, we will have

1 1, 1 1 1
— =z 7"+ (14t (=—1) 7,
i 22734 15l +)<t ) ’

now we have

11 2 2R2-1), P@—1)2—4)
7 -7 =14 — 2 7+ etc,
2773 T 12" 1234 © T 123456 - T

hence
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[18] whence we conclude, by passing again from the generating functions to the coefficients,

;2 2(% — 1)
r+i — Yz _Az r— —A4 T—
Yori = Yo T 158 Yoot F 5577 8 Yoz
2(% — 1)(% — 4)
1.2.3.456

. . .2

) 7 1°—1
§(Ayx + Ayp—1) +
1

2 1.2.3

(2 —1)(i* — 4)
2 12345
This formula® serves to interpolate between an odd number 2z + 1 of equidistant
quantities; the common interval which separates them being taken for unity, y, is
the middle of the magnitudes g, y1, ¥Y2,. . . Y2.; and ¢ is the distance from y,; to this
middle. The preceding expression is then symmetric relative to these magnitudes;
because A?y,_1, for example, is equal t0 Yz41 — 2y + Yp_1, and Ay, + Ay,_; is equal
t0 Yz11 — Yz—1. Thus the quantities placed above and below the mean v,., enter in the

same manner into this expression.

If we change 7 into ¢+ 1 in the last expression of , and if we subtract from it that
expression itself; we will have the expression of 7 — Jf, or of 3 (% — 1); by dividing

next this value by % — 1, we will have

Hwt(l_lf

A6y:c—3 + etc.

(Agy:c—l + Agy:r:—Q)

_|_

(A°Yp—g + ANPy,_3) + ete.

_u(l +1) 1.2 t
72 IR () et PV SRS
1.2.3.4 t '
Coo1y2 1 2
21l
1+ Mt (_ — 1)
1 1.2.3 t
+(z’+%)ut(¥—1) e 1w )
[(i+35)" = 3lli+3)" =1 5 (1
"l -—1) +etc.
1.2.3.4.5
[19] By passing again from the generating functions to the coefficients, we will have
1 [(i+%)2_%] Lo o 2
Yo+i —5(:%0 + y:vfl) + T ' §<A Yz—1 + A ymf2>
i+ 3?2 —1GE+3)2-9 1
(+5) 142][?5 1 )=l ' §(A4yw—2 + Ay, 3) + ete.
+ 2 1
Ayxfl + [( 122) 3 4] A33/:]072
e G+ 32— i+ 2 -
+ 2 124345 2 L NAPy,_3 + etc.

2In his original paper, Laplace states that this formula reverts to the one Newton gave in his
Methodus differentialis in order to interpolate between an odd number of equidistant quantities [10].



1. CONCERNING GENERATING FUNCTIONS, IN ONE VARIABLE 15

This formula® serves to interpolate between an even number 2z of equidistant quan-
tities, y, and 7, being the two middle quantities.? It is disposed in a symmetric
manner relative to the quantities equally distant from the middle of the interval which
separates the extreme quantities: this middle is the origin of the values of i+ %, which
are positive above and negative below.

All these expressions of y,.; are identical, and such that if we imagine a parabolic
curve of which ¢ is the abscissa, and y,.; the ordinate, and of which the equation is
that which gives the expression of y,;; this curve will pass through the extremities
of the ordinates vy, Yri1, Yoro, €tC.; Yz 1, Yoo, etc. We can thus, by taking the
successive finite differences of any number of coordinates, make a parabolic curve
pass through the extremities of these coordinates.

§5. Let us suppose generally

b ¢ e P q
z=a+-+—=+—=5--" —; a
+t+t2+t3 +t”_1+t”’ (a)
we will have
I z—a b c D
mn q qt th qtn—l’
that which gives
1 z—a b c 2
ntl qt qt? qt3 qtn’

eliminating tin from the second member of this equation, by means of the proposed
(a), we will have

1 plz—a) pb+q(z—a)
th—— q2 + th + etc.

This expression of t”% contains only powers of % of an order inferior to n. By
multiplying it by %, we will have an expression of tn%, which will contain the power
tin; but by eliminating again this power, by means of the proposed (a), we will reduce
the expression of tn% to contain only powers of % inferior to n. By continuing thus,
we will arrive to an expression of t%, which will contain only powers of % less than n,
and which will be consequently of the form

1 s o, 10 .
i Z+ tZ + » Z +
Z, 7M. 7@ etc., being some rational and integral functions of z, of which the highest
power of z does not surpass %

This manner of determining tl would be very laborious, if ¢ were a large number;
it would lead besides with difficulty to the general expression of this quantity. We
could arrive there directly by the following method.

1
tnfl

ARS

3Again in his original paper, Laplace states that this formula reverts to the one given by Newton
in Methodus differentialis [10].

4The original has “y,_; and y,41 being the two middle quantities.” The errata replaces these
values by y, and y;4.. However, the change must be as above.

[20]



[21]

16 1. CONCERNING GENERATING FUNCTIONS, IN ONE VARIABLE

t—li is equal to the coefficient of €' in the development of the fraction ﬁ If we
t

multiply the numerator and the denominator of this fraction by
(a—2)0" +b0" " +c0" 2 +pl+g;

and if in the numerator we substitute in the place of z, its value a + %’ + ;5 +etc., we
will have

hon—1 (1_%)_’_09"_2 <1—§—§)+69n_3 (1_§_§>+q(1_§_:)

Y

(1-9) (ab"+b0" 1 +cO 2 +pbh+q— 26"

by dividing the numerator and the denominator of this fraction by 1 — %; it becomes

( 3\

DO 4 O e 4 g
+¥(C 8%—2 + e 9n—3 ......... + q)
02 o
+t_2( L +q)
+ etc
971—1
\+t”_1 4 ),

afm+b0" 1 2. 4 ph4q— 20"
The pursuit of the coefficient of 6 in the development of this fraction, is reduced thus

to determining, whatever be r, the coefficient of #” in the development of the fraction

1
afn +b0m1 fch=2... 4+ ph+q— 20"

For this, let us consider generally the fraction g, P and (@) being rational and integral
functions of #, the first being of an inferior order to the second. Let us suppose that
() has a factor # — « raised to a power s, so that we have
Q= (0—a)R;

R being a rational and integral function of . We can decompose the fraction g into
@ _Aa)s + %, A and B being rational and integral functions of @, the first,
of order s — 1, and the second, of an order inferior to (the one of) R; because it is
clear that by substituting for A and B, some functions of this nature, with some un-
determined coefficients; by reducing next the two fractions to the same denominator,
which becomes then equal to Q); by equating finally the sum of their numerators to
P; the comparison of the powers similar to 6, will give as many equations as there
are undetermined coefficients. This premised, the equation

A B P

@—ar R (G—arR

two others



1. CONCERNING GENERATING FUNCTIONS, IN ONE VARIABLE 17

gives
P Bl -«
A=—=——r0——.
R R

If we consider A, B, P and R as some rational and integral functions of 6 — «, A will
be a function of order s — 1, and consequently it will be equal to the development of
%, into a series ordered with respect to the powers of # — «, provided that we stop

ourselves at the power s — 1 inclusively. Let therefore

P
Bt uy (0 — @) +uz(0 — a)® + etc.;

we will have
A Ug U1 U2

G—ar -0y @—ay' (@-a)

by rejecting the positive powers of 6 —q; ﬁ is, consequently, equal to the coefficient

of t*! in the development of the function
ug + uit + ust? + ete.
0—oa—t ‘
If we name P’ and R’ that which P and R become when we change 6 — « into t there,
or, that which reverts to the same, 6 into ¢t + «; we will have

/

— = Uy + ut + u2t2 + etc.;

— T ete;

R/
hence, ﬁ is equal to the coefficient of +*~! in the development of
Pl
RO—a—t)
it is therefore equal to
1 1 P’

ot
1.2.3... (s = 1)dts1 RO —a—t)
provided that we suppose t null after the differentiations. Now, the coefficient of 6"
n

P/
R0 —a—t)
being equal to
P/
- R/(a + t)r+1 ’
this same coefficient in
1 1 P’

R S L
1.23...(s—1)dts—! R0 —a—t)

will be
1 a1 P’

s
1.2.3.. (s — 1)dts—! R+ t)r+1
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t being supposed null after the differentiations; this last quantity is therefore the
coefficient of 6" in the development of ﬁ. If we restore in P’ and R, § — « in

place of ¢, that which changes them into P and R, we will have

S_IL -1 P
d R/(a+t)r+1 _ dS W
dts—1 dos—1 ’

provided that we suppose 6 = «, after the differentiations in the second member of
this equation; the function

1 dsfl P

ROr+1

123.. (s—1) dfs1

is therefore, with this condition, the coefficient of #” in the development of the fraction
A
O-a)

It follows thence that if we suppose

! "

Q=a(l—a)@—a) 0 —a") etc,

the coefficient of #" in the development of the fraction g, will be

- 1 ot P
1.23...(s—1)dgs—1 af (0 — a)*' (0 — )% ete.

SRS A S
1.2.3...(s" = 1)dos' ! abf™ (0 — a)s(0 — )" etc.
1 Y P
123, (s"—1)deT (a97’+1(0 —a)s(f — o/)s'.etc.)

— etc,,

by making 6 = « in the first term; § = o' in the second term; § = «” in the third
term, and so forth.
Now, let there be

V=a(f—a)(f—a)(0—a").etc.

By developing the fraction

1
V — z6"

into a series ordered with respect to the powers of z, we will have

1 26’” 2’2 0211 230371
—

v V2 V3 Vi + etc.
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the coefficient of 8" in the development of the fraction Vi is, by that which precedes,
equal to

1
Or+1(0 — o')5(0 — )% .etc.

1.23... (s — 1)asd>—"

1
_ 1 T —a)yp (0 —aryete. - (0)
1
(

+9r+1 (9 _ CY)S
\—i— ete.

0 — a')s.etc.

provided that after the differentiations, we suppose 6 = « in the first term; § = o in
the second term; # = o’ in the third term, etc. If there is only a single factor § — «,
the function contained between the two parentheses, is reduced to #, f must be
changed into « after the differentiations, that which reduces the quantity (o) to

(r+D)(r+2)r+3)...(r+s—1) 1
1.23...(s—1)a* arts’

(-1

If in the expression of V', some of the factors § — «, 8 — o/, etc., are raised to some
powers higher than unity; for example, if § — « is raised to the power m; it will be
raised to the power —ms in %; and then it is necessary to change the first term of
the quantity (o) in the following,

1 dmsfl 1 ‘
1.2.3...(ms — 1)as dgms—1 07+1(0 — o’)*(0 — o”)%.etc.’

and in the other terms, it is necessary to change (f — «)®, into (6 — «)™*.

Let us represent generally by Z° ™V, the quantity (0); the coefficient of 6, in the

development of the fraction ﬁ will be

z0+ 20 2+ 22,22+ 22

3 .
n p i_3n 2"+ etc.;

[25]
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we will have therefore for the coefﬁcient of &%, in the development of the first fraction®

on page [21], or for the value of

7i —b [Z nt1 T ZZ( )2n+1 + 2221(2)3n+1 +z Zz( )4n+1 + etc.]

1—

)

+c [Z@HJr2 + zZ( )2n+2 +z Z( )3n+2 + zSZ(3)4n+2 + etc.}
+e [ng),l+3 + ZZ(12n+3 + 22212)3%3 +z Z Tunys T ete. ]
+ etc.

c [Z.@n+ 22+ 22+ etc.}

1 7
* t] te [Zi(g)nJrZ + Z( )2n+2 + 22(2)311+2 + etc.} (A)
+ etc.

1 { € |:Zi(9)n+1 + ZZ( )2n+1 +z Z( )3n+1 + ete. ]}
t

1
+ = i [Zz(O)n—i—l + Z( ont1 T 2Z(2)3n+1 —i—etc} :
Presently, if we designate by Vy, the quantity

aYy + by:erl + CYg42 " - + qQYz+n;

by V2y,, that which Vy, becomes when we change v, into Vi, there; by V3y,, that
which V2y, becomes when we change Vy, into V2y,, and so forth. It is clear by §2,
that the coefficient of ¢* in the development of “‘i will be V°y,.,; by multiplying
therefore the preceding equation by u and by con51der1ng in each term only the coeffi-

cient of t*, that is, by passing again from the generating functions to the coefficients;

SThis refers to the fraction on 16 of this translation immediately after the page reference [21] in
the margin.
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we will have

(0)

Yot+i =Yz |:bZz n+1 + CZ —n+2 + GZ( )

0
—n+3 " Tt qu( )i|
+ Vi [bZ( mt1 T CZ( )2n+2 + 62(1)2n+3 Tt qu‘(i)n]

+ Vny [bZ(Q)iSnJrl + CZ( )3n+2 + eZz(Q)?m+3 -+ qu(E)WJ
—+ etc.

T Yan1 [CZZ( )n+1 + eZz( )n+2 g qu'(E)l}

=+ vy$+1 [CZ( )2n+1 + Z( )2n+2 Ct qu(i)n—1i|
+ etc.

+ Yz+2 |:€Zz( )n+1 -+ qZZ(E)Qi|

+ Vyoio [ezz( g1 T qu(i)n—2i|
+ etc.

+ Worn1Z o1 + OV Yain1Z
+ qV Yotn— 1Z( )3““ + etc.

This formula will serve to interpolate the series of which the ultimate ratio of the
terms is that of a recurrent series; because it is clear that in this case, Vy,, VZy.,
etc. are always decreasing, and end by being null in the infinite.

§6. Formula (B) is arrested when we have V"y, = 0, r being any positive whole
number; and then the preceding expression of y,.; becomes the integral of the equa-
tion in the finite differences V"y; = 0, that which is analogous to what we have seen
in §3 relative to the equation V"y; = 0. Let us suppose Vy; = 0, or, that which
reverts to the same,

0 = ay; + byit1 + cYiv2 -+ + @Yisn;
if we make x null in formula (B) of the preceding number, it becomes
Yi = |:bZZ(O)n+1 + CZz‘(E)n+2 + eZ‘(E)mr:s et qu(O)}

(2

+ A1 |:CZZ( )n_i'_]_ + €Zz( )n+2 ......... + qZ(O)1i|

+ y2 |: Zz(O)n+1 .................. + qZ(O)2:|

+qyn 1Zz( )n+17

Yo, Y1, Y2,- - - Yn_1 are the first n values of y;; these are the n arbitrary constants that
the integral of the equation Vy; = 0 introduces.

[27]
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The value of ZZ»(E)n 41 is equal to
1 1

_aozi_"”(oz — o) (a — a).ete. B ac/ " (o — a)(a — a).etc.

— ete.

Thus V being equal to a(0—a)(0—a')(0—a”) etc.; the first of these terms becomes
an—2
- i dV )
T

provided that we change 6 into « in %; by having regard therefore only to the term
1

multiplied by =, the preceding expression of y; will become

PR

( yo(ba" ™t +ca" 2 Fea™ - 4 q))
. +y1(ca™ !t +ea™ -+ qa)
Vi = S +ya(ea™ -+ qa?)
da --------------------------- 9
(+¥Yn—19a"" )

By changing successively in the second member of this equation, « into o/, o, etc.,
and reciprocally; we will have so many terms which, added to the preceding, will form
the complete expression of y;.

Let us name k the function comprehended between the two parentheses, so that
this second member is —ﬁ If the two roots a and o are equals, V will be of this

do
form (0 — «)?L. We will suppose that « and o, instead of being rigorously equal,
differ infinitely little, and that we have o/ = a4+ da. Then the sum of the two terms
of y; relative to the roots o and o' will be

1 K k
_@ O/i-l-lL/ B it )

k' being that which k& becomes when we change « into ' there; L and L’ being here,
that which L becomes when we change 6 into o and «’. This quantity is therefore
equal to

e
da
but we have
_1aV
T 2de?
0 must be changed into « after the differentiations. The sum of the terms of the
expression of y;, relative to the two equal roots, is therefore

d k
1.2do o1 900

L
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We will find in the same manner, that if V' contains three equal factors, the sum of
the terms of the expression of y; relative to these three factors is

d? koo
1.2.1.2.3d0? qi+1 £V

and so forth. Zi(o) being, by that which precedes, the coefficient of 6° in the develop-
ment of %; there results from it that y; is the coefficient of §° in the development of
the function

Yo(bO"t 44 q) )

+y1 (0"t + e+ gh)

\ +yn—1q9n71 Y,
abfr+b61+ch2... 4+ ph+q
This function is therefore the generating function of y; or of the principal variable of [29]
the equation in the differences Vy; = 0. Formula (B) of the preceding section, will
give similarly the value of y; or the complete integral of the equation in the differences
V2 = 0; 9°, Vyo: y1, Vyi; ..., Yn—1, Vyn_1 will be the 2n arbitraries of this integral.
The case of the equal roots will be resolved in the same manner as above. We will
have by the same formula, the integral of the equations in the differences V3y; = 0,
Viy; = 0, etc., that which shows the analogy which exists between interpolation of
the series and the integration of the equations in the differences.
Let y; = y; + v/, and let us suppose that v’ is the generating function of y., and
u” that of ¥, u being that of y;; we will have u = «’ 4+ u”. Let further

A

28’
z being the signification that we have given to it in §5; and let us name X; the
coefficient of #* in the development of \; we will have, by §2,

Xi = Vsygl'

"
u

Now, we have, by §5,
1 tns

2 (at™ + btn—t —|—ct”—2---—|—q)5;

now the coefficient of #*, in the development of the second member of this equation,
is equal to the one of =" in the development of

1
(@ +00""1 4+ cfn2--. 4 q)*

and by the preceding article, this coefficient is equal to Zi(s_l)' therefore the coefficient

of t*, in the development of Z% will be

Xi—nsZ(()S_l) + Xi—ns—lzfs_l) + Xi—ns—Qzés_l) i XOZ(S_l)

1—ns )
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or ZX,"ZZ»(:?_,,, the integral being taken relative to r, from r =0 to r =i — ns + 1;

this will be the value of y//. This premised, if in formula (B) of the preceding section,
we suppose V*y; = 0; it will give, by observing that y; = y} + v/,

yi + ZXTZ‘(S_I) = Yo |:bZi(E)n+1 + cZi(E)n+2 s QZZ»(O)]

1—ns—r

+ Vyo |:bZZ(i)2n+1 + CZi(i)Qn+2 et qu(i)n}

FV e 2D+ 2O a2
+ [CZi(g)ml e qu(E)l]

+ Vi [Czﬁ)gnﬂ st qZﬁ)n_l]

+ Vel [CZZ»(:,BFI s qZ-(S_l) ]

i—sn+n—1

0 1
+ qu(—)n—Hyn—l + qZ§_)gn+1Vyn_1 e
et qu‘(:izrlvs_lynA;

Yo, Vo, - .. V¥ yo; y1, Vi, ete. being the ns arbitraries of the integral of the equation
Vsyi =0or

now V*®y! being equal to X, this equation becomes
0= Viy, + X;

we will have therefore, by the preceding formula, the integral of the equations linear
in the finite differences of which the coefficients are constants, in the case where they
have a last term function of 7.

The definite integral, relative to r EXTZZ-(:?_N can be easily transformed into a
series of indefinite integrals, relative to i; because the general expression of Zf:?_r
is formed of ns terms of the form Ir*a”, I being a function of ¢ independent of
the variable r; the preceding integral is therefore composed of integrals of the form
IYr*a” X,; this last integral must be taken from 7 null to r = ¢ — ns + 1, it is equal

to the indefinite integral
IZ(Z —ns + 1)“Oéiins+1Xifns+17

taken from 7 = ns — 1.
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§7. We can give to the expression of tl an infinity of other forms of which many

can be utile. Let us give to it, for example, this form

2 n—1
l =70 4 (1 — 1) A (1 — 1) JAS (1 — 1) 7(n=1)
i t t t

We will determine thus the values of Z(©, Z() Z(2) ete. We will put first the equation
a4

tn

under this form, by substituting (% -1+ 1)T instead of tl” and developing according
to the powers of % -1,

1 1 2 1 n
—d+v(=—-1 (Z-1) (21
- (t )ﬂ(t ) +q(t )

and we will have

ey
zZ=a — —_— e e
t 12

d=a+b+c--+gq
V=b+2c+3e---+ng
n(n —1)

= e B S
c c+ oe + 19 q

We will multiply next, as previously, the numerator and the denominator of the
fraction 1_% by
t

(a—2)0" + 00" 4 "2 4 pb + q,
by observing to substitute into the numerator, 1° in place of z,

(] (Y
CL+b E—l +cC E—l + etc.

2° In place of af™ 4 b0" 1 + c"~2 + etc., the quantity

a + b ! 1) +¢ ! 12+ t
- = - = etc.
0 0

if moreover we make, for brevity,

9’”,

Y

we will have
Vot (1—60— %) + o2 [(1 —0)? — f—} g (1-0)" -2
(1—9) (ab™ +b0" 1 + 02+ pb + g — 267)

Y

0

by dividing the numerator and the denominator of the preceding fraction, by 1 — 2,

it is reduced to this one,
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b’+’11+’112+ 11%1\
“\9 “\9 7\ 9
- 1

(

gn—l

t/nfl
abm+b0" 12 . 4 pl4qg—2z6n

Thence is easy to conclude that if we conserve to Zﬁsil), the same signification that

we have given to it in §5, and if we consider that by designating ¢; the coefficient of

0" in the development of any function of 6, this same coefficient in the development
[33] of this function multiplied by (% — 1)“, will be, by §2, equal to A*g;; we will have

ti _b,Zz(OnJrl + b/ZZ11)2n+1 +0'z 22(23n+1 + ete.

+dnzY ni1 T C zAZ(12n+1 +d2NZCP) 3n+1 + etc.
+ €/A2Zz(0)n+1 +e20?Z z'—2n+1 +e N7 i—3n+1 + ete.

+qA" 1Z7,(0)n+1 +qzA"Z 2n+1 +q22 A" IZz 3n41 T etc.
20 1+ 220, + ete.

1
+ 7 te AZZ(OHH +e z’AZ(12n+1 + etc.

+ etc.
1| ¢z 220, + et
2 | + etc.

Ry {ZZ(OnJrl + Zi(i)ZnJrl + etc.} :

Presently, it is clear, by §2, that the coefficient of ¢* in the development of the

uz’

function %% is A”Vsyx, the preceding equation will give therefore, by multiplying
its two members by u, and by passing again from the generating functions to their
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coeflicients,
Yeri =Y, |:b/Zi(E)n+1 + /AZZ(OnH + /A2Zz ntl” qA"™ IZZ(O)n—I—l]
+Vy [b, i 2n+1+ /AZ 2n+1+ ANV z 2n+1 g A" 1Z )2n+1]
+V2y [b’Z(23n+1 "‘CAZ(anH +e D222 3n+1 " TN 3n+1]
+ etc.

+ Ay, [C/Zi(g)n+1 + ,AZz SRR /AN 2Zz )17,+1:|
+ Avyr |:C Z )2n+1 + /AZZ on+1 " c+ qAn_2Zi(i)2n+1j|

+Av2 Y. [/ (2)3n+1+ /AZz 3n+1° An 2Zz(2)3n+1}
+ etc.

+ qZZ‘(E)n_A,_lAn_lym + qZZ(i)Q»,H_lAn_lvyx + qu(E)?mHA"_IV@z —+ etC.7

the characteristic V is related to the variable x, and the characteristic A is related [34]
to the two variables x and i.

§8. Let us suppose in the preceding formula, x and ¢ infinitely great, in a way

that we have

' w

1= —: rT=—
dx’ dx’
Yori Will become a function of w+ 2/, a function which we will designate by ¢(w +2').
Let us suppose, moreover,

b// . o C// . q// .
Cdx’  dx?

O=d + ¥ L 1)+¢ L 12+ac
N 0 0 )
will become

b 1 ! 1 2 q// 1 n
'+ (-1 ) - )
0=a"+ 0 (9 ) MRz (9 ) T g (9 >

This last equation gives for § — 1, n roots fdz', f'dx’, f"dxz’, etc., and consequently
for 0, the n values

=1+ fdx'; 0=1+ f'da’; 0=1+ f'da’; etc.
Now if we suppose 6 = 1 + hdz’, we will have, i being supposed infinite,
1 1

- _1_ih 20,02 _ L he
5~ 0+ hdr) ihda’ + h x etc. = ¢ ",

the equation
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¢ being the number of which the hyperbolic logarithm is unity. Besides the quantity
a is, by the preceding section, equal to ' — b’ + ¢ — etc., and consequently equal to

/1 . . . . . .
a” — ;’x, R dq,n, a value which is reduced to its last term, which surpasses infinitely

the others; the expression of 757V of §5 becomes, by changing r into ¢ — 1,

( c —ha' )

(= 7 (h = 7).
c —hax!
dz’ +
Zz(sll) - A5t (h— f)s(h — f")s.etc. )
123 (s — 1)(£q")*dhe! b

T =y = fyete.

| tetc )

the difference d*~! being taken by making only h vary and by substituting after the
differentiations, f in place of h in the first term, f’ in place of A in the second term,
and so forth. Let us name X~ Dda’ the precedlng quantity; we will have, to the near
infinitely small, p being a finite number

Z(i_l) _ Z(S 1) X(s l)dl'
it i—

Moreover we have y, = ¢(w); and the characteristic A of the finite differences must
be changed into the characteristic d of the infinitely small differences; so that the
equation

Vyx = ay, + by:c-‘rl + CYzi2 + etc.
or, that which returns to the same, this here

C//

v’
Vye. =ad" + —Ay, + T —— A%y, + ete.

d /
becomes, by changing dz’ into dw there;
EO) A 9()

deo? dow™
The expression of y,,; found in the preceding article, will become therefore

dx©) d2x () dn—1x(0)
925(@ + I,) :¢(W) (b//X(O) + ¢ +e’ .. " )

d
vyw :a//+b// (b(w) +
dw

dx’ dz? ta dxm—1

ax® NEDER ar—tx®
+ V(b(w) <b”X(1) + o + € 12 I q,lw)

, dX(Q) Y dQX(Q) Y dn—lX(Q) >

+ V%¢p(w) (b”X(2)
+ etc.
dgb( ) (CHX(O) + e”dX(O) N /Idn_QX(O))

dx’ te dx’? et dp'n—1

dw P
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1 n—2x{
N W (C//X(l) + e”df;(,) et q"dd/—)(;)>
X T

dw
+ etc.
*p(w) ( p dr3X )
dw2 dmlnf?)
d2V¢(w) (1) dnisX(l)
T \ N e
+ etc.
m—1 n—1
+ q//dd ¢(Ylﬂ) X(O) + q//d y v45(177))((1)
fovilon lovikan
dn—l 2
+ q”—dv ¢1(w> X 4 ete.
fovikan

This formula will serve to interpolate the series of which the ultimate ratio of the
terms is that of a linear equation in the infinitely small differences with constant
coefficients.
If we have
Véo(w +2') =0,
the formula is terminated and gives the value of ¢(w + '), or the integral of the pre-
ceding differential equation; ¢(w), d0(@) ote.: Vo(w), WVo®) e V2p(w), m,

. . ) dw dw dw
etc. being the ns arbitraries of the integral.

Let us suppose that we have the differential equation
0=Vp(w +2') =V,
V. being a given function of 2’; it is necessary, by §6, to add to the preceding ex-
pression of ¢(w + '), the term [ VTXS:i)dr, Xg(j_l) being the same function of 2’ as

X1 The integral relative to r, must be taken from r = 0 to r = 2. This definite

integral can, by the section cited, be transformed into indefinite integrals relative to

.

Concerning the transformation of series.

§9. The theory of generating functions can serve further to transform the series
into others which follow a given law. Let us consider the infinite series

Yo + Y10+ y20” - -+ + Yo + ete.; (V)
and let us name, as above, u the sum of the infinite series

Yo + yrat + Y207t -+ Y0t + ete;

u

the coefficient of t* in the development of the fraction 1, will be equal to the sum
t

of the proposed series (V), taken from the term y,o” inclusively, to infinity. Let

generally z be any function of %, and let us name Ily,a” the coefficient of ¢* in uz.

T

[37]
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The coefficients of t¥ in uz?, uz?, etc. will be II?y,0*, 113,07, etc. This premised, we

will multiply the numerator and the denominator of the fraction *r by k — z, and
t

we will take for k& that which z becomes when we make ¢ there equal to unity; k — 2

will be divisible then by 1 — % Let

XSO A R N C))
h + + + 3 + etc.

be the quotient of this division; we will have

U u.h z 22 23
= — (14 =+ 5 + -+ +etc.

1— % k ko k2 k3
w.h® z 22
+—— (14 + g Hete
u.h® z 22
+ o (147 + 5 Hete
+ etc.;

that which gives, by passing again from the generating functions to the coefficients,

o hy.a®  hI(y,a®)  hIT(y.a")
Sy = T + 12 + 13 + etc.
h(l)yachlax-i_1 + h(l)H<ym+lax+1)

k k2

N h(2)yx+2aa:+2 N h(Q)H(yx+2aa:+2)
k k?

+ etc.

_|_

+ etc.

+ etc.

The sign S designates the sum of the terms from x inclusively, to infinity. Let us

Suppose now

T S
z=a+ —+ — + —— +etec.:
at  a?t?2  od3t3 ’
we will have

I(y.a") = a"(ays + bysi1 + Yotz + €Yuis + etc.).
By designating by Vy, the quantity ay, + by,.1 + etc., we will have
(y,a") = a®Vy,;
and generally we will have
" (yz0") = a"V"ys.
We have next

b c e
k:a+——|——2+—3—|—etc.;
o« «
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this which gives

b c e
h=—+4+— + — +etc,

a o ol
fﬁ1>::-f% + 5 4ete.,

o o3
h® =L 4 ete.,

e

ete.;

we will have therefore
b c e 2
(6t o+ 5 tete) Vi Vi,
2 « (yx—l— 2 + 12 + etc.
(£+ 5 +etc.)
k

(E + etc.) VYsra  VZUpio
e Ay, etc.
e a(yﬁ+ R

Sy’ =

Vi, V2,
a” (yxﬂ + ka + 52 1 etc.)

+ ete.
By making x = 0, we will have one transformed from the series proposed, of which
the terms follow another law; and if the quantities Vy,, V?¥,, ...are decreasing, this

series will be convergent. It will be terminated anytime that we have V"y, = 0; that
which will take place when the proposed will be a recurrent series. We will have
therefore thus the sum of the recurrent series, by counting from any term y,o”, and
consequently we will have also the sum of their terms, comprehended between any
two terms y,o® and yyo® .

Theorems on the development of functions and of their differences, into series.

§10. By applying to some particular functions, the general principles exposed in
§1, we will have an infinity of theorems on the development of functions, into series.
We are going to present here the most remarkable.

We have generally
! 1 ' 1+ ! 1 i 1 '
ul—=— =u - — —
t? t
Now it is clear that the coefficient of * in the first member of this equation, is the n*®
difference of y,., x varying by ¢; because this coefficient in u (t% — 1) 1S Ypri— Yz OF ' Ay,

by designating by the characteristic ‘A, the finite differences, when x varies by the
quantity ¢; whence it is easy to conclude that this same coefficient, in the development

. n
of u (tl — 1)” is 'A™y,. Moreover if we develop u [(1 + % — 1)z — 1] according to the

powers of % — 1, the coefficients of ¢* in the developments of u (% — 1), u (% — 1)2,
etc. are, by §2, Ay,, A?y,, etc.; so that this coefficient, in u [(1 + % — 1)Z — 1] , is
[(1+ Ay,)" — 1]™, provided that in the development of this quantity, we apply to the

39]
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32 1. CONCERNING GENERATING FUNCTIONS, IN ONE VARIABLE

characteristic A, the exponents of the powers of Ay,, and that thus in place of any
power (Ay,)", we write A"y,; we will have therefore with this condition,

"Ny, = [(1+ Ay, — 1™ (1)

If we designate by the characteristic 'Y the finite integral, when x varies by 4, 'Yy,
will be, by §2, the coefficient of t* in the development of the function u (tl — 1)%,
by setting aside arbitrary constants which the integration introduces; now we have

1 - 1 i -
1) =awl(1+2-1) —1]
s(re0) "= (o) o]

moreover, the coefficient of t* in u (% — 1)_r is X"y,., by setting aside arbitrary con-
stants; this coefficient in u (% — 1)r is A"y,; we will have therefore

Sy = [(1+ Aya)' =177 (2)

provided that in the development of the second member of this equation, we apply
to the characteristic A\, the exponents of the powers of Ay,; that we change the
negative differences into integrals, and that we substitute y, in place of A%y,; and
as this development contains the integral >"y,, which can be counted to contain
n arbitrary constants; equation (2) is still true, by having regard to the arbitrary
constants.

We can observe that this equation is deduced from equation (1), by making in that
here, n negative and by changing the negative differences into integrals; that is, by
writing 3"y, in place of 'A™y, in the first member; and generally in the development
of the second member, ¥y, in place of A™"y,.

Equations (1) and (2) would equally hold, if z, instead of varying by unity in Ay,,
varied by any quantity w, provided that the variation of z in Ay, is equal to iw.
Indeed, it is clear that if in y, we make x = %, 2’ will vary by w, when z will vary
by unity; Ay, will be changed into Ay,s, the variation of 2’ being w; and 'Ay, will
be changed into 'Ay,, the variation of 2’ being izw. Now if after having substituted
these quantities into equations (1) and (2), we suppose w infinitely small and equal
to dx’, Ay, will be changed into the infinitely small difference dy,s. If moreover we
make ¢ infinite, and idz’ = a, « being a finite quantity; the variation of z’ in 'Ay,,
will be a; we will have therefore

Ay = [(1+ dyw) —1]";
1 . (9)
(14 dy. ) —1]"

IEJnZ/x’ —

now we have

. d x/
log(1 + dy.)' = ilog(1 + dy,) = i dy, = a%;
x
that which gives

dy 1

(14 dyy)' = > @,
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¢ being the number of which the hyperbolic logarithm is unity; we have therefore
dy_y n
/Anya:’ — <CQ~% _ 1) 7 (3)

! (4)

T aw,  \m
(Cav d;} B 1)

by taking care to apply to the characteristic d, the exponents of the powers of dy,;
by changing the negative differences into integrals, and the quantity d%y,s into v,
We can give to equation (3) this singular form which will be useful to us in the

following.
I AR o, Maltnp _o Matymp \ T
A"y = c2 " a  —c 2T a .

/Enyx’ —

Indeed, it gives

I Am na Wyt a vy _a B\
A"y =c2 @ (c2 @ — ¢ 2 .

. a Wy _a Y\
Let us consider any term of the development of <02 dl — 2 dz’) , such as

T na 9 x! . . . .
k (%’) . By multiplying it by 07'%, and developing this last quantity, we will

have

L d L e dyy <na>2 d?yy
de % T 2 a2 ) 1.2.da7
Tl/:r:’%—%
dx/’l’

n
P AP P AN o Warymp o Waynp -
C 2 da’/ Cc2 dz! — C 2 da’ = C2 da’ — C 2 dax’ = A Z/x’-

If in equations (1) and (2), we suppose further i infinitely small and equal to dz;
we will have

+ etc} :

d
this quantity is equal to k ; whence it is easy to conclude

1 n
"Ny = d ey B Yy = —— / Yo da™;
dz™
we have besides
(1+ Dy,)' = e o880 =1 4 drlog(1 + Ay,);

equations (1) and (2) will become thus

d"y. n
T log(1 + Ay,)]", (5)

m 0 1
/y”x_u%u+amm' (6)

We can observe here a singular analogy between the positive powers and the differ-
ences, and between the negative powers and the integrals. The equation

Ay, = @ HE — 1 (0)

[42]
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is the translation of the known theorem of Taylor, when, in the development of its
second member, according to the powers of dd?f, we apply to the characteristic d, the
exponents of these powers. By raising the two members of this equation to the power
n, and applying to the characteristics ‘A and d, the exponents of the powers of 'Ay,
and of dy,, we will have equation (3), whence results equation (4), by changing the
negative differences into integrals.

The preceding equation gives

R AN TS
By taking the logarithms of each member, we will have

dyz
“ dx
Supposing next a = 1, that which changes 'Ay, into Ay,, and raising the two mem-
bers of that equation, to the power n, we will have equation (5), provided that we
apply the exponents of the powers, to the characteristics. We will have equation (6),
by making n negative, and changing the negative powers into integrals.
If in the preceding equation (r), we change « into i, we will have

=log(1 4+ 'Ay,); (r)

dy 1
2 = log(l+'Ay,);
5y = log(l+"Ays)
and if we suppose there a = 1, we will have
dy,.

9z og(1 4 Ayy).
o og(1+ Ay,)

The comparison of these two values of %f, gives
1

log(1+ Ay,) =log(1+'Ay,)+;

whence we deduce
"Ny, = (1 + Ay, — 1.

By raising each member to the power n, and applying the exponents of the powers
to the characteristics; we will have equation (1), whence equation (2) results, by
changing the negative differences into integrals. Equations (1), (2), (3), (4), (5) and
(6) result therefore from the theorem of Taylor, set under the form of equation (o),
by transforming that equation according to the rules of analysis, provided that in the
results we apply to the characteristics, the exponents of the powers, that we change
the negative differences into integrals, and that we substitute the variable y, itself,
in the place of its zero differences.®

This analogy of the positive powers with the differences, and of the negative powers
with the integrals, becomes evident by the theory of generating functions. It holds,
as we have seen, to this that the products of the function u, generator of y,, by the
powers t% — 1 are the generating functions of the successive finite differences of y,,
x varying by any given quantity ¢; while the quotients of w, divided by these same
powers, are the generating functions of the integrals of y,.

STn his original paper, Laplace credits these same equations to Lagrange [2].
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By considering, instead of the factor t% — 1 and of its powers, the powers of any
rational and integral function of 1 1, we can conclude from it some theorems analogous
to the preceding, on the successive deriveds of the functions. I name derived of a
function y,, each quantity derived from it, such as ay, + by,+1 + ey.1o + etc. By
regarding next this derived function as a new function that I designate by v.; the
quantity ay,, + by, + ey,,, + etc. will be a second derived from the function y,,
and so forth. When the function ay, + by,.1 + etc. becomes —y, + y,11, the derived
becomes a finite difference.

Now we have

UG-
ula - - by etc.
t 2

L\ L \Z "
a—l—b(l—i-ﬁ—l) +€<1+ﬁ_1> + etc.

we have next generally, by §2, by designating by Vy, the quantity ay, + by,.1 +
eYpio + ete., V™y, for the coefficient of the generating function of the first member
of this equation; moreover we have

T LN rt Ly 2 Tt
— | = - — — etc.
dr \ ¢ 1.2.d22 \ ¢

The second member of this equation is the generating function of

(q)

=Uu

T L + et

e+ T etc.,

4 dr ' 1.2 da?®

or of ¢"# ; by applying to the characteristic d the exponents of the powers of dyx , and

writing v, in place of (dy“”) . Thence we conclude that, under the same condltions,
the second member of equation (q) is the generating function of

[a+bcdw +ec o —I—hc e +etc] :

and that thus this equation gives, by passing again from the generating functions to
the coefficients,

V'Y, = [a—l—bcdw +ec t 4 hedst +etc]n. (7)

We can thus obtain an infinity of similar results. We will limit ourselves to the
following, which will be useful to us in the sequel: (\/% — \/1_5> is the generating

function of
n(n—1)

Yrpn — NYzyn 1+ ~ 12

yat—i—%—? - etc.,

or of A"y, =. Moreover, we have

1 1 n

1 n 1 3dz 1 T 2dz
— —Vt] = 1+—-1 1+ —=-1 .
“(ﬁ */> (*tdw ) (*tdm ) ] |

[44]
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whence we deduce, by passing again by the preceding analysis, from the generating
functions to the coefficients

dyz _dyg \ "™
Anyw% = <C2d£ —cC 2d§) .

§11. I have considered until now, only one function alone y, of x; but the consid-
eration of the product of many functions of the same variable, leads to diverse curious
and useful results of analysis. Let u be a function of ¢, and y, the coefficient of ¢*
in the development of that function; let «’ be a function of ¢, and y/, the coefficient
of ' in the development of that function; let further u” be a function of t”, and
y the coefficient of ¢"* in its development; and so forth. It is clear that y,y.y”.etc.
will be the coefficient of t*¢“t"".etc. in the development of the product wu'u”.etc.;

this product will be therefore the generating function of y,y,y".etc. The generating

function of y, 1y, Yo, -etc. — Yy, y..ete., or of Ay,yly. ete. will be thus

1
wu'u"ete. | ———— — 1) ;
tt't" .etc.

!0

and the generating function of A™y,y, vy, .etc. will be

1 n
uu'v etc. | ——— — 1] .
tt't" etc.
A/

We will prove, as in §2, that the generating function of ¥"y,y. vy .etc. will be

1 —n
wu'u” ete. | ——-+ — 1 :
tt't" .etc.

that is that we can change n into —n in the generating function of A"y,y. .etc.
provided that we change A™" into X".

Let us apply these results to the two functions y, and y/,. The generating function
of A™y,y! will be uu’ (i — 1)”. We can set it under this form

tt’
uu L 1+ (! 1 y
t t \t ’
by developing it, it becomes
(Lo (L 1n_1 L) nn=b) 1 1n_2 ! 12+t
i - — — (= - - — — 2| - — - — ete. »;
t t \ t v 1.2.42 t t ’
the functions

(1 " 1 /1 ERS| 1 /1 "2 2
wu | -——1) ;5 wu'-—|(-—1 ——1); wu-—=|-—-1 ——1; etc,;
t t \t t 2\t t

are respectively generators of the products y. A"y,; Ay A"y, 5 A2yl A" 2y, 0;
etc. The equation

1 " 1 "ol "
uu’(g—1> :uu’[(¥—1> +?(z—1) (;—1)4—6’50
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will give therefore, by passing again from the generating functions to the coefficients,

(n—1)

n
A"y = Yo A e + nAYLA" Y, + Ay A"y 0 +ete. (8)

1.2
By changing n into —n, we will have
Eywéz%ﬁzm—nﬁ%2+ﬁm4+‘$ETlA@g:H%”__ao ©)

In general, we have
1 n
wu'u” etc. (| ——-— —1
tt't" ete.

L 1 1 1 "_
=uuu .etc. 1+Z—1 1+P_1 1+F_1 etc. — 1| ;

that which gives, by passing again from the generating functions to the coefficients,
A'yyiyhete. = [(1+ A)(1+ A1+ A").ete. — 17, (10)

provided that in each term of the development of the second member of this equation,
we place immediately after each characteristic A, A', A", etc., respectively y., .,
Yo ete., and that we multiply this term by the product of the functions of which the
characteristic is not contained at all. Thus in the case of three variables, we will write,
instead of A", the quantity y.y”A"y,; instead of ATA""| we will write y” A"y, A"y’ ;
instead of A A" we will write y, A"y, A" y"; and thus of the remainder.

By making n negative, equation (10) yet subsists, provided that we change the
negative differences into integrals.

In the case of the infinitely small differences, the characteristics A, A’, A’ etc. are
changed into d, d’, d”, etc. Equation (10) becomes thus, by neglecting the differentials
of a superior order, relative to those of an inferior order,

d"y.y,ynete. = (d+ d + d" + ete.)™.
This developed equation gives, relative to two functions y, and v/,

n(n—1)

3 d*y. d" "y, + etc.

A"y v, = Yo d "y, + ndy,d" 'y, +

By making n negative, the negative differences being changed into integrals, we will

have
n n d / n+1

1 d2 ! n+2
—n%; )dy;/ Y dz"? — etc.
: x

[47]
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We have
1 n
uu'v” ete. | ————— — 1
it ete.

LN AN "
1+¥—1 1+§—1 1+F—1 .etc. — 1 )

!0

by designating therefore by 'A™y,y’y”.etc., the finite difference of the product
Yoy yn.etc., when x varies by 4; the preceding equation will give, by passing again

from the generating functions to the coefficients

"Nyl ylete. = [(14+ A)(1+A)(1+ A" ete. — 1] (11)

= uu'u” .etc.

by observing the conditions prescribed above relative to the characteristics A, A/,
A", etc., and to their powers. This last equation subsists still, by making n negative,
provided that we change the negative differences into integrals.

Let us suppose

o , o

r=—, P =—
dz’ dz’

Yy Yo, etc. will become functions of 2/, that we will designate by y., .., etc.; equation

(11) will give thus the following, by observing that the characteristics A, A, etc. are

changed into d, d’, etc., and that we have

dy 1

(1 +dyx/)ﬁ = Ca Il s

dy ./

- dy;/ dy;/, "
A Y Yt €8C. = (cadwﬂ(m/ﬂaﬂ*e“- -1 ; (12)

an equation which subsists still by making n negative, and changing the negative
differences into integrals.
Let us consider only two variables y, and v/, and let us suppose y., = p*; we will

have
’ (i1
(1+ A" =p" +il\p” + %Np‘” + ete.;
now we have generally, x varying by unity,
we will have therefore
(1 + A/)z :pipx‘
Equation (11) will become thus
A"pTye = pT[p (1 + Aya)' - 1) (13)
by making n negative, we will have
Yty = P +az" ' + bz + et (14)

[P (1 + Ay,)t — 1]
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a, b, etc. being arbitrary constants due to the integration of p*y, repeated n times. I
add here these constants, to the second member of the preceding equation; because
they are implicitly contained in its first term, only when p = 1.
If we make in the two preceding equations x = 75, i = 2%, p = 1 + dz'logh, we
will have
/ / dyz’ n
'"A"hT y = h® [h"c"‘W — 1} , (15)
h:v
dy .1 n
[h“caW — 1]
If in equations (13) and (14), we suppose i infinitely small and equal to dz; "A"p"y,

will be changed into d"p®y,, and "X"p"y, will be changed into d%n S " pty,da™; we will
have next

!

/Enhx’yxl _ + a/x/n—l + b/n—? + etc. (16)

pz<1 + Ayx)z _ cdmlog[p(l—l—Aym)];

we will have therefore
(L + Aye)' = 1]" = da"{log[p(1 + Aya )]}
and equations (13) and (14) will become

dnpac " . "
2 = p*{loglp(1 + L)} (17)

€T

/ ' PYY, dx"™ = b
{log[p(1 + Aya)]}"

+az™ ! 4 ba" % + etc. (18)






CHAPTER 2

Concerning generating functions in two variables

§12. Let us name u a function of ¢ and ¢; let us suppose that by developing it [50]
according to the powers of ¢t and ¢, it gives the infinite series

Yoo FYiot FY20t? o Yrot®  HYrr1ot™Tt o+ Yoo of™
Fyoat’ Fyiatt’ +ys t?t -+ yp 1t Ay T Yoo 1 10
10,22+ Y1 oty ot - A Y ot P Y1 2T Y ot
+etc.

The coefficient of t*¢* will be Yzr; W Will be therefore the generating function of
Y2 -

If we designate by the characteristic 2\, the finite differences, when x alone varies
by unity, and by the characteristic ‘A the differences when 2’ alone varies by the
same quantity, the generating function of Ay, ,» will be, by §1, u (% — 1) and that of
"Ny, Will be u (t—l, — 1): whence it is easy to conclude that the generating function
of AV A"y, » will be

1 e
ul-—1 — =1 .
t t
In general, if we designate by Vy, ,» the quantity

AYp o +BYpi1,2 +CYpio  +ete.
+B"Ye o1 11+C" gy 1,001 +€tC,
+C"Yy 110 Fete.

+etc.;

If we designate similarly by V?y, . a function in which Vy, . enters in the same [51]
manner as Y, in Vy,.; if we designate further by V?’yx’z/ a function in which

szm@/ enters in the same manner as y,, in Vy,,» and so forth; the generating
function of V"y, ,» will be

(A B C \
+— 4+ = etc.
t 12 +
B’ C’
1
+ tTQ +etc.
L +ete.

41
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hence, the generating functlon of AU/A'V"y, . will be the preceding generating

function, multiplied by (— — 1) ( — 1)11.
s being supposed any function of and of tl,, 1f we develop s’ according to the

powers of these variables, and if we desagnate by — any term of this development

the coefficient of #*¢'*" in —*%— being kyy s m.r tms, We Wﬂl have the one of t*¢'* in us’,

t’!?L lm

or, that which reverts to the same, We will have V'y, ./, 1° by substituting into s, v,
in the place of 1 +» Yo 10 the place of 73 2° by developing that which us® then becomes
according to the powers of y, and of y,/, and by applying respectively to the indices
x and z’ the exponents of these powers, that is by writing in the place of any term
such as k(yz)"™ (y2)" kyﬂm,x%m/ and consequently ky, . in the place of the total
constant term k&, or k(y.)"(v., ) :

If, instead of developing s* according to the powers of 1 and 1, we develop it

t/ )
according to the powers of ;—1 and t—l,—l, and if we designate by k (? - 1)m (% — 1)m/
any term of this development, the coefficient of t*t'*' in ku (% — 1)m (tl, — 1)m/, being
kAm ! Am/yx »; we will have V'y,. x/ 1° by substituting into s, Ay, . in the place of
; — 1 and 'Ay, s in the place of L —1; 2° by developing then s' according to the
powers of Ay, and of Ay, and by applying to the characteristics A and ‘A,
the exponents of these powers, that is by writing, in the place of any term such as
k(Ayg )™ (! Ayz,m/)m', this one kA™ Am/ym,m/; and consequently ky, .- in the place
of the constant term k.

Let X be the characteristic of the finite integrals relative to z, and 'Y that of the

finite integrals relative to x'; let moreover be the generating functlon of Xi./% Yo,z

we will have z (1 1) (— — 1) for the generating function of ¥, ,,. This function

must, by having regard only to the positive or null powers of ¢ and of ¢, be reduced
to u; we will have thus, by §2,

1 "1 g a b c q
| Z 1) = R T 1
Z(t ) (t/ ) YTt RTE T

/ b/ C/ q/
T T E T m T
a, b, c,..., q being arbitrary functions of ¢, and a, V', ¢,..., ¢’ being arbitrary

functions of t; hence
_ utit/i/ + ati—lt/i' + bti—Qt/i/ cee qtli/ + a/tit/i'—l + bltit/i'—Q e q/tz
- A1) |
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On the interpolation of series in two variables and on the integration of equations
linear in partial differences.

§13. Yurse s is evidently equal to the coefficient of t*#'*' in the development of

Y 14ty i 14Xy
—_— = U - — - —
g ¢ ¥

—2-: now we have
we will have therefore by the preceding section,

titli
Yotia'+i! = (]- + Aycc,x’)z(l + /Aydf,x’)i/;

by developing the second member of this equation, we will have
. 1(z—1
yw+i,x/+i/ = yx@/ —+ ZAyI,x’ + %Azy:&x/ +etc.
+ i Ay + DN DNy +etc.
(i — 1
+ %/A%gcp,x’ +-etc.

ete.

Let us now suppose that instead of interpolating according to the differences of
the function y, ,/, we wish to interpolate according to other laws. For this, let
z=A +2 +§ 45 +ete
B/ C/ D/
+ ‘vt Tap +-etc.
+5% +57  Hete.
+27 ete.
+etc.

If we make , . N
A+ By S+ Dr tete =a,

B+ S+ L7 tete.=0b,
C+ L tete. =g,

t/
etc.,

we will have for z an expression of this form

We suppose here that the coefficient [ of the highest power of % is constant or inde-
pendent of ¢/, and that this power is equal or greater than the sum of the powers of

% and of tl, in each of the other terms of z. It is easy to conclude from the preceding
equation, as in §5, the successive values of tn%? tn%, ﬁ? etc., as functions of a, b, c,
etc. and z; and it is clear that in each term of the expression of tli, the highest power
of % will be less than n, and the sum of the powers of % and of t—l, will not surpass i.

[53]

[54]
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Let us consider now formula (A) of §5, and let us suppose that by developing it
according to the powers of tl, the quantity

bZi(g)n—‘rl + bZZi(i)Qn-i-l + etc.
—|—CZZ-(8)n+2 + czZi(gn+2 + etc.
+GZi(E)n+3 + ezZi(i)an + ete.

+ etc.,

we have

1
M + Nz +etec. + P(M(l) + NWz 4 ete.)
1

1 7
+t’_2(M(2) +N(2)z+etc.)---+ﬁM();

the ulterior powers of tl, vanish of themselves in this development, since the expression

of tlz must not contain them at all. Let us suppose similarly that by developing the

quantity
cZ,;(E)nH + czZZ-(i)an + etc.
+€Zi(9)n+2 + GZZi(i)2n+2 + ete.
+ etc.
we have
M+ Nz +ete. + (MO + NO2 4 et Ly
1+ Niz + ete. +§( Nz C'>"'+t'i—1 L
Let us suppose further that by developing the quantity
€Z¢(Pn+1+ etc.
+ etc.,
[55] we have
M, + N Loy, pm L2,
o + Naz + etc. +P( 5+ Ny z+etc.)---+tli72 5 5

and so forth. Formula (A) of §5 will give
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1
7 =M + Nz + etc.
1
+ = (MWD 4 Nz ¢ etc.)

1
+ —(M® + NPz 1 etc.)

( My + Noz + etc. )

1
1 +§(M2(1) + Nél)z + etc.)

( M, _1+ N,_1z + etc. )

1

1 (i—n+1)
\+t/i—n+1 Mn*1 )

This premised, if we name Vy, . the quantity

AYe ot + BYor1e + Clpiow  + et
+ B'yp 241 + C'Ypi1.0041 + et

+ C”yx,x'+2 + etc.

+ etc.;

uzh

the coefficient of t*¢"*" in the development of the quantity = will be, by the preceding [56]
article, V*y, 1, »,v; the preceding equation will give consequently, by multiplying it
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by u, and by passing from the generating functions to their coefficients,
Myy 2 + NVy, o + etc.
A My w1 + NOVyy a1 + ete.

Yotix =

+M(i)yz,a§’+i
( Miyzi120 + NiVyep + ete.
+M1(1)yw+1,r’+1 + Nl(l)vyz+1,m’+1 + etc.

i—1
\+M1( )yx+1,x’+z'—1

( Mn—lyx—i-n—l,az’ + Nn—lvya:—l—n—l,x’ + etc.
+M7541,)1yx+n71,1"+1 + Nél,)lvym+n717x/+1 + etC.

(i—n+1)
\+Mn71 Yz4n—1,2'+i—n+1

§14. If we suppose Vo ,» = 0, the preceding equation will give, by making x = 0,
Yiar = Myoa + M(l)yo,xurl + M(Q)yo,x/ﬂ st M(i)yo,zuri
+ My o + Ml(l)y1,a;'+1 + Ml(z)y1,x'+2 R Ml(i_l)yl,m’—l—i—l

+ Mn—lyn—l,x’ + My(Ll—)lyn—l,a:’—‘rl """"" + Méi:anrl)yn—l,x/—i-i—n-i-l

M), Ml(r), MQ(T), etc. being functions of ¢ and of r. The preceding expression of y; ./
can be set under this very simple form
{M(T)y(],:vurr + Ml(r—l)yl,xurrfl + MQ(T_Q)yZm’Jer}

(r—n+1)
i Mn—l yn—l,x’+r—n+1

Yia =2 ; (\)

)

[57] the integral being taken from r = 0 to r = i + 1 with respect to the first term; from
r=1tor =1+ 1 with respect to the second term, and so forth. This expression of
¥i»» Will be the complete integral of the equation Vy, ,» =0, or

0=AYiw + BYir1r + CYivawr  + + Witna
+ BYiar + Civrars -
+ C//yi,x’+2

+ hyi,azurn .
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It is clear that Yo, Y12/, Y247 - -» Yn—1,. are the n arbitrary functions that the
integration of the equation Vy,,» = 0 introduces. In order to determine them, it is
necessary to know immediately, or at least to be able to conclude from the conditions
of the problem, the first n vertical ranks of the following table:

Y0,05 Y1,0, Y2,0, Y30, s Yo, Yi+1,05 <o Yoo,05
Yo,1, Y11, Y21, Y3, e Yin, Yi+1,1,5 v Yool
Yo0,25 1,2, Y2,2, Y32, e Yi2, Yit+1,25 v Yoo,2s
Yo,z Y1,z Y2,z Y3,y v Yia Yi+1,25 v Yoo, s
Yoo'+1, Yla'+1, Y2,2/+1, Y3241, ---  Yia'+1, Yirla'+1, -+ Yoox/+1,
Y0,005 Y1,005 Y2,00, Y3,005 sy Yioos Yit1,00) <o Yoo,00-

In a great number of problems, the first n vertical ranks are given by some equa-
tions in linear finite differences, and consequently by a sequence of terms of the form
Ap*. Let us suppose that the expression of Yo,» contains the term Ap™, the corre-
sponding part of y; ,» given by formula (\) will be

pr’(M + M(l)p + ]\4(2)]92 ce M(i)pi);

but the function
MO @) M@
M + t/ + t/Q et t/i

is the development of
bZZ-(E) at+ cZZ-(E)nJr2 + etc.,

according to the powers of tl,; by changing therefore in this last quantity, tl, into p, and
naming P that which it then becomes; we will have APp®, for the part of ;> Which
corresponds to the term Ap®. It follows thence that if the value of Yo, 1S equal to
Ap* + A'p'* + A”p”x/ + etc., and that if we name P’, P”, etc. that which P becomes,

by changing there p into p', p”, etc., we will have for the corresponding part of y; .,
Appx’ + A/P/p/a:’ + A//P//p//x’ + ete.

We will find similarly that, if the value of y, . is expressed by B¢” + B'q" + B"q" s

etc. and if we name Q, @', 0, etc. that which the quantity

cZ Z-(E)

n1 T GZZ@nH + ete.,

becomes when we change successively tl, into ¢, ¢, ¢", etc., the corresponding part of
Y. Will be

Bqul 4+ B/Q/q/z/ + B//Q//q//x’ 1 ete.,
and so forth. The union of all these terms will give the expression of y; ,» the simplest
to which we can arrive.

§15. The value of y; .+ given by formula () of the preceding section, depending
on the knowledge of M), M l(r_l), etc.; it is clear that these quantities will be known,
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when we will have the coefficient of t,% in the development of ZZ-(O); all is reduced

therefore to determining this coefficient. We have by §5,

AR !
! a1 (o — o) (a — ) ete.
1
a1 (o — a)(af — o) ete.
1
T ad (o — a)(a” — o) etc.

— etc.,

a, o, o, etc. being functions of t—l, If we make t—l, =

preceding expression of Zl-(o), n times in sequence with respect to s, we will have
with the preceding equation, n + 1 equations, by means of which, by eliminating
the undetermined powers ailﬂ, o/ilﬂv a,,%ﬂ, etc., we will arrive to a linear equation

© dz® 2270 . . . . AN}
among Z; ', ——, — 4, etc., of which the coefficients will be functions of a, o', o”,

etc. and of their differentials taken with respect to s; now it is clear that «, o/, o”,
etc. must enter in the same manner into these coefficients that we can thus obtain
rational and integral functions of them from the coefficients of the equation which
give the values of «, o/, o”, etc. and from the differences of these coefficients, and
consequently as rational functions of s. By making next the denominators of these

s, and if we differentiate the

functions disappear, we will have a linear equation between ZZ-(O) and its differentials,
an equation of which the coefficients will be rational and integral functions of s. This

0)
premised, let us consider any term of this equation, such as ksdef; , and let us
name A, the coefficient of t,% in the development of Zi(o) according to the powers of
(0)
t—l,; this coefficient in the development of k:sm% will be

Er+p—m)(r+p—m—-10r+p—m—2)---(r—m+1)A\1,m.

By thus passing again from the generating functions to their coefficients, the equation
between ZZ-(O) and its differences, will give an equation among A, A1, etc. of which
the coefficients will be some rational functions of  and of which the integral will be
the value of A,.

It follows thence that integration of every linear equation in finite partial differ-
ences, of which the coefficients are constants, depends: 1° on the integration of a
linear equation in finite differences of which the coefficients are variables; 2° on a
definite integral. The definite integral on which the value of ¥, ,» depends in formula
() is relative to r, and must be extended to r =i + 1.

Relative to the equation in the partial differences of first order

0= Ay + BYit1,2
+ B/yi,zurla
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we have

1
Z70 —
! aqitl’
we have moreover
a=A+ Bs,
B
a=——
a
that which gives '
Z(O) _ (A + B/S)l
LB
whence we deduce this differential equation
dz"

0 (A+ B's) —iB'Z";

that which gives the equation in ?iflite differences
0=(r+1)AN11— (i —r)B'\;
we have next
M) = BA,.
Formula (\) of the preceding article will become therefore

Yix = BZ)\ryO,x’-‘rr)

The finite integral being taken from r = 0 to r = 7. It is the complete integral of the
preceding equation in partial differences of the first order.
The equation in the differences in A, give by integrating it

Hi(i—1)(i—2)...(i—r+1)B"
1231 A’

H being an arbitrary constant; and the denominator being unity when r is null. In
order to determine this constant, we will observe that the coefficient independent of tl,

A =

in ZZ.(O) is —#; it is the value of \g, and consequently of H; we will have therefore

i(i—1)(i—2)...(i—r+1) A" B"
—Y0,2'+r-
123...r (—B)

In passing from the finite to the infinitely small, the preceding method will give
the integral of the equations linear in infinitely small partial differences of which
the coefficients are constants, 1° by integrating a linear equation in infinitely small
differences; 2° by means of a definite integral. But this is not the place here to expand
myself on this object that I have considered elsewhere extensively.

We must make here an important remark relative to the number of arbitrary
functions which the general expression of y; . contains. This number, in formula ()
of the preceding section, is equal to n; but it becomes smaller in the case where the
value of z of §13 containing only powers of tl, less than n, the highest power n’ of
t—l, has a coefficient constant or independent of % Then by following the preceding
analysis, and determining by its means the value of -5, as we have determined that of

e’

Yig = — by

[61]
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t“ by passing again from the generating functions to their coefficients, we will arrive
to a formula analogous to formula (\); alone, the definite integral, instead of being
extended to r = ¢ + 1 must be extended to r = 2’ + 1. This new expression of y; ,/,
will no longer depend but on the n’ arbitrary functions v; o, ¥i1, ¥i2, - - Yin—1; and
while the first supposes the knowledge of the first n vertical ranks of Table (Q) of
§14; this one requires only the knowledge of the first n’ horizontal ranks of the same
table. Thus the n arbitrary functions v ./, Y14/, Y2, - -, Yn—1, 0of formula () are
equivalent only to n’ arbitrary distinct functions. Indeed, the proposed equation in
partial differences, gives y;,» by means of the values of Y1, 0, Yidr1, -y Yidrn—1, T
being a whole number. It gives similarly v; ,~+1 by means of yi1r0, Yitr1, - -, Yitrn’s
and eliminating y;+,,, by means of its expression, we have y; ,»41 by means of y;,,
Yitr1, ---, Yitrn—1; Dy continuing thus, we see that the general expression of y; ./
depends only on the arbitraries ¥i1,.0, Yitr1, - - -, Yitrn—1; We can therefore, by means
of the first n’ horizontal ranks of Table (Q), form all its vertical ranks, which are,
each, functions of z’, in which i is invariable.

By passing from the finite to the infinitely small, we see evidently, that the number
of arbitrary functions of the equations in partial differentials can be less than the
highest degree of the differential in these equations.

§16. Although the formulas given in §13 and 14 have a great generality, there
are however some cases which are not comprehended These cases take place, when
the equation z = 0 gives the expression of + 7 t/ by an infinite series, that which
arrives all the time that the highest power of + is multiplied by a rational function
of tl, In order to have then the expression of y, , in finite terms, it is necessary to
resort to some artifices of analysis that we are going to expose, by applying them to
the following equation:

1 a D
P= T TG (a)
This equation gives
1 F+ct+z
t 1oy

consequently
v  u(ftct2)”
e (L)
By developing the second member of this last equation, and passing again from the
generating functions to the coefficients, we will have the expression of y, ,»; because

this quantity is the coefficient of t°#° in the development of the generating function
—t - and the coefficient t°t"° in any term of the development of the second member,

tzt/z
such as ut,z — is KV"yo 4, Ve being the coefficient of the generating function
uz, a coefficient which is here equal to

Yor1,2'+1 — Yz z/+1 — byx—i-l,x’ — CYg o'
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If we have 0 = Vy, ., the coefficients of the affected terms of z will vanish, and
then we will have the expression of y, .,/ as function of yo ./, Y0241, Yo +2, €tc.; This
expression will be the integral of the equation

0= Ye+1,2/+41 — QYg z/+1 — by$+1,;c’ — CYg - (b)

In order to have this expression, z can be considered as null, since we must have
regard only to the terms independent of z; equation (a) becomes thus

this is that which I name generating equation of equation () in the partial differences.
Indeed, we obtain this last equation by multiplying the preceding by u, and passing
again from the generating functions to the coefficients.

The expression that we obtain by the preceding analysis for y, ., is an infinite
series. We will arrive in this manner to a finite expression. Let us take the value of
77> and let us give to it this form

w  u(=b+0)" [e+ab+a(d—b)]"
e’ o (1 . b)x

t

If we develop the second member of this equation, with respect to the powers of %— b,
we will have

w [ | Ty =), (1 v

z—1 -1 r—2
X {af‘+x(c+ab)f +x<x )(c+ab)2a—2+etc.}.

7 —b 1.2 (tl/ — b)
Let there be
V =a",
VW = 2'ba® + z(c + ab)a™ !,
" —1 —1
V@ = T (li : )bzaz —i—x’:l:b(c—l—ab)ax*l + x(xl . )(c+ab)2ax*2,
/ ’ 1 I 2 ! /I 1
ve =2 (@ 12)(; )bSax %xbz(C—i— ab)a®*
-1
+ x’x(xl—z)b(c + ab)?a®?
z(r —1)(z —2) 3 23
25 lctabla

ete.;

[64]
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we will have

/

1% l_b x_i_v(l) l_b xl_l_i_v(?) l_b I_Q..._i_v(x’)
U t’ t’ t’

Now the equation

1 a b
wop p 70
gives
1 _%—a'
L—b c+ab
hence
V(s ’ v (L, o V)
u v ) TV\E T o

S =
trtie Vz’Jrl 1 V(x’+2) 1 2 V(x’Jr;r) 1 z
+ - —alt—s=—a) - —— (= —a
c+ab <t' ) (c+ ab)? (t’ > (c+ ab)® (t’ )
In order to pass again now from the generating functions to the coefficients, we will
observe, 1° that the coefficient of t%¢"° in —%“- is y,,; 2° that this same coefficient,

teg’

in any term, such as u (tl, - b)T or ub” (ﬁ — 1)r, is br/ A" (?j’), the characteristic

'\ of the differences corresponding to the variability of 2/, and this variable must
be supposed null after the differentiations; 3° that this coefficient in u (% — a)r, is
a" A" (y;—zo), the characteristic A corresponding to the variability of x, and this vari-
able must be supposed null after the differentiations; we will have therefore, with
these conditions,

o =V () £ VO AT () vy

+ v (B0 L yeaar (B0
c+ab a® (c + ab)? a®

a” / Ya.0
* (c+ ab)® a®

this is the complete integral of equation (b) in partial differences. It is clear that this
integral supposes that we know the first horizontal rank and the first vertical rank of
Table (Q) of §14.

§17. The preceding expression of y, ,» offers this of the remarkable, namely, that
the characteristics A and ‘A of the finite differences, have for exponents, the variables
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x and z'. Here is another example. Let us consider the equation in the partial
differences

a b
0=A"Y, . + aA”_l.’Aym:/ + ?A"_Q.lﬁzyw,x/ + etc.,

the characteristic A corresponding to the variable x of which unity is the difference,
and the characteristic ‘A corresponding to the variable 2’ of which « is the difference.
The corresponding generating equation will be, by the preceding section,

0— (1 1n+a1 17171 Loy 2 (! 1ni2 ! 12+t
=|-- - == — — — -~ — — etc.
t a \t tho a? \t o

This equation gives the following n:

1 1
Tog_afp 1y
t o te
1 ! 1
__1:(]_ 1—— ),
t Qo t'o
1 " 1
__1:q_ 1——),
t Q t'a
ete

q, ¢, ¢", etc. being the n roots of the equation
0=2"—az""'+b2"% — etc.

The equation

gives

u u g q 1\”
— = (1+ -
txt/x t/:C ( + o at/a)

q" 1 ¢! ( q\ 1
DNNY A Sy (I
= 15/7(_1) af oz ot o/ te(z—1)
+ etc.

By passing again from the generating functions to the coefficients, we will have
z—1

2 ) 4 q q
Yo = (1) {—xyo,x'mx T <1 + —) Yo' +a(a—1) etc-} :
(6% (6% (6%

The second member of this equation can be set under the form

’ /
x

x+% T o
<1+€) (_2) IAT < g ) Yo
q o a—+q




[67]

54 2. CONCERNING GENERATING FUNCTIONS IN TWO VARIABLES

IS

By designating therefore by the arbitrary function ¢(z’) the quantity (#q) Yo'
the expression of y, ,» will become
x—&-z—/
o «@ T
Yo = (1 ; —) (-2) rarg(a).
q a
This value satisfies therefore the proposed equation in the partial differences.
It is clear that each of the roots ¢/, ¢”, etc., furnish a similar value, in which we
can introduce another arbitrary. We will designate by ¢1(2'), ¢o(2'), etc. these new
arbitraries. The union of all these values will satisfy the proposed equation, because
it is linear, and this union will be the complete integral of it, which is thus,

= (14 Q)HZ (-4)" o)

q Q
x—i—z—, I\ T
a (e
+ (1 + ?) <—%> I ()
+ etc.

If we suppose « infinitely small and equal to dz’; if we observe moreover that

dz’ i :
oy
q

as it is easy to be convinced of it, by taking the logarithms of each member of this
equation, we will have

S

2! d*¢(x’ 2! e | A5 P1 (2
Ypo =C9(—q)" [ dq;(,x )] +c7(—q") [%} + etc.;

it is the complete integral of the equation in the finite and infinitely small partial
differences,

d x,x’ n— d2 x,x’
0= Anyx,a:’ + aA\" ! (%) + bA 2 (#) + etc.

All the equations in the partial differences that we have examined until here, have
no last term independent of the principle value. If they had, we would have regard,
and we would integrate these equations by the method that we have given for this
object, relative to the equations in the simple differences, and that it is easy to apply
to the equations in partial differences.

Theorems on the development into series, of functions of many variables.

§18. If we apply to the functions of many variables, the method of §11; we will
have from the development of these functions into series, some theorems analogous
to those of §10. Let us consider the generating function u [ — 1}", and let us
give to it this form

1
tt't"” etc.
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1 1 1 "
u 1+¥—1 1+F_1 1+F_1 etc.—l s

u being supposed a function of ¢, ¢, t”, etc., in the development of which v, 4/ 47 cte. 1S

the coefficient of t*+'='+"*" etc. This coefficient in the development of u [m — 1] "
will be A™Yy s o et @, &', 2", etc. being supposed to vary by unity in vy, ./ 7, ete.-
This same coefficient, in the development of the generating function

1N/t N1\

U <_ - 1> <— — 1> (— — 1> etc.,
t t/ t/l
/AT.HATI.WATH etc. Yz a2, ete.s

the characteristics ‘A, "/, " /\, etc. corresponding respectively to the variables z,
2/, 2" etc.; we will have therefore, by passing again from the generating functions to
their coefficients,

will be

(1 + /Aya:,m/,x”, etc.)(l + ”Ayx,z’,x“, etc.) }n .

An 1 opl! -
yiB,ﬂ? ', ete. { X (1 + ///Ayx7x/7x//7 etc.) etc. — 1

provided that in the development of the second member of this equation, we ap-
ply to the characteristics ‘A, "A, etc. the exponents of the powers of "Ayy 4 4. ete.,
//Ay:c,z’,z”, ete., €tC.

By changing n into —n, the same equation subsists further, provided that we
change, as in the §§10 and 11, the characteristics A, '\, " /\, etc., when they have a
negative exponent, into corresponding finite integrals, the signs 3, 'Y, ¥, etc. being
the characteristics of the integrals, corresponding to the characteristics A, ‘A, " A,
etc. of the differences.

n
It is clear that u L - - 1} is the generating function of the n' finite

pipi/ i o
difference of Yy 47 47 ete., © varying by 4, 2’ varying by 4, 2” varying by ", etc.. Now

we have [69]

1 " AN 1\ 1 !
— 1) =ul{142-1) (1+=-1) (14=>-1) ete.—1
u(tit’i’t’” ete. ) " ( 3 ) ( T ) ( MR ) e

by designating therefore by A the characteristic of the differences, when x varies by
i, 2’ by i', 2" by ", etc., and by X the corresponding integral characteristic, we will
have

Y

Ao ar,ete. = (14" Dy ar o, ete.) (14" Dyfgar o, ere.)’ ete. — 1],
SG _ 1

Pt e T {4 A, ete) (L + " Dt o, e )V et — 17

provided that in the development of the second member of these equations, we apply

to the characteristics ‘A, "\, etc., the exponents of the powers of 'Ayy, v 27 etc.,
"Ayz@,’wu’ ete., €tc., and that we change the negative differences into integrals. We

)
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can thus dispense with indicating the arbitraries that the finite integral £" must
introduce, because they are counted contained in the integrals that the development
of its expression gives.

The two preceding equations yet hold, by supposing that in the differences
"ANYiata eters DYzt o ete.s €bc., T, o', 2" etc., instead of varying by unity, vary
by any quantity w; provided that in the difference Aym,m/@u, ete., £ varies by i,
2’ by i'w, 2" by i"w, etc. Now, if we suppose w infinitely small, the differences

"ANYsat a etes | DYz ar 2, ete., €bc., will be changed, the first into dz <%), the

), etc. Moreover, if we make i, i, 7"

yac,x/, etc.

) d
second into dx’ ( o

and such that we have

, etc. infinitely great,

de = «, /L',dxl = O/’ etc';
we will have
; d z.2' etc t% a Wyl ete.
(1 + /Ay$7$/7$//7 etc.)z = {]_ + dx (%) } =c ( dx )’

¢ being always the number of which the hyperbolic logarithm is unity. We will have

similarly
dy

, Oél< Yz, x! | etc. )
" 1 dz’
(1 + Ayw,x’, etc.)l =cC *

Y

and so forth; hence

dy, . dy, .1 n
_ a( ac,a(ciz, etc. )+a/ ( :c,;cz,, etc. ) “etc.
Aym,x’, ete. = |[C -1 )
1

Zy:p,x’, etc. — 4 4 K
yz,z/, etc. 7 yz,z/, etc.
[ = “+a T +etc.
c —1

x varying by «, 2’ by o/, etc., in the first two members of these equations.

If, instead of supposing w infinitely small, we suppose it equal to unity, and ¢
infinitely small and equal to dx; if we suppose further ¢, i”, etc. infinitely small and
respectively equal to dz’, dz”, etc., we will have

(1 + /Aym,x’, etc.)i = (1 + /Aym,x’, etc.)dx =1+dx 108;(1 + /Ayz,:p’, etc.);
we will have similarly

(1 + //Ayx,:c’, etc.)i/ =1 + dZL‘/ IOg(l + //Ayx,ac’, etc.);
etc.

moreover A”ym/’ ete. 1S changed then into d"yy 4. etc.; we will have therefore
dnyx,:c’, etc. — [dl’ 10g<1 + /Ayx,a:’, etc.) + dx/ log(l + I/Ayx,az’, etc.) + etc']n;

an equation which by making n negative, subsists yet, provided that we change the
negative differences into integrals. These diverse results are analogous to those that
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we have found in §10, relative to the functions of one variable alone; and we find again
the analogy that we have observed between the positive powers and the differences,
and between the negative powers and the integrals.

Considerations on the passage from the finite to the infinitely small.

§19. The passage from the finite to the infinitely small, consists in neglecting the
infinitely small differences, with respect to the finite quantities, and generally the
infinitely small of an order superior relative to those of an order inferior. This omission
seems to remove from this passage, geometric rigor; but, in order to be convinced of
its entire exactitude, it suffices to consider it as the result of the comparison of the
homogeneous powers of an indeterminate variable, in the development of the terms of
an equation which subsists, whatever be that indeterminate; because it is clear that
the terms affected of the same power must be mutually destroyed.

In order to render that sensible by an example, let us consider the following
equation that equation (q) of §10 gives, by making n = 1,

/Ayzr = (1 + dy:c’)ﬁ -1,

'\ is the characteristic of the finite differences, x’ varying by «, and d is the charac-
teristic of the differences, 2’ varying by dz’. The preceding equation developed gives,
by applying conformably to the analysis of the section cited, the exponents of the
powers of dy, to the characteristic d,

2 d])/)
Ay = gy, 4 L& 0dr)
Yor = g W T T

dy, is equal t0 Y, 1 g — Yur. Let us suppose that by developing the function of x’+da’,
represented by vy,/44,, we have

d®y, + etc.;

Yo' rdet = Yo + A"yl + da"? 2y + ete.;
we will have
dyy = da'yl, + dax’z, + etc.;
whence we deduce
d*yy = da'dy, + da*dz, + etc.

Let us develop similarly v/, ;./, Zo'1der, etc. according to the powers of dz’, and let
us suppose that we have

/.01

y:/L"+d:B’ - y;./ + dl‘ yx/ + dl‘/2sxl + etC.,
Zpigde = 2 +dx' 2y + ete;
we will have
dy., = da'y!l, + da'*s, + ete.,
dzy = da'zl, + ete.,

[71]
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hence
Py = dz’dy", + da’ s, + ete.
+da’?2  + ete.

The preceding expression of 'Ay,, will become thus,

Oé2

1.2
oz — Syl + ete.)
+da’ § +a (s + 2" + etc.) (0)
+ etc.
+dz"? ete.,

"Nyw = ayl, + —1 + ete.

dz’ being undetermined; the terms independent of dx’ must be equal separately among
them; we have therefore
o2
"Ny = ayl, + Eyg, + ete.

Now, v, is the coeflicient of dz’ in the development of y,/i4,; it is that which we

dyx/

dx’ ° 2 )
in the development of ¥, ;..; it is that which we designate by jgf,’, or by ddj,z’, and
so forth; by substituting therefore, in the preceding equation, ¥,/ — Y, instead of

'Ay,, we will have the following theorem:

designate in the differential Calculus, by Similarly y”, is the coefficient of da’

dyac’ + o dZyx’ + o dgyz’ + et
— etc.
dx’ 1.2 da'? 1.2.3 da’3

Considered as a result of the comparison of the terms independent of dz’, this theorem
leaves no doubt on its rigorous exactitude, and it is clear by the preceding analysis,
that this comparison returns to neglecting the terms multiplied by dz” and its powers,
relative to the finite quantities; this omission removes therefore nothing from the rigor
of the differential Calculus. But we see moreover, a priori, that the terms affected
of the same power of the indeterminate dz’ must be mutually destroyed, that which
we can verify a posteriori; thus that which we neglect as infinitely small is rigorously
null; so that the omission of the infinitely small, relative to the finite quantities, is
at base only a easy way to eliminate the superfluous terms which must vanish in the
final result.

This bringing together of the calculus in finite differences, and of the differential
calculus, puts into evidence the rigor of the results of this last calculation, and gives
its true metaphysics; but its applications to extent, duration and movement supposes
moreover, the principle of limits. We can, by a similar bringing together, clear up
diverse points of the infinitesimal analysis, which have been subjects of dispute among
geometers: such is the discontinuity of arbitrary functions in the integrals of equa-
tions in the partial differences. Those who have rejected this discontinuity, based
themselves on this that the ordinary analysis of infinitely small differences, suppose

Yo'+a = Yo' T
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that the successive differentials of a function, must be infinitely small relative to the
previous, that which does not hold when the function is discontinuous. In order to
clarify this delicate question, it is necessary to consider it in the finite differences, and
to observe that which arrives in the passage from these differences to the infinitely
small differences.

Let us take for example the following equation in partial finite differences:

(yac—i-l,m’ - 2ya:,ac’ + Z%c—l,z’) - (yzv,m’—i—l - 2yac,ac’ + yac,x’—1> - Oa (CL)
its generating equation is, by §16,

1 2 1 2
tl==1) =¢(=-1) =0
t #

and by following the analysis given previously, it is easy to conclude from it that the
complete integral of the proposed equation (a) is

Yx,a! = ¢(I + CL’/) + 77[}(1’ - $/)7

¢(z+2') being an arbitrary function of z+2’, and ¢(x—2') being an arbitrary function
of x — a'. It is easy moreover to be assured that this value satisfies the proposed, and
that it is the complete integral, since it contains two arbitrary functions.

Let us suppose presently that, in the following Table,

Yo,0, Y10, Y200 Y30, -+ Yn-1,0, Yno0,

Yo,1, Y11, Y21, Y31, -+ Yn—-11,  YUn1,

Yo,2, Yi1,2, Y2,2, Ys3,2, cee Yn—12, Yn,2, (Z)
yO,ooa yl,ooa y2,ooa y3,ooa s ynfl,ooa yn,ooa

we know the first two horizontal ranks comprehended between the two extreme ver-
tical columns

Yo,0, Yo, Yo,25 -+ Yo,009

yn,O; yn,la yn,Zy <. yn,ooa
and that we know moreover all the terms of these two columns; we could determine
all the values of y, ,» which fall between these two columns. Because if we wish to
form the third horizontal rank, we will observe that equation (a) gives

Yo o' +1 = Yz+1,2/ + Y12 — Yo' —1-

By making in this last equation, 2’ = 1, and successively z = 1, x =2, x = 3, ...,
x = n— 1, we will have the values of y1 2, ¥22, Y32, ..., Yn—12, or the third horizontal
rank, by means of the first two horizontal ranks. We will form in the same manner
the fourth horizontal rank, and so forth to infinity. But, if we wish to determine the
values of y, ., which fall outside of Table (Z), the preceding conditions do not suffice,
and it is necessary to add others to them.

Let us take the integral

Yrw = Ol +2") +(x — 2);

[74]



[75]

60 2. CONCERNING GENERATING FUNCTIONS IN TWO VARIABLES

and let us suppose that the second horizontal rank which determines one of the two
arbitrary functions, be such that we have

U(x —a') = d(x — 2');
we will have

Yza! = ¢(I + IL‘/) + ¢([E - I/)‘

By making 2’ = 0, we will have ¢(z) = 3y,0; hence

Yot = %ya:—l—x’,o + %yx—m’,o'
It is easy to see that this equation satisfies the proposed equation (a); but it is only
a particular integral, which corresponds to the case where the second horizontal rank
is formed from the first, by means of the equation

Y1 = %ya:+1,0 + %y:c—l,0~
As much as x + 2’ will be equal or less than n, and as x — 2’ will be positive or null,
we will have the value of y, ./, by means of the first horizontal rank. But, when 2’
increasing, = + x’ will become greater than n or when x — x’ will become negative;
it will be necessary to determine the values of y,, o and of y,_,/ ¢ by means of the
two extreme vertical columns. Let us suppose that all the terms of these columns are
null, and that we have thus yy,» = 0 and y,, ,» = 0. By making x null in the equation

Yxa! = %nyr:r’,O + %yazfx’,o'
we will have

Y—2'0 = —Yz'0-
By making next x = n in the same equation, we will have
Yn+2',0 = —Yn—a'0-

If we change next in this last equation, 2’ into n + 2/, we will have

Yon+a'0 = —Y—2/,0 = Yz’ 0,

by changing next x’ into n + x’, we will have

Y3n+z',0 = Ynta2',0 = —Yn—z',0;
whence generally we will have

Yorn+a',0 = Ya' 0,
Yer+1)nta’,0 = ~Yn—a’,0-
We will thus be able, by means of these two equations, to continue the values of vy, ,/

to infinity, on the side of the positive values of x, and we will conclude from them
those which correspond to x negative, by means of the equation

Y20 = Yz’ 0-
Thence results the following construction. Let us represent the values of v, from
x = 0 to x = n, by the ordinates drawn at the angles of a polygon of which the
abscissa is x and of which the two extremities, that I designate by A and B, lead to
the points where x = 0 and x = n. We will carry this polygon from x = n to z = 2n,
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by giving a position to it contrary to the one which it had from x = 0 to x = n, that
is, a position such, that the parts which were above the axis of the abscissas x, are
found below, the point B remaining moreover in this second position, in the same
place as in the first, and the point A corresponding thus to the abscissa x = 2n. We
will place next this same polygon, from x = 2n to x = 3n, by giving to it a position
contrary to the second, and consequently similar to the first, in a manner that the
point A, in this third position, conserves the place that it had in the second, and that
thus the point B corresponds to the abscissa x = 3n. By continuing to place thus this
polygon alternately above and below the axis of the abscissas; the ordinates drawn
at the angles of this sequence of polygons, will be the values of ¥, ¢ which correspond
to x positive.

Similarly, we will place this polygon from = = 0 to x = —n, by giving it a position
contrary to that which it had from x = 0 to x = n, A remaining moreover in the
same place in these two positions. We will place next this polygon from x = —n to
r = —2n, by giving to it a position contrary to the second, the point B conserving
the same place, and so forth to infinity. The ordinates of these polygons represent
the values of y, o which correspond to = negative. We will have next the value of y,, ./
by taking the half-sum of the two ordinates which correspond to the abscissas x +
and z — 2.

This geometric construction is general, whatever be the nature of the polygon
which we just considered. It will serve to determine all the values of y, ,» compre-
hended from z = 0 to x = n, and from 2/ = 0 to 2’ = oo, provided that we have
Yo = 0 and y,,,» = 0, and that moreover the second horizontal rank of Table (Z) is
such, that we have

Y1 = %yx+1,0 + %,%:—170-
We have by that which precedes,

Yz,z'+n = %ym+x’+n,0 + %yzfx’fn,(];
moreover,
Yrta'4n,0 = ~Yn—z—2',0 Yr—a'—n,0 = ~Yn—a+a’,05
therefore
Yowtn = —5Yn—a—a'0 — 3Yn—ata’,0 = —Yn—za';
it follows thence that in Table (Z), the (n+2’)™ horizontal rank, is the 2/*" rank taken
with a contrary sign and in a reversed order, so that the r® term of the (n + /)™

rank is the same as the (n —r)™ term of the 2/ rank taken with a contrary sign. We
have next

1 1 .
Yz 2onta’ = 3Y2nta+a’,0 + sYz—a'—2n,0;
we have besides, by that which precedes,

Yon+az+a',0 = Yz+a’,05

Yr—a'—2n,0 = —Yonta'—2,0 = —Yo'—2,0 = Yz—z',0;
hence

1 1 _ .
yac,2n+a:’ - Ey:erx’,O + 53/3:730’,0 - yz,x’;

[77]
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whence it follows that the (2n +2’)*™" horizontal rank is exactly equal to the /*" rank.

Let us consider presently the vibrations of a taut cord of which the initial figure
is anything, provided that it is very near in all its points, to the axis of the abscissas.
Let us name z the abscissa, ¢ the time, y,, the ordinate of any point of the cord after
time t. Let us imagine moreover the abscissa x divided into an infinity of parts equal
to dx, and that we take for unity; that which returns to considering = as an infinite
number. This premised, we will have, by the principles of dynamics,

ddys + a?
( 02 ) = @(ym—kl,t — 22Uyt + Yuo11):

a being a constant coefficient depending on the tension and on the thickness of the
cord. If we make t = %, we will have dt = d%, and y,; will become a function of x
and of z/, which we will designate by y, ,; now, the magnitude of dt being arbitrary,
we can suppose it such, that the variation of 2’ is equal to that of x, which we have

taken for unity; the preceding equation will become thus

Yz ,x'+1 — 2?/1‘,1” + Ygo'—1 = Yzt1,0’ — ny,x’ + Yr—1,275

x and z’ being infinite numbers. This equation is the same as that which we just
considered; thus the geometric construction which we have given previously, can be
employed in this case: the polygon of which the ordinates of the angles are represented
by ¥z, is here the initial figure of the cord; but it is necessary for this to suppose
the length n divided into an infinity of parts equal to dx. It is necessary moreover
that the cord be fixed at its extremities, finally that we have yy,» = 0 and y,, ,» = 0.
Moreover the equation of condition

1 1 )
Yo,1 = 5Yz+1,0 T 5,%@—1,0);

or, that which reverts to the same,

Yz, — Yz0 = %(ywl,o — 2U2.0 + Yz-1,0)
dyx 0 1 2 d2y:r: 0
dt ~ | ==d =
( dt ) 2™ \Tda2 )7

()

) is the initial velocity of the cord; this velocity must therefore be null at

is changed into this one

that which gives

dya:,O
dt
.0
dt
the origin of the movement. Every time that these conditions will hold, the preceding
construction will give always the movement of the cord, whatever be its initial figure,

provided however that in all its points, Yz420 — 2Yz41,0 + Yz,0 is an infinitely small
quantity of the second order, that is that two contiguous elements of the cord, do not

Now (
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form a finite angle. This condition is necessary in order that the differential equation
of the problem can subsist, and in order that this here

dya:O 1
dt = | = =(y, — 20, -
( It ) 2(y +1,0 Yz,0 + Yz-1,0)

gives ( d%j’”) = (0. But besides it is evident, by that which precedes, that the initial

figure of the cord can be discontinuous and composed of any number of arcs of different
curves, provided that these arcs are touching.

The different situations of the cord in its movement, are represented by the hor-
izontal ranks of Table (Z); and as the ranks which correspond to the values of 2/,
2’ 4 2n, 2’ 4+ 4n, etc. are the same by that which precedes, there results from it that
the cord returns to the same situation after time ¢, ¢ + 27”, t+ %”, etc.

We see next by the geometric construction given above, that if we imagine a
sequence of cords linked among them, and placed alternatively above and below the
axis of the abscissas, as in this construction; all the cords will vibrate in the same
manner, so that their initial figures being the same, their figures will be constantly
parallel. We can likewise fix only the two extremities of this sequence, and leave
their nodes entirely free; because the elements of the two cords at the point of their
junction, being in a straight line and equally taut, this point has no tendency to be
moved and must consequently remain immobile, that which experience confirms.

This analysis of the vibrating cords, establishes in an incontestable manner, the
possibility of admitting discontinuous functions into this problem, and we must gen-
erally conclude from it that these functions can be employed in all the problems which
depend on equations in partial infinitely small differences, provided that they may
subsist with these equations and with the conditions of the problem. We can indeed
consider these equations, as some particular cases of equations in finite differences, in
which we suppose that the variables become infinite; now nothing being neglected in
the theory of equations in the partial finite differences, it is clear that the arbitrary
functions of their integrals, are not at all subject to the law of continuity, and that
the constructions of these equations, by means of the polygons, hold whatever be the
nature of these polygons. Now, when we pass from the finite to the infinitely small,
these polygons are changed into some curves which, consequently, can be discontinu-
ous; thus the law of continuity is necessary neither in the arbitrary functions of the
integrals, nor in the geometric constructions which represent them. It is necessary
only to observe that if the equation in the partial differentials in y, . is of order n, it

. . A"y 1
must not have a jump between two consecutive values of ( ¥ —

xS da/™ T8
positive whole numbers, s being able to be null; that is that the differential of this
quantity must be infinitely small with respect to that quantity itself.

This condition is indispensable in order that the proposed differential equation
may subsist, because every partial differential equation supposes that the partial dif-
ferentials of v, ,» from which it is formed, and divided by the respective powers of dx
and dx’, are finite quantities and comparable among themselves; but nothing obliges
admitting the same condition relative to the differences of y, ,» of order n or of a

), r and s being

[80]
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superior order. By taking for arbitrary functions, the most elevated differences of the
arbitrary functions which enter into the integral of an equation in the partial differ-
ences; this integral will contain no more then but some arbitrary functions and their
successive integrals which are continuous, because in general the integral [ ds¢(s) is
continuous in the case even where the function ¢(s) is not. The preceding condition
is reduced therefore to this that the (n — 1)™ difference of each arbitrary function is
continuous, that is that its differential is infinitely small. It must not therefore have
a jump between two consecutive tangents of the curve which represents the arbitrary
function of the integral of an equation in the partial differentials of the second order;
thus, in the problem of the vibrating cords that we just discussed, it is necessary and
it suffices that any two contiguous elements of the initial figure of the cord, form be-
tween them an angle infinitely little different from two right angles. It must not have
a jump between two consecutive osculatory radii of the curve which represents the
continuous arbitrary function in the integral, if the equation in the partial differences
is of third order, and so forth.

General considerations on generating functions.

§20. It is often useful to know the generating function of a quantity given by an
equation in finite differences, ordinary or partial; because, analysis offering diverse
means to develop the functions into series, we can thus obtain in a quite simple
manner the value of the sought quantity. There results from §5, that the quantity vy.,
given by the equation in the finite differences

0=ay;+bYut1+ CYsr2  + DPYrtn-1+ qYxtn,
is the coeflicient of ¢* in the development of the function
A+ Bt+Ct*- -+ Ht" !
att 4+ bt 4 ctn2. . 4 pt+q’

A, B, C,..., H being arbitrary constants. Indeed, if we compare that function to
this here,

Yo + yit + Yot o+ yut” + Yt yot™,

we will have, by making the denominator vanish, and by virtue of the equation in the
differences in v,

A+ Bt+Ct? -4+ Ht" ' =t""Ybyy + cy, + etc.)
+ 1" 2(cyo + eyy + etc.)
+ etc.;

by equating next the homogeneous powers of ¢, we will have the values of A, B, C, etc.
by means of the n values v, y1, ..., yn_1; we will have therefore thus the generating
function of y,.

If we suppose X'y, =y, we will have y, = A'y.; and then the equation

0= ayx+byx+1 +CYzi2 T qYztn
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becomes
0= al'y, + A Yoy + a0 Yo
that which gives, by integrating,
ayh + byt Yy, = Mz 4+ N2t ™2 + ete.,
M, N, etc. being arbitrary constants. By §2, u being the generating function of y,,
that of y/, is
ut' + At + Bt + ete.
(1—2) ’
the generating function of ¢, or of the quantity given by the preceding equation in v/,
is therefore
(A+ Bt + Ct*- -+ Ht" Dt' + (At + B't"2 4+ ete.) (at™ + bt" ' -+ + q)
(1—t)i(atr + bt +ct" 2+ pt+q) '

Let us imagine now that a, b, ¢, etc. are rational and entire functions of ¢ of order
n, and that A, B, C, etc. are arbitrary functions of the same quantity; y, will be
a function of x and of ¢. By developing it with respect to the powers of t/, we will
name ¥, . the coefficient of ¢/ " in this development. This premised, if we suppose

m—1

a=d t"+V "+ + ete.
b=a"t" + 0 "+ "+ ete
c=a"t" + etc.
ete.
The preceding differential equation in y, will give, by comparing the coefficients of
the power #'* ™" the following equation in the partial differences in g, .,
0= a,yx,w’+b,yx,z’+l + C/yx,ar’—i—Z + etc.
a" Yoy 1,00 + 0 Y i1 + etc.
+ 0" Ypp000 + etc.
+ etc.;

the generating function of the variable ¥, ,» of this equation will be therefore
A+ Bt+Ct*-- -+ Ht"!
dt" YT T 4 ete
Fa T T 4 et
+a"t" " + ete.
+etc.

A, B, C,...being arbitrary functions of ¢, they will give by their development, the
arbitrary functions which must enter into the expression of vy, ..
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We can further determine the generating functions of the equations in finite dif-
ferences, in which the coefficients are variables. Let us consider for this the equation
in the differences

0= ayx+byx+l+cyx+2"'+qyx+n
_'_x(a/ yx+b/ Yz+1 + yx+2~~'+q’ yx+n)

+ x2(a’//yw + b//yIJrl + C//yochQ s q//mern)
+ etc.

If we name u the generating function of y,, we will have, by virtue of the preceding
equation,

b ¢
(ortitoen)
+ti{u(af+ﬁ'+i'...+i)}
dt t 12 tn
d d ” b/l C// q//
L (e

+ etc.
=A+Bt+Ct* -+ Ht"

A, B, C, ..., H being arbitrary constants, which depend on the values of g, ¥,
Yo, -+, Yn—1. Indeed, if we substitute into this equation, the preceding value of w in
series; we see that by virtue of the proposed differential equation, all the coefficients
of the same power of ¢, vanish when this power is equal or greater than n; and the
comparison of the inferior powers give a number n of equations which determine the
constants A, B, C, etc., by means of the values o, y1, ¥2,- -, Yn_1-

The preceding differential equation is generally integrable, only in the case where
it is of the first order, and then the coefficients of the equation in finite differences in
Yy, contain only the first power of x: in this last case, we can obtain the generating
function u by quadratures.

§21. The knowledge of generating functions of differential equations, gives the
expression of the integrals of these equations, by means of defined quadratures. Let
us take for this, the equation

U= yo+ it +yot® Yot F YorrtT Yot ™.

Let us substitute into its two members ¢V~ instead of t*, ¢ being always the number
of which the hyperbolic logarithm is unity; and let us name U, that which u then
becomes. By multiplying the equation by ¢ *®V~1dw and integrating, we will have

/ Ud —xwy/—1 /d yOC_IEW\/_i1 + ylc_(w_l)W\/jl T
wcC = w
o Yy F Yo TV ete
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If we substitute, for ¢*"@V=1 its value cos reo++/—1 sinrw, and if we take the integral [84]
from w = —7 to w = m, 27 being the circumference, the second member is reduced

to 2my,; we have therefore
1
Yo = 5 Udw(cos zw — v/ —1sinxw);
T

but this formula has the inconvenience of introducing imaginaries from which we can
be disencumbered in the following manner.
Let us consider the equation

0= ayyx + bnyrl ot QYzin
+ x(a/yw =+ b/yrfc+1 et q/yz+n>7

Yy = / Mt

T being a function of ¢ that it is a question of determining, as well as the limits of
the integral. By substituting for y, this value into the differential equation in y,, and
observing that we have

T T T
x/t_””_ldt— =t 4 /t"”d (—) ,
tr tr tr

that which makes the variable coefficient x vanish; we will have

bl q/
O=—-—Tt 7 |d +=... 40 L
<a+t +t">

b
Sy !
+ /txldt d y / ’
q
t— | Tl +=...+ =
e [T ()
By equating to zero the part under the sign [, we will have

b q
0=T 2.4 2
(a+t +t”)

d b q
(e + 2. 1 L)
+ dt[ (a+t +t”)1

This equation integrated gives T' as function of ¢. It is the same as the differential
equation in u of the preceding section, by neglecting in the latter the term independent
of u. The value of T is therefore the part of u which is independent of this term.

In order to have the limits of the integral [¢*~'T'dt, we will equate to zero the
part outside the [ sign, in equation (h); that which gives

b/ q/
0=Tt"d +=---4+=].
(a—l—t +t”)

and let us suppose

~—
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This equation is satisfied by supposing ¢ infinite, and by supposing it equal to one of

the roots of the equation
/ /

b q
O=a + —... + 2
a+t +t"’

we will have thus n + 1 limits of the integral [¢~*~'T'dt; by multiplying next each
integral comprehended between one of these limits, and the n other limits, by an
arbitrary constant; the sum of these products will be the complete value of y,.

We can extend this method, to the equations in finite and infinitely small partial
differences, as we will show in the second part of this Book.

We see by that which precedes, the analogy which exists between the generating
functions of the variables, and the definite integrals by means of which these variables
can be expressed. In order to render it yet more sensible, let us consider the equation

Yo = /Tdttx,

T being a function of ¢, and the integral being taken within some determined limits.
We will have, z varying by «,

1
Ayx:/Tdtt_I (t—a—1>,
. /1 i
A’yx:/Tdtt m<t—a—1> :

by making i negative, the characteristic /A is changed into the integral sign . If we
suppose « infinitely small and equal to dz; we will have

1 1
L 1 4drlog-:
fa — L HATiog L

we will have therefore, by observing that then Ay, is changed into d'y,,

diy, - 1\’
- = [ Tdtt ™| log - | .
dz? / ( °8 t)

We will find in the same manner, and by adopting the denominations of §2,

. b ’
szz/Tdtt_r (CH—Z---—F%) .

Thus the same analysis which gives the generating functions of the successive
deriveds of the variables, gives the functions, under the [ sign, of the definite integrals
which express these deriveds. The characteristic V? expresses, strictly speaking, only
a number i of consecutive operations; the consideration of the generating functions
reduces these operations to some elevations of a polynomial to its diverse powers; and
the consideration of the definite integrals gives directly the expression V'y,, in the
same case where we would suppose i a fractional number.

But the great advantage of this transformation of the analytic expressions, into
definite integrals, is to furnish an approximation as handy as convergent, of these

and, generally,
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expressions, when they are formed of a great number of terms and of factors; this is
that which takes place in the theory of probabilities, when the number of the events
that we consider is very great. Then the numerical calculus of the results to which we
are led by the solution of the problems, become impractical, and it is indispensable
to have for this calculation, a method of approximation so much more convergent, as
these results are more complicated.

Their expression in definite integrals, procures this advantage, and the one to give
the laws according to which the probability of the results indicated by the events,
approaches certitude in measure as the events are multiplied, laws of which the knowl-
edge is one of the most interesting objects of the theory of probabilities. It was on the
occasion of a problem of this kind, of which the solution depended on the expression
of the middle term of the binomial raised to a great power, that Stirling transformed
this expression into a very convergent series: his result can be regarded as one of the
most ingenious things that we have found on series. It is especially remarkable, in this
that in an inquiry which seems to admit only some algebraic quantities, it introduces
a transcendental quantity, namely, the square root of the ratio of the circumference
to the diameter. But the method of Stirling, based on a theorem of Wallis and on the
interpolation of series, left desiring a direct method which is extended to all functions
composed of a great number of terms and of factors. Such is the method of which I
just spoke, and that I have given first’ in the Mémoires de I’Académie des Sciences
for the year 1778, and next® more extensively, in the Memoirs of the same academy,
for the year 1782. The development of this method will be the object of the second
Part of this Book, and will complete thus the Calculus of generating functions.

The series to which this method leads, contains most often, the square root of
the ratio of the circumference to the diameter; and it is the reason for which Stirling
has encountered it in the particular case that he has considered; but sometimes they
depend on other transcendentals of which the number is infinite.

The limits of the definite integrals that this method reduces into convergent series,
are, as we just saw, given by the roots of an equation that we can name equation of the
limits. But a very important remark in this analysis, and which permits extending it
to the functions that the theory of probabilities presents most often, is that the series
to which we arrive, hold equally in the same case where, by some changes of sign
in the coefficients of the equation of the limits, its roots become imaginaries. These
passages from the positive to the negative, and from the real to the imaginary, of
which the first applications have appeared, if I do not deceive myself, in the Memoirs
cited, have led me in these Memoirs, to the values of many definite integrals, which
offer that of the remarkable, namely, that they depend at the same time on these two
transcendentals, the ratio of the circumference to the diameter, and the number of
which the hyperbolic logarithm is unity. We can therefore consider these passages, as
means of discovering, similar to the induction of which geometers made long time use.

LéMémoire sur les probabilités,” Mém. Acad. R. Sci. Paris, 1778 (1781), [9, pages 227-332]
Oeuvres 9, p. 383-485.

24Mémoire sur les approximations des formules qui sont fonctions de trés-grands nombres,”
Mém. Acad. R. Sci. Paris, 1782 (1785), [11, pages 1-88] and Oeuwwvres 10, p.209-291.

[87]
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But these means, although employed with much precaution and reserve, leave always
desiring some demonstrations of their results. Their bringing together of the direct
methods, serving to confirm them and to show the great generality of the analysis,
and being able by this reason, to interest the geometers; I have insisted particularly on
those passages that Euler, considered at the same time as myself, and of which he has
made many curious applications, but which have appeared only since the publication
of the Memoirs cited.



Part 2

THEORY OF THE APPROXIMATIONS OF
FORMULAS WHICH ARE FUNCTIONS OF LARGE
NUMBERS.






CHAPTER 1

On the integration by approrimation of the differentials which contain
factors raised to great powers

§22. We just saw that we can always return to the integration of similar differen-
tials, the formulas given by the theory of generating functions. We are going therefore
to occupy ourselves first at length, with the approximation of this kind of integrals.

If we designate by u, v/, u”, etc. and ¢ arbitrary functions of z, and by s, s, s,
etc., very great numbers, each differential function which contains functions raised to
some great powers, will be comprehended in the term ¢ dz u’u'*'u” " ete. In order to
have in convergent series, its integral taken from z = 0 to z = 0, we will make

B s
ouu " ete. = y;

and, by designating by Y that which y becomes when we change x to 6 there, we will
suppose

y=Yc",
¢ always being the number of which the hyperbolic logarithm is unity. We will have
thus

Y
t =log —.
)

If we consider = as a function of ¢ given by this equation; we will have, by supposing
dt constant,
_ dez  t* ddx 2 dx
r=0+ ta + EF + 12?)% + etc.,

t needing to be supposed null after the differentiations, in the values of
Now we have generally

dz  ddz

di di2o etc.

d'v 1 1 1 p dr
the differential characteristic being related to all that which follows it, and dt being
able to vary in any manner whatever in the second member of this equation; moreover,
if we differentiate the preceding equation of t by y, and if we designate —% by v, we
will have dt = “fj—x; we will have therefore

d "z B vdvdv...dv
A i

dx being supposed constant in the second member of this equation. Thus, by naming

U that which v becomes when we change x into 6; the value of ‘g—f which corresponds

73
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to x = 0, or, that which returns to the same, to t = 0, will be equal to
UdUudUu...dU
don—1 ’

we will have therefore

=0+ Ut+ UdUt2+UdUdUt3+ t
v 12d0° 1234020 T

whence we deduce

dU dU dU
d{L‘—Udt (14-@15‘{— 1.2d92

2 + etc.)

consequently

dU dU dU
_ —t av 2
/ydx—UY/dtc <1+ d9t+ 1.2d02t +etc.).

If we take the integral from ¢ = 0 to ¢ infinity, we will have generally

/t"dt " =123 .n;

d aud d.UdUd
/ydx:UY(l—i— U+ v U+ v UU+etc.),

hence

de do? do?
the integral relative to x being taken from x = 6 to the value of x which corresponds
to t infinite.
Let us name Y’ and U’ that which y and v become when we change x into '; we
will have similarly

av’ AU’ au’)y  d.U'dU’du’
/ydx:U/Y'(l—i— U—i— W U)—i- v du U+etc.);

de’ dor e’

the integral relative to x being taken from x = 6’ to the value of x which corresponds
to t infinite. By subtracting therefore these two equations from one another, we will

have d aUud d.UdUd
/ydx:UY(l—l— U+ v U+ U UU—l—etc.)

do 62 do3
(A)

av’  dU’du’y  dU'dU'dU’

- Uy’ (1 + 7 + e ) + e etc.) :

the integral relative to x being taken from x = 6 to x = €', so that the consideration

of t disappears in this formula. If # and ¢ were originally contained in y, it would

be necessary to vary only the quantities # and ¢ which introduce in U and U’, the
changes from z into € and @’ in the function v.

Formula (A) will be very convergent, if v or —% is a very small quantity; now y

d
. . / 17
being, by assumption, equal to ¢uu/s u"* . etc., we have
1
v=— :
d /d / //d " 1 d 7
TN T+ ete. + 3%
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Thus in the case where s, s, s”, etc. are very great numbers, v will be very small;

and if we make % = «, « being a very small fraction, the function v will be of the
order «, and the successive terms of formula (A) will be respectively of the order «,
a?, a3, etc.

This formula would cease to be convergent, if the assumption of x = 6 rendered
very small the denominator of the expression of v. Let us suppose, for example,
that (z — a)* is a factor of this denominator; it is clear that the successive terms of
formula (A) are respectively divided by (8 — a)*, (6 — a)***1, (0 — )32, etc. and
will become very large, if 6 is little different from a; the convergence of this formula
requires therefore that (6 — a)*, (0" — a)* be greater than «; it cannot consequently
be used in the interval where (x — a)* is equal or less than «; but, in this case, we

could make use of the following method.

§23. If we name Y that which y becomes when we change z into a; it is clear that

dlog ¥
ydgﬂ dz ) (‘T - a)M—H

will be a factor of log % Let therefore

or, what returns to the same, of

(x — a)* being a factor of —

1

y=Yc

r —a

v = ;

(logY — logy) T
we will have
T = a + vt,

v at no point becoming infinite, by the assumption x = a. If we designate next by
U, %, d;z(ég, etc. that which v, %, ‘f;;, etc., become when we change z into a after

the differentiations; we will have, by formula (p) of §21 of Book II of the Méchanique
céleste,

+ Ut + av” t* + el t* +et
r=a elcC.;
1.2dr ' 1.2.3da? ’

that which gives

L d 2 d2 3
/ydx:Y/dtct”+ <U+ Uy et t2+etc.); (B)

dx 1.2 dx?

this formula could be used in each interval where x differs very little from a; it can
consequently serve as supplement to formula (A) of the preceding section; but instead
of being ordered, as it, with respect to the powers of «, it is only with respect to the
powers of aﬁ; because it is clear that, in this last case, v is only of order Q.

In order to determine more easily the quantities U, dd—[f, etc., let us suppose

logY —logy = (z — a)**' [A+ B(z — a) + C(z — a)® + etc.] .

[92]
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We will have, by changing = into a after the differentiations,

y d*logy
1.23... (p+ 1) dartl’
B__ d*"2logy
123 (1 + 2) dor+?’
ete.

We will have next, whatever be r,
V" =[A+ B(z —a) + C(z — a)? + ete.] #;
whence it is easy to conclude by developing this expression of v", and naming Q(z —
a)"~! the term of this development, which has for factor (z — a)" 1,
dUr
— Q
1.23...(r—1)dx

Formula (B) presents thus no more difficulties other than those which result from
the integration of the quantities of the form [ ¢"dt ¢ """ and we have generally,

_ B 9,1

wi |+ utn_2“_1 + (n—p)(n 2,u ) 32

/ . ot (it D)
pt cee (n—p)(n—2p—1)-(n—rp+p—r-+2)t"rrl
(p+ 1)1
(n_ﬂ)<n_2/i—1)---(n_rlu_7._|_1) n—ru—r —gptl
: (n+1) t dt e
,LL '

r being equal to the quotient of the division of n by u + 1, if the division is possible,
or to the number immediately inferior, if it is not. The determination of the integral
[ ydx depends therefore on the integrals of this form

/ dt =" / tdte " / tlqt ¢t

It is not possible to obtain exactly these integrals by known methods; but it will be
easy in all cases, to have their approximate values.

§24. We will have principally need in the following, of the value of [y dx, taken for
the whole interval comprehended between two consecutive values of z, which render
y null; we are going consequently to expose the simplifications of which this value is
then susceptible. The variable y having been supposed, in the preceding section, equal
to YC*WH, it is clear that the two values of x which render y null, render equally null
the quantity ¢ "": that which requires that it+1 be an even number, and that one of
these values of = corresponds to t = —oo, and the other to t = oo; Y is therefore then
the mazimum of y, comprehended between these values. Let p + 1 = 2i; if we take
the integral [ ¢***!dt c*tzl, from t = —o0 to t = 00, its value will be null; because it
is clear that the elements of this integral, which correspond to the negative values of
t, are equal and of contrary sign to those which correspond to the same values taken
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positively. The integral [ 2" dtc ™" is equal to 2 [ 2" dt ¢=*" this last integral being
taken from ¢ null to ¢ infinity; and in this case, we have by the preceding section,

/t2n dt C_tzi _ (2TL — 21+ 1)(2n — 44 —f— 1) cee (27’L —2rt + 1) /t2n_2ridt c_tzi
(2¢)

r being equal to the whole number of the quotient of the division of n by i. Let

therefore, by taking the integrals from ¢ null to ¢ infinity,

k:/ﬁaﬁ
kW = / 2dt e
k® = / trdt ™,

k(z’—l) _ /t%—z dt c—t%;

formula (B) of the preceding section will become

1 d2iU2i+1 2 + 1 d4iU4i+1
/y ! { 5 123 2idr T a2 1.2.3...4z'dx4z+ec}

d2U3 N 3 d2i+2U27L+3
oy d 12da? 20 123+ (20 4 2) dat 2
3(2Z+3) d4i+2U4i+3 N .
: - etcC.
42 123+ (4i + 2) datit?
d2i—2U2i—1 2 — 1 d4i—2U4i—1
L opiy 123 (2i—2)de® 2 2 123 (4 —2)dri?
L @i-Di-1) 62761 o
. - etcC.
442 1.2.3--- (6i — 2) da®2

This formula is the sum of a number ¢ of different series, decreasing as the powers
of a, since U is of the order a%, and multiplied respectively by the transcendentals
k, kM), etc., which it is, consequently, important to know; but it suffices for this to
know a number equal to the greatest whole number comprehended within %

Let us consider for this, the double integral

// dsdz c*s(lﬂn),

the integrals being taken from s and x null to their infinite values. By integrating
first with respect to s, it is reduced to

/ dx ‘
1+ 27’

[94]
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but this last integral is ——, n being any whole or fractional number; we have

nsin -7
n

// dsdy 0+ = T
nsin%

Let us integrate now this double integral, first with respect to x. By making sz™ = t",

it becomes
dsc™* n
. / dtc",
Sn

and if we make s = t", we will have

n / dtc"" / 2t =
nSlnE

the integrals being taken from ¢ null to ¢ infinity. If we change n into —*7, this equation

becomes )
’I‘E n__ 7‘% - ]—
n2/altc_tj /trl 2dte T = M,
sin (T’ ) T

n

therefore

and if in this new equation, we change ¢ into t"~!, we will have

nZ/tT_2dt c_tn/t”_Tdt = LA (T)
sin (’"—) s

n

We will have, by means of this formula, by making n = 2¢, all the values of k,
kMW k0D when we will know the half of it, if 7 is even, or the half less a half, if 4
is odd.

By making n = 2 and r = 2, this formula gives this remarkable result

/altc_t2 =1ym

§25. We can by virtue of the generality of the analysis, extend the preceding re-

sults, to the case where ¢ is imaginary. Let us consider the integral [ dx cosrz o’

taken from x null to x infinity. We can put it under this form

2,2 — —a2p2_ —
%/dxcax+rx\/ 1+%/d1:c‘”” rey/ 1;

The integral [ da ¢~ = +7*V=T is equal to

075 /dx C—(ax—Tgf)Q'

If we make

t=axr —
2a '

it becomes

r2

C 4a2
/ dt et
a
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rv/—1
2a

here the integral relative to t must be taken from t = — to t infinity, because
these two limits correspond to x null and to z infinity.

By making r negative in this formula, we will have the expression of the integral
f dx c‘“%Q—m‘/jl; but in this case, the limits of the integral relative to t are t = ry—1

2a
and t infinity; the union of these two integrals is therefore equal to

2

C 4a? 42
/dtc =,
a

the integral being taken from ¢t = —oo to t = oo; for the first integral adds to the
second, that which is lacking to it in order to form the half of the integral taken
2

r

c 4a2 /7
a

between the two infinite limits; now this latter integral is ; we have therefore

2.2 T _ 2
/da: cosrz.c ¥t = \2/—_0 a2
a

The analysis which just led us to this result, is based on the passage from the
real to the imaginary; for we treat the integrals relative to ¢t and taken between two
limits, of which one is imaginary and the other is infinite, as if these limits were each
reals. But we can arrive to this result in the following manner.

Let us name y the integral [ xdzx cos ra.co®* taken from z null to infinity; we
will have
dy / . —a222
— = — | xdx sinrzx.c
dr
_ ! sinrz.c @ r dz cosrz.c™®";
- 2a? ' 2a2 ' ’
we will have therefore, by taking the integral from x null to z infinity,
dy r
T =0
dr * 2a?
The integral of this equation is
7‘2
y = Be a?;

B being an arbitrary constant which we will determine by observing that » being null,

we have
y=B= /dxca%‘g.

This last integral is, by the preceding section, ¥~; therefore B= ¥~; consequently
2.2 T _ a2
/dm cosrr.c’ vt = —¢ 12,
2a

that which is conformed to the result found above by the passage from the real to
the imaginary.
By differentiating 2n times with respect to r, we will have

2n

2.2 T d _ 2

z?"dx cosrx.ch " :i£ 5, C 1%,
2a dr?n

[97]
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the + sign having place if n is even, and the — sign if n is odd. This last equation
differentiated with respect to r, gives

27L+1 2
. _ 2.2 m d e
/x2”+1dac sinrr.c v = :F\/—— ¢ a2,

2a dr2ntl

By integrating once with respect to r, the expression of f dx cos m.c_“2“2, we will

have
/da: SINTT 252 _ ﬁ i C*Liz_
x 2a
7,2

When a is null, = becomes infinite, and the integral i g—gc_m taken from r null,
becomes %ﬁ, therefore

dr sinrx 7

x 2

§26. We can thence conclude the values of some singular definite integrals to
which I have been led, as we will see in the sequel, by the passage from the real to
the imaginary.

Let us consider the double integral

// 2dx y dy ¢V 0H7) oog re,

the integrals being taken from x and y nulls to x and y infinity. By integrating first

with respect to y, it becomes
dx cosrx
1+a2

Let us now integrate it with respect to x. We have by the preceding section,
T 1
/d.r cosrz.c VT = \/—_c w2
2y
that which gives

2

// 2y dy dx cos ro.c Y1+ — ﬁ/dy 0_92—4:?.

The concern now is to have this last integral taken from y null to y infinity.
For that, let us give to it this form

c”/dyc_(Qyjf)Q.

2y2 +r

2
r being supposed positive, the quantity (T) has a minimum which corresponds

toy = \/g ; that which gives 2r for this minimum; let therefore

Yy = %z—l— %\/2’2—1—27“;
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y needing to be extended from y = 0 to y = 0o, z must be extended from z = —o0
to z = 0o. This value of y gives
zdz
dy = de + 1 .
Y7o V22 2or
By taking the integrals from z = —o0 to z = 0o, we have

2dz e
dzc ™ = T, /—:0;
/ VT V22 4+ 2r
we have therefore
_(2y22+r>2 2 o 9 9 C—QTﬁ
/dyc Y :/dyc_z - T:c_r/%dzc_z = ;

/dyc_ytéfy22 = Cirﬁ.

We will have generally by the same analysis, the integral
/ yEndy ¢V R,

taken from y null to y infinity, and consequently also within the same limits, the

integral
n _ar—2%
/ rEedr e,

a and b being positives and n being odd. This premised, we will have

// 2y dy dzx cosra.c”V 07 = .

2¢"’
/dx cosrr T
1+22 20

By differentiating with respect to r, we have [100]

/xda: sinrx  m
1+22 2

thence it is easy to conclude the value of the integral
/ (a + bx)dx cosrx
m + 2nx + x?

taken from x = —oo to x infinity, the denominator having no real factors in x of the

first degree. If we make
r=-n+2'vm—n?

this integral becomes, by supposing \/% =d,

/ (a" + ba')dx'[cos(ra’v/m — n?) cosrn + sin(ra’v/m — n?) sinrn]

hence

we have therefore

14 22
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This integral must be taken as that relative to x, from 2/ = —c0 to 2’ = oo; now the
integral [ o da” CO;S:;,IQ' m=n%) taken within these limits, is null; because its negative

elements destroy its corresponding positive elements; it is likewise of the integral
f dz’ sin(rz’v/m—n?)

1+IZ/2 Y

the preceding integral function is reduced therefore to

1+ 22

/ [a' cosrn cos(rz’s/m — n?) + bsinrnsin(ra’v/m — n?)]|z’ da’

We have by that which precedes,
dx’ cos(ra’/m — n?) Y sy
= mc )
14272

By differentiating this expression with respect to r, we have

/:1:/ dx’ sin(ra’v/m — n?) T

= 7c :
1+ 272 '

we have therefore

(a + bz)dx cosrz , _ oo
I (a’ cosrn + bsinrn)me
m
We will find by the same analysis,
rvVm—n2

/ (a + bx)dx sinrx
m+ 2nx + 2?2

If we differentiate the first of these two equations, ¢ — 1 times with respect to m, and
next 2s times with respect to r, we will have the expression of the integral

/ w*dx(a + bx) cosra
(m + 2nx + x2)?

= (bcosrn — a’sinrn)wc”

(4)

Now M and N being rational and integer functions of x, the degree of the first being
supposed smaller than the one of the second, and N being supposed to have no
real factor of first degree; we will be able, as we know, to decompose the integral
i %dw cosrz, into different terms of the form (i); we will have therefore generally
the expression of this definite integral.

We will have in the same manner, the value of the integral

M
/ Ndx sinrz.

§27. Let us take now formula (B) of §23. The case of u + 1 = 2 being most
ordinary, we are going to exhibit here the formulas which are relative there. Formula
(B) becomes, in this case,

U + td_UQ + ﬁ@
de =Y [ dte? dr = 12 de* . (b)
Y B BUs ’
+ etc.

1.2.3 da?
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here we have

r—a
t =+/logY —loguy, = ,
°8 ey ! ViogY —logy

Y being the maximum of y, and a being the value of x which corresponds to this

maximum; U, Cfi—g, ... are that which v, j—g, etc. become, when we change x into a.

This formula gives, by integrating from t =T to t =T, [102]
1 dU* 13 dUP >
dr =Y | U+ =z —+ — - ——— + etc. dtct
/y ’ ( T 12d2 T 2 1.2.3.4d:c4+ec>/ ¢
Y o (dU? d*U? (T% + 1)d*U*
+ ¢ + te. | ;
2 dx 1.2 dx? 1.2.3dx3
Y e (dU? d*U3 (T +1)d®U*
- T t
( dr ' T2de T 123der 0
the integral [ dt ¢~ being taken from ¢ = T to t = T”, and the integral [ ydx being
taken from the value of x which agrees with ¢t = T', to that which agrees with t = T".
If we suppose T= —o0 and T = oo, we will have generally
T ™ =0, T"e T =0,

We have besides by §24 [ dt ¢ = \/7; the preceding formula becomes thus

1 42U 1. d*Us
/ydszﬁ(U—i——- v +—3 —U+etc.>, (d)

9 1.2dz2 ' 22 1234dxt

the integral [ ydz being taken between the values of @ which render y null, and YV’
being the maximum of y, comprehended between these values. The different terms
of this formula will be determined easily by §23, and we will have

1

;
__d?logy
2dx?

x needing to be changed into a, after the differentiations. We have

dd dy?
Plogy = =2 - =2,
Y )
the assumption of x = a makes dy disappear; we will have therefore
d*logy  d*Y
de?  Yda?'
Y and ‘Zl% being that which y and 2%, become when we change z into a. Thus, by

dxz2)
considering in formula (d) only the first term of the series, we will have very nearly  [103]

/ V2rY2
ydr =

ddy
dz?

This expression of [y dz will be so much more near, as the factors of y will be raised
to higher powers.

U:
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Formula (c¢) contains the indefinite integral [ d¢ ¢ taken from t = T to t = T";
that which returns to taking it from ¢ = 0 to the limits 7" and 7", and by subtracting
the first integral from the second. It is not possible to obtain in finite terms, the
integral taken from ¢ null; but we will obtain it in a manner quite near, if T is not
very large, by the following series:

e _p TP LT 1T 1T
© = 3 712 5 123 7 "1234 9 ¢

This series has the advantage of being alternately smaller or greater than the integral,
according as we arrest ourselves at a positive or negative term. This kind of series
that we can name series-limits, has thus the advantage to make known the limits of
the errors of the approximations. We have thus

2 (2772 (277)
dte” =T ™ (1 te. | .
/ ¢ ¢ T3 a5 Tissr T

These two series always terminate by being convergent, whatever be the value of T';
but their convergence commences only at some terms distant from the first, if 272
has a large value; it is appropriate therefore to use them only for some values equal or
less than four. For greater values, we will be able to make use of the following series,
which gives the value of the integral [ dt ¢ fromt=Ttot infinity,

P c”(,_ 1 13 135
te” = 5T ~ 572 + 2271~ 5376 + ete. |,

This series is again a series-limit. By subtracting it from %\/E, the value of the integral

[ dt ¢ taken from ¢ null to ¢ infinity, we will have the value of the integral taken
from ¢ null to t = T'. But the series has the inconvenience to end by being divergent:
we obviate this inconvenience, by transforming it into a continued fraction, as I have
done in Book X of the Mécanique céleste, where I have found that by making ¢ = ﬁ,
we have, the integral being taken from ¢ = T to infinity.

,T2 1
c
dtc? =
/ 2T q
1+
2q
14
3q
1+
4q
1+
1+ %
1 4 etc.
In order to make use of this expression, it is necessary to reduce the continued fraction
1
1+ L 5
1+ 4

1 + etc.
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into fractions alternately greater and lesser than the entire fraction. The first two
fractions are %, 1—J1rq; the numerators of the following fractions are such, that the
numerator of the i*" fraction is equal to the numerator of the (i — 1), plus to the
numerator of the (i —2)" fraction, multiplied by (i—1)g; the denominators are formed
in the same manner. These successive fractions are

1 1+2q 1+ 5q 1+ 9q + 8¢>

1
T ) ) ) ) etc.
1" 14¢ 143¢ 146¢+3¢> 1+ 10g+ 15¢>

When ¢q or # will be equal or less than %L, these fractions will give in a prompt and
near manner the value of the entire fraction.

§28. We can easily extend the preceding analysis to double, triple, etc. integrals.
For that, let us consider the double integral [[ydxda’, y being a function of z and
of 2/, which contains factors raised to some great powers. Let us suppose that the
integral relative to 2’ must be taken from a function X of z to another function
X'+ X of the same variable. By making 2/ = X + tX’, the integral [[ ydz dz’ will
be changed into this here, [[y X'dx dt; the integral relative to ¢ needing to be taken
from ¢ = 0 to t = 1: we can thus therefore reduce the integral [ ydxdz’ to some
limits constant and independent of the variables which it contains. We will suppose
that it has this form, and that the integral relative to x is taken from xz = 0 to x = w,
and that the integral relative to a2’ is taken from a2’ = 6’ to 2’ = w’. This premised,
by naming Y that which y becomes when we change x and 2z’ into 6 and &', we will
make

y=Yc
by supposing next
x =0+ u, =0 +u;

we will reduce log % to a series ordered with respect to the powers of u and of v/, and
we will have an equation of this form

Mu+ My =t+1,

in which M is the part of the development into series, of log% which contains all the
terms multiplied by u, and M’ is the other part which contains the terms multiplied
by u/, and which are independent of u. We will divide the preceding equation, into
the two following

Mu=t, Mu =t
whence we will deduce this, by the reversion of the series,
u=Nt, u =Nt

N being a series ordered with respect to the powers of ¢ and of ¢/, and N’ being
uniquely ordered with respect to the powers of ¢ and being independent of ¢; these

[105]
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two series are very convergent, if y contains very elevated factors. Now we have
dx dx’ = du du’; moreover we have

dNt ANt
du=(——)dt dt’
o= () () o

N/ /
du' = (ddt/t > dt';

but in the product dudu’, the differential du is taken by making u’ constant, that
which renders ¢’ constant, or dt’ = 0; we have therefore

dNt
du= | — | dt;
dNt dN't
I /.
dudu = <_dt ) ( T )altalt7

N Nt /
/ydxdx’ = Y/ (%) (dd—t/t) dtdt'c ",

It is easy to integrate the different terms of the second member of this equation, since
the question is only of integrating the terms of the form [ ¢"dt ¢™*.

If we take the integral relative to t, from ¢’ null to ¢’ infinite, and if we name @
the result of the integration, we will have

[var=vo,

the integral relative to 2’ being taken from 2’ = #’ to the value of 2/, which corresponds
to t’ infinite. If we change next in Y and @, ¢’ into @’, and if we name Y’ and (',
that which these quantities then become; we will have

/ww:Y@c

the integral being taken from 2’ = @’ to the value of z’, which corresponds to t’
infinite.

By naming R and R’ the integrals [ Q dt and [ Q'dt, taken from ¢ null to ¢ infinity;
we will have

consequently

that which gives

/yd:): dr' =YR-Y'R,

the integral relative to 2’ being taken from 2’ = 6’ to 2’ = w’, and the integral relative
to x being taken from z = 6 to the value of x which corresponds to ¢ infinite. If in
Y, R, Y', R, we change 6 into w, and if we name Y7, Ry, Y/, R}, that which these
quantities then become; we will have

/ydx dr' =Y1R, — Y| R},
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the integral relative to 2’ being taken between the limits 8’ and w’, and the integral
relative to o being taken from x = w to the value x which corresponds to ¢ infinite;
we will have therefore

/yd:cdx’ =YR-Y'R —Y|R, + Y/R],

the integral relative to x being taken between the limits # and w, and the integral
relative to x’ being taken between the limits 6’ and w’.

This formula corresponds to formula (A) of §22, which is relative only to a single
variable; it has, like it, the inconvenience of not being able to be extended to the
intervals near the maximum of y. It is necessary, for these intervals, to use a method
analogous to that of §23. Thus, by supposing that, in the interval comprehended
between 6 and w, y becomes a mazrimum relative to x, so that the condition of this
mazimum makes only the differential of y vanish, taken with respect to x, we will
make

—t—t/

y=Yc ",

Y being the value of y which corresponds to this maximum and to 2’ = #’; and if, in
the interval comprehended between the limits of the integrations relative to x and to
2', y becomes a mazximum, we will make

_t/2

Yy = Yt

As we will have need principally, in the following, of the integral [ydxdz’ taken
between the limits of x and &’ which render y null, we are going to discuss this case.
Let us consider the integral [ydzda’, y being a function of z, 2/, which contains
factors raised to some great powers. If we name a, o', the values of x, ' which
correspond to the mazimum of y, and if we name Y this mazimum; we will make

y = chtzftlz;
by supposing next

r=a+0, ¥ =ad+0;
we will substitute these values into the function log %, and by developing it into a

series ordered with respect to the powers and to the products of 6, §', we will have
an equation of this form

M0? + 2N00' + PO? = 2 + ™.

This equation can be set under the form

N \? N?
M / P_ /2: 2 2.
(9+—M9) +( —M>9 t2 4+ 12

we will make therefore

N N2
t=0VM + , t'=0\P——.
v M M

[107]
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By differentiating these equations, we will have the differentials of this form
dt = Ldf+1do
dt' = L'dt + I'dd’.

/ydxdm'z/yd&d@';

in the product df df’, df is taken by supposing #’ constant, and then we have
dt = L db;
next dt’ must be taken by regarding ¢ constant, in the product dt dt’; then we have
0=Ldo+Ido
dt' = L'do + I'de";

Now we have

that which gives
LI'—L'I
dt' = ————db';
L Y

we have therefore
dtdt' = dodo'(LI' — L'I);
by this means, the integral [y dfdf’ is transformed into this here:

v / dt dt’ c’t2’t/2.
L' — L'l
The denominator LI" — L'l is a function of # and of #’ that we will reduce to a
function of ¢ and #, by means of the values of ¢ and of ¢’ in § and #’. We will obtain
thus the preceding integral in a series of terms of the form [ ¢"¢' " dqt dt! =t the
integrals being taken from t and t' equal to —oo, to their positive infinite values.
These integrals are nulls, when one of the two numbers n and n’ is odd; and in the
case where they are both even, n being equal to 2¢, and n’ to 2i’, we have

o / 1.35...(21—1).1.35...(2{ — 1
/tZ'Ltle dt dt/ C—tz—t2 — ( t ) ( G )\/7_1'

21,27
If the powers to which the factors of y are raised, are very great; then we will
have, very nearly

_ (%) __Gaw) (&)
=Ty 2N = — =05, P__Ta
(%), (diddg,), (fli};), being that which (%), (di‘?x,), and (%) become when we
change  and 2’ into a and @’ there; the integral [ ydx dz’ become thus very nearly,
2rY?

§
V() () — (40



CHAPTER 2

On integration by approximation, of linear equations in the finite and
infinitely small differences

§29. We have seen in §21, that the integrals of equations linear in the differences
among one variable s, of which the finite difference is supposed constant, and a
function y, of this variable, can be set under the form y, = [2°¢dx, ¢ being a
function of = of the same nature as the generating function of the equation proposed
in the differences, and the integral being taken within some determined limits of x.
By supposing s a very great number, we will have by the preceding analysis, a very
near value of this integral, and consequently of y,. But this method of approximation
being very important in the theory of probabilities, we are going to develop it at
length.

Let us consider the equation in finite differences

S = Ay, + BAy, + CA?*y, + etc., (1)

A, B, C being some rational and integral functions of s, to which we will give this
form

A=a+aVs+aPs(s — 1)+ aPs(s — 1)(s — 2) + etc.,
B=b+4+bWs+bPs(s — 1)+ b3 s(s — 1)(s — 2) + etc.,
C=c+eWMs+ePs(s —1)+ePs(s —1)(s — 2) + ete.,

etc.;

Ay, is the finite difference of y,, s being supposed to vary by unity; A2y, Ady,, etc.
are the second, third, etc. differences of y,; and S is a function of s. This premised, let
us represent ys by the integral [ 2°¢ dx, ¢ being a function of z which it is necessary
to determine, as well as the limits of the integral. By designating x* by dy, we will
have

by =[Sy -odn, 2% = [yle - 1Pods, et

we will have next

2 d* 0y
dx?’

st =x—>=, s(s—1z* ==z etc.;

89
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equation (1) in the differences becomes thus

Syla +b(z — 1) + e(z — 1)* + ete.]

xddy [a(l) + b(l)(l‘ _ 1) + 6(1)(113 — 1)2 + etc.]
S = / ¢ dz e 5
2 d* oy @) | 12 2 2
LW 40— 1) 4 e 1) e
\ + etc. /

Instead of making y, equal to f x® ¢ dx, we can suppose it equal to f ¢ pdx; then
we have

b= [ ods, A= [T 1Pedn e

Moreover, if we designate ¢=** by dy, we will have

_@ SQC—SJT — d25y
dz’  dx?’

etc.;

by setting therefore the coefficients of equation (1) under this form,
A=a+aWs+a?s? + ete.,
B=b+bYs+bPs? +etc.,
C=e+eWs+e?s? tete.,

etc.

this equation will take the form

( Syla +b(c™™ — 1) +e(c™™ — 1)? + etc.]
dé
= 1M 4 (e 1) 4 M (e — 1) 4 ete]
S = / ¢ da dﬁﬁg
+— 2y [@® + 0@ (™ — 1) + @ (7 — 1) + etc.]
X
— etc.
\ Vs

[112] By representing generally y,; by [ 0y ¢ dz, the two forms that equation (1) takes under
the assumption dy = x* and of dy = ¢~** will be comprehended in the following

B d oy d? oy d3 oy
S—/¢dx(M5y+Nd$ +de2 —I—de?) + ete. |,

M, N, P, @), etc. being functions of x independent of the variable s, which enters into
the second member of this equation, only as far as dy and its differences are functions
of it.
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Now, in order to satisfy it, we will integrate by parts, its different terms; now we
have

do
/d_yN¢dx:6yN¢—/5yd(N¢),

a2 5y d Sy Pgb d?( (Pg) ,
/ dx? P¢dz = %Pgb B /6 Cda?

etc.;

the preceding equation becomes thus

S = / Sy da (M¢> _dN9) | £P9) | (Q9) etc.)

dx dx? da3
+C +dy (Ncb — d(§¢) + dQ(Qf) + etc.)
T dz

d oy d(Q¢)
+ — I <P¢ T + etc.)

d2 )

— Qo — cte)

+ etc.,

C being an arbitrary constant.

Since the function ¢ must be independent of s, and consequently of dy, we must
separately equate to zero, the part of this equation, affected with the [ sign; that
which divides the preceding equation into the two following,

d(N¢)  d*(P¢)  d*(Q9)

0=Mo¢— . + 1 + e + etc., (2)
[113]
2
S=C+dy <Nqb — d(ij) d ;Sf) etc.)
d by (Q¢) ,
T dx <P¢  dx ) ’ (3)
al2 )
— Qo — ete)
+ etc.

The first of these equations serves to determine the function ¢; and the second deter-
mines the limits in which the integral | dy¢ dx is comprehended.
We can observe here that equation (2) is the equation of condition which must
hold, in order that the differentiable function
ddy d? &y

M N—+ P
( oy + . + 72

+ etc.) ¢dx
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is an exact differential, whatever be dy; and in this case, the integral of this function
is equal to the second member of equation (3); ¢ is therefore the factor in z alone
which must multiply the equation

d oy d? 5y

+ ete.,

in order to render it integrable. If ¢ were known, we could lower this equation by one
degree; and, reciprocally, if this equation were lowered by a degree; the coefficient
of dy, in its differential divided by Mdx, would give a value of ¢; this equation and
equation (2) are consequently linked between them, in a manner that an integral of
one gives an integral of the other.

The value of ¢ being supposed known, we will have that of y, by means of a
definite integral. The integration of equation (1) in the finite differences, is therefore
thus brought back to the integration of equation (2) in the infinitely small differences,
and to a definite integral.

Let us consider presently equation (3), and let us make first S = 0. If we suppose

that dy, CZ—‘Z’, d;r‘;y, etc. become nulls, by means of one same value of x, which we
will designate by h, and which is independent of s, it is clear that by supposing C'
null, this value will satisfy equation (3), and that thus it will be one of the limits
between which we must take the integral [ dy¢ dx. The preceding supposition holds
clearly, in the two cases of dy = x° and of dy = ¢7*"; in the first case, the equation
x = 0, and in the second case, the equation x = oo, render null the quantities dy,
%, djjgy, etc. In order to have some other limits of the integral f oy dx, we will
observe that these limits needing to be independent of s, it is necessary in equation
(3), to equate separately to zero, the coefficients of v, %, etc.; that which gives the

following equations:

d(Pg)  d*(Q9)

0=N¢ — . + 12 — etc.,
d

0= po— M99 e
dx

0= Q¢ — etc.,

etc.

These equations are in number i, if ¢ is the order of the differential equation (2); we
will be able therefore to eliminate, by their means, all the arbitrary constants of the
value of ¢, less one; and we will have a final equation in x, of which the roots will be
as many as limits of the integral [ dy¢dz. We will seek by this equation, a number
of different values of z, equal to the degree of the differential equation (1). Let g,
g, ¢, etc. be these values; they will give as many different values of ¢, since the
arbitrary constants of ¢, less one, are determined as functions of these values. We
could thus represent the values of ¢, corresponding to the limits ¢, ¢/, ¢?, etc., by
BX\, BOXD B@A®) ete., B, BD, B® etc. being some arbitrary constants; and we
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will have for the complete value of y,,
ys = B / oy dz + BY / sy \Vdx + B / SyA? dx + etc.;

the integral of the first term being taken from x = h to x = ¢, that of the second
term being taken from x = h to x = ¢V, and thus of the rest. We will determine the
constants B, BW| etc., by means of so many particular values of .

Let us suppose now that in equation (3), S is not null. If we take the integral [115]
[ 0y dx from = = h to x equal to any quantity p; it is clear that we will have C' = 0,
and that S will be that which the function

oy (Vo - A7 ¢ exc

dz
dé
+d—xy(P¢ — etc.)
+etc.;

becomes when we change x into p. Thus, for the success of the preceding method, it
is necessary that S have the form of this function. Let us make, for example, dy = z*,
and

S=p[l+1Ws+1Ps(s — 1) +1®s(s — 1)(s — 2) + ete.];
by comparing this value of S to the preceding, we will have

l:Nqﬁ—%—l—etc.,

1Wp = P — etc.,
etc.,

x needing to be changed into p in the second members of these equations of which the
number is equal to the degree of the differential equation (2). We could therefore, by
their means, determine the arbitrary constants of the value of ¢; and if we designate
by 1, that which ¢ becomes, when we have thus determined its arbitraries, we will

have
Ys = /xsw dx.

Thence and from this that equation (1) is linear, it is easy to conclude that if S is
equal to

Pl +1Ws +1Ps(s — 1) + etc.]
+pill + 1Ws + 152)3(5 — 1) + etc.]
+ etc.

By naming v, etc., that which 1) becomes when we change successively p, [, (V) etc., [116]

(1)
1

into pi, [1, l;7, etc., into po, etc.; we will have

ysZ/xsl/)dm—F/xsw’dx—I—etc.;
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the first integral being taken from x = h to x = p, the second integral being taken
from z = h to x = py, etc. This value of ys contains no arbitrary constant; but, by
joining it to that which we have found previously for the case of S null, we will have
the complete expression of ;.

§30. Let us suppose now that we have any number of linear equations in the
finite differences among a like number of variables ys, ., y”, etc., and of which the
coefficients are rational and integral functions of s. Let us make then

Ys = /ms(/ﬁdx, Y = /$s¢/ dz, Y = /a:sgzﬁ” dz, etc.;

these different integrals being taken between the same limits determined and inde-
pendent of s. We will have

Ay, = /xs(x— Dodr, Ny, = /xs(x— 1)?¢dx, etc.;
Ay = / (o — 1) dr, A%y = / (@ — 1% du, ete.

etc.

The equations of which there is concern, will be able to be set under the following

forms
S = /xszd:v, S = /msz/dac, S’ = /xsz”dx, etc.,

S, S’, 8", etc. being functions of s alone, and z, 2/, 2, etc., being rational and integral
functions of the same variable, and of x, ¢, ¢', ¢”, etc., in which ¢, ¢/, etc., are under
a linear form.

Let us consider first the equation

Sz/xszdx,

s(s—1) .5,  s(s—1)(s—2)
=7+ sNZ+ ——=N*7
FTATEALT T, TR
the characteristic A of the finite differences being relative to the variable s, and Z,
AZ, etc. being that which z, Az, etc. become, when we suppose s = 0. We will have

therefore

we have

N37 + ete.:

—1
S = /xsd:p (Z + sAZ + %AQZ + etc.) )
If we make x* = dy, we will have
2d2 oy
dz? ’

st =r—= s(s—1z* =x

dzr’
the preceding equation becomes thus

etc.;

ddy xQAQZdQ(Sy—l—etc
dx 1.2 da? )

S—/dm<Z5y+xAZ +
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whence we deduce by integrating by parts, as in the preceding section, the following
two equations,

d(z A7) d*(x* N\?*7)

0="2- dx + 1.2 dx?

— etc., (a)

2 A2
S=C+dy (xAZ—M—i-etc.)

1.2dx
doy (2> N7 (b)
+ I < 19 etc.)
+ etc.,

C being an arbitrary constant. The equation

S = /:r;s 2 dz,

treated in the same manner, will give

dz NZ')  d*(2? A7)

—7 —
0 dx + 1.2 da?

— ete., (a")

2 A2
S'=C"+ by (:L’AZ’ _d@” A7) - etc.)

1.2dx
doy ((x* N7/ ; (0)
— ete.
dx 1.2
+ etce.
the equations S” = [a*2"dx, S” = [a°2"dx, etc., will produce some similar

equations, which we will designate by (a”), (8”); (a™), (b"); etc.

Equations (a), (a'), (a”), etc. will determine the variables ¢, ¢, ¢", etc. as function
of x; and the equations (b), ('), (b”), etc. will determine the limits within which we
must take the integrals f x*zdx, f 2%z dx, etc. One of these limits is z = 0. In order
to have the others, we will suppose first S, S’, §”, etc. nulls; the constants C', C’, C”,
etc. will be consequently nulls in the equations (b), (b'), etc., since the supposition of
x = 0 renders null the other ter;r(sls of these equations. By equating next separately

Yy

to zero, the coefficients of dy, -7, etc. in these same equations, we will have the

[118]
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following,
d(22N?7)
0=a0 /72— —— + etc.
v Todr
0— 22 N\?7 .
T R
ete.;
d(z* D7)
0=zAZ — t
‘ T2ds oo
22 N%7/
0= — etc.,
1.2
etc.;
etc.

We will eliminate, by means of these equations, all the arbitrary constants, less
one, of the values of ¢, ¢, ¢”, etc., and we will arrive to one final equation in x,
of which the roots are the limits of the integrals [x*¢dz, [x°¢'dx, etc. We will
determine as many of these limits as it is necessary, in order that the values of ys, v.,
etc. are complete.

Let us suppose now that S is not null, and that it is equal to

P+ 1Ws + 1P s(s — 1) + ete.].
By making C' = 0 in equation (b) and by putting x*® in the place of dy, we will have

1.2dx

et RYANY/ .
sa® | 5~ —ete

+ etc.

d(x2N%7
Pl +1Ws +1Ps(s — 1) 4 ete.] =2 (x NV ) + etc.)

whence we conclude first © = p, so that the integrals [a%¢dz, [2%¢' dz, etc., must
be taken from x = 0 to x = p. The comparison of the coefficients of s, s(s — 1), etc.,
will give next as many equations between [, [V, etc. and the arbitrary constants of the
expressions of ¢, ¢, etc. The equating to zero of these same coefficients, in equations
('), (b"), etc., will give some new equations among these arbitraries that we could
thus determine by means of all these equations. We will have, by this process, the
particular values of y,, which satisfy in the case where S’, S”, etc. being nulls, S has
the form that we just supposed to it, or, more generally, is equal to any number of
functions of the same form.

Similarly, if we suppose that S, S”, etc. being nulls, S’ is the sum of any number
of similar functions, we will determine the particular values of ys, ., etc., which
satisfy this case, and thus of the rest. By joining next all these values, to those which
we will have determined in the case where S, S’, etc. are nulls, we will have the
complete expressions of y,, y., etc. corresponding to the case where S, S, ... have
the preceding forms.
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It is easy to extend this method to the equations in infinitely small differences,
or in finite parts, and in infinitely small parts, and in which the coefficients of the
principal variables and of their differences, are rational functions of s, that we can
always render integral, by making the denominators vanish. If we designate, as above,
by vs, y., etc., the principal values of these equations, and if we make

Ys = /:L‘ngﬁdx, Y. = /xsqﬁ’ dz, etc.;

we will have

dys d*ys

di’ :/x5¢dwlogw, dsy? —/x%dx (logz)?, etc.;

Ay, = /xs(x— Dodr, Ay, = /xs(x— 1)2¢dx, etc.,
etc.;

d /

Ys _ /I8¢/ drlogz,  etc.,

ds
etc.;

The proposed equations will take thus the following forms,

S = /a:szd:c, S = /xsz’ dz, ete.

In treating them by the preceding method, we will determine the values of ¢, ¢/, etc.
as functions of z, and the limits of the integrals [ 2°¢ dx, [z°¢' dz, etc.
By making

Ys = /c‘smgbdx, Y. = /c‘sm(b' dx, etc.;

we would arrive to some similar equations. In many circumstances, these forms of y;,
y~, etc. will be more suitable than the preceding.

§31. The principal difficulty that the application of the preceding method presents,
consists in the integration of the linear differential equations which determine ¢, ¢/,
¢", etc. in x. The degrees of these equations depend not at all on those of the equations
in the differences in ys, v., etc.; they depend uniquely on the highest powers of s, in
their coefficients. By considering therefore only a single variable y,, the differential
equation in ¢ will be of a degree equal to the highest exponent of s, in the coefficients
of the equation in the differences in y,. The differential equation in ¢ will be thus
resolvable generally only in the case where the highest exponent is unity. Let us
develop this case quite at length.

Let us represent the differential equation in y, by the following,

0=V +sT,
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V and T being linear functions of the principal variable y, and of its differences, either
finite, or infinitely small. If we make

~ [syods

—57 it will become

0y being equal to z*, or to ¢
d
0= /qbdx <M6y+N d5y>

M and N being functions of x; we will have therefore, by integrating by parts as in
the preceding section, the following two equations,

d(N
0= a1 - S,
0=C+ Nody.

The first gives by integrating it,
H M
— Nz
=N

H being an arbitrary constant. Let us suppose C' null in the second equation; z = 0
or = 0o will be one of the limits of the integral [ dy¢ dx, according as we take z* or
c¢** for oy. We will determine the other limits, by resolving the equation 0 = N¢ dy.

Let us apply to this integral, the method of approximation of §23. If we designate
by a, the value of x, given by the equation

0 =d(N ¢dy),

and by @ that which the function N¢ dy becomes, when we change x into a in it, we
will make

N¢oy=Qc",
that which gives

t = /log @ — log(N¢) — log dy.
log 0y being of order s; if we suppose s very great, and if we make % = «, a will be
a very small coefficient. The quantity under the radical will take this form #X ,
X being a function of x — a and of «; we will have therefore, by the reversion of the
series, the value of x in t, by a series of this form
2 =a+aht+ah® + a2 h®@e + ete.
Now, y, being equal to [0y ¢dx, if we substitute into this integral, in the place

of ¢ dy, its value Q , it will become Q [ % ¢ and if in &
preceding value in t we will have y, by a series of this form,

we substitute for x, its

ys = a2Q / dtc P+ a2l + al@ + o218 + ete ],
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the limits of the integral relative to ¢t needing to be determined by the condition that
at these limits, the quantity N¢ dy, or its equivalent Qc™", be null; whence it follows

that these limits are t = —oo and t = oo; we will have therefore, by §24,
1 1.3 1.3.5 \
ys = a2Q\/T (l + 504[(2) + ﬁoﬂl@‘) + o1 4 etc.) .

This expression has the advantage of being independent of the determination of the
limits in z, which render null the function N¢ dy; so that it subsists in the case even
where this function, equated to zero, has no real roots; it subsists further in the case
of s negative. This remark analogous to that which we have made in §25, and which
holds, as it, to the generality of analysis, is very remarkable in this that it gives
the means to extend the preceding formula, to a great number of cases to which the
method has led us, seems first to be refused.

This formula contains only the arbitrary constant H, and consequently, it is only
a particular integral of the differential equation proposed in ys, if this equation is of
an order superior to unity. In order to have the complete integral in this case, it will
be necessary to seek in the equation 0 = d(N¢ dy), as many different values of z, as it
has units in this order. Let a, a/, a”, etc. be these values; we will change successively
in the preceding expression of ys, a into da’, a”, etc., and H into H',H", etc.; we will
have as many particular values which will each contain one arbitrary, and of which
the sum will be the complete expression of y,.

When the coefficients of the proposed in ys contain powers of s superior to unity;
we can sometimes decompose this equation into many others which contain only that
first power. If we have, for example, the equation

Ys41 = M Yss
M being a rational and integral function of s; we will set this function under the form

q(s+b)(s+)(s+").etc.
(s+ f)(s+ f)(s+ f7).ete.’

we will make next
Zor1 = (s +b)zs, 2y = (s+0)z,  etc;
tsy1 = q(s+ fts, to = (s+ )L, etc.

It is easy, by that which precedes, to determine z;, t,, etc. as definite integrals, and
to reduce these integrals into convergent series, when s is a great number. We will
have next
z52h.ete.
Ys = .
tst,.etc.

In many cases where the differential equation in ¢ being of an order superior to
the first, cannot be integrated rigorously, we can determine ¢ by a very convergent
approximation; by substituting next this value of ¢ into the integral [ z°¢ dx, we can
obtain in a manner quite close the value of this integral.
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§32. The analysis exposed in the preceding sections, is extended further to the
equations in partial differences, finite and infinitely small. For this, let us consider first
the equation linear in the partial differences of which the coefficients are constants.
In designating by y, ¢ the principal variable, s and s’ being the two variables of which
it is a function, and representing this equation by this one, V' = 0, V' being a linear
function of y; » and of its partial differences, we will suppose

/

¢ being a function of x; then the equation V' = 0 takes this form
0= /Ma:suslqbda:,

M being a function of x and of 2/, with neither s nor . In equating therefore M
to zero, we will have the value of 2’ in x, and this value substituted into the integral
[ s s'¢ dx, will give the general expression of Ys,s', in which ¢ is an arbitrary function
of x; the limits of the integral being independent of x, but moreover arbitraries. If
the proposed equation 0 = V/, is of order n, it will be necessary, by means of the
equation M = 0, to determine a number n of values of 2’ in . The sum of the n
values of [ 22" ¢ do which will result from it, and in which we could set for ¢ the
different arbitrary functions of x, will be the expression of y; ¢ .

There results from that which we have said in the first part of this Book, that the
equation M = 0 is the generating equation of the proposed equation V' = 0.

Let us consider presently the equation in the partial differences

0=V +sT+5sR,

in which V, T', and R are any linear functions of y, ¢ and of its partial differences,
either finite or infinitely small. If we suppose, as above

!
Ys,st = /Isl‘/s QSd:L‘:

2’ being a function of x which the concern is to determine. we will have an equation
in this form

0= /xsx'slqb dr(M + Ns+ Ps'),
M, N, and P being functions of x and z’, with neither s nor s’; now we have

d s 18 , /d/
(x°z )_LUSLU/S <s+s x);

dx r  x'dx
therefore if we determine 2’ by this equation
dr’  Pdx
* Nz’

we will have )
d([EsZL‘/S ) ‘

s/s’N Ps) = N
2’2" (Ns+ Ps') T
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consequently, if we designate z°z"'by dy, and if we suppose that we have substituted
into M and N for 2’ it value in x, we will have

Oz/gbdx (M&y—l—de—(sy).
dz

This equation integrated by parts, as in the preceding sections, gives the following
two,

0= Mo d<]§§¢)?
0 = Nagdy.

The first determines ¢ in x, and the second gives the limits of the integral [ dy ¢ da.

This value of ys s containing no arbitrary function at all, is only a particular
integral of the proposed equation in the partial differences. In order to render it
complete, we will observe that the integral of the equation

dz'  Pdx
& Nz’

which determines 2’ in x, is 2’ = @, @ being a function of x, and of one arbitrary

constant that we will designate by u; in representing therefore by v, an arbitrary

function of u, the proposed equation in the partial differences will be satisfied by this

value of y; ¢,
Yo — / / Q7 ¢ de du;

the integral relative to x being taken between the limits determined by the equation
0 = N¢dy, and the integral relative to u being taken between any limits whatsoever.
This value of y, ¢ will be therefore the complete integral of the proposed equation in
the partial differences, if this here is of first order; but, if it is of a superior order, it
will be necessary, by means of the equation 0 = N¢ dy, to determine as many values
of x in u as there are units in that order. The union of the values of y, o to which we
will arrive, will be the complete expression of y .

[125]






CHAPTER 3

Application of the preceding method, to the approximation of diverse
functions of very great numbers.

Among the diverse functions to which these methods can be applied, I am going
to consider the products of numbers, the developments of the polynomials, and the
infinitely small and finite differences of functions, these diverse quantities being those
which are present most often in the analysis of hazards.

Concerning the approximation of the products composed of a great number of
factors, and the terms of the polynomials raised to great powers.

§33. Let us propose to integrate the equation in finite differences

0= (54 1)ys — Yss1-

yo — / 2 dd

we will have, by designating z* by dy,

Oz/qﬁdx {(1—x)5y+xa;l—iy} ;

whence we deduce by integrating by parts, following the previous method, the follow-
ing two equations,

If we suppose

d(z¢)
dv '

0=0¢(1—x)—
0= 2o,
The first equation gives, by integrating it,
¢ =Ac™
and the second gives, in order to determine the limits of the integral [ x*¢ dz,
0=zt
these limits are consequently x = 0 and x = co. Thus we have

Ys = A/a:sdxc”‘",

the integral being taken from x = 0 to x infinity, and A being an arbitrary constant.

103
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In order to have this integral in a series, we will determine, conformably to the
method exposed in §23, the value of x, which renders z°c™* a mazimum; this value

is s. We will make therefore, according to the method cited,
msc—ac — Ssc—sc—t2

In supposing x = s + 6, this equation becomes

9 S
(1 + —) 0=t
s

0 6 6 04
2 _ .
t ——slog(l )+€—28—382+4S3—etc.,

that which gives by the reversion of the series

2
ezt\/%+§t2+

hence

3

t
9v/2s

+ etc.;

consequently

d:v:dézdt\/Q_s(H— +t—~|—etc)

4t
3v2s Gs

the function f 2% dx ¢=* will become therefore

At t?
s’c™® | dt c_tQ\/ 2s <1 4+ —4+ —+ etc.) .
/ 3v2s 6s

The integral relative to x needing to be taken from x null to z infinity, the integral
relative to ¢ must be taken from t = —oco to ¢t = co. By integrating as in §31, we will
have

12

[128] We can determine quite simply the factor 1 + 15- + etc. in this manner. Let us
designate by

Ass+2c VS ( +—+etc).

B C
1+ =4 = +etc;
s s
that which gives
B C
= As*t3c02n <1 +—+ 5+ etc.) )
s s
By substituting this value of y, into the proposed equation
Ys+1 = (s + Dys;
we will have

1\ B C B C
1+ - c 1+ + +etc. | =1+ — + — +etc.,
s s+1 (s+1)? s 82
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or

<1 By t) [or=(ed)slid) ]
S S

now we have

1 —|—1 1 1+1 1 +1 L L + L L +et
—(s+=]lo —l=1—-(s+- - — 4+ — — — + etc.
2 & s 2 s 252 383 4st

1 n 1 )
=— — ete..
1252 123
We will have therefore, by observing that ¢ 12s Bttt 1 m T ete.,
1—|—B—|—C—i—t 1 L 1 ; B+B—20 .
—+ — tete | | — —— —etc. | = —— — ete.;
s s 1252 12s3 52 53 ’

that which gives, by comparing the similar powers of %,

1 1
B—=— - te.
o T xy e

therefore

1
= As*t2c0 27 — te. | .
sore <+12 +28832+ec)

We will determine the arbitrary constant A, by means of a particular value of y,; by [129]
supposing, for example, that, s being equal to u, we have y, = Y; we will have

Y :A/x“dxc_m,

that which gives
Y

[ dx ey

consequently,

Ys =

Y sstic5\/2r 1 1
N ey (I +ete. | . (q)
[t due= 12 28852

We see now of what nature is the function y,. For this, it is necessary to integrate
the equation in the finite differences

Ys+1 = (S + 1)3/8

We find easily that its integral is

ys =Y (p+ 1) (p+2)(p+3)...s;
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we will have therefore, by comparing this expression to formula (¢),
(,LL—i-l)(u—i-?)(,u—l-S)...s
- s TaeVom (14 g + 757 + ete) ()
[ardr e '

T

If we make p = 0, we will have [ a#dzc™® = 1; hence

1
1.23...s= V2 (14 — te. ) .
e ( +12 +28832+ec>
If we make p = 7, m being less than n; we will have
, m
s=s +—,
n

s’ being a whole number; thus

1 ’ m s/+%+% 1o/ m 1 (/_;’_ﬂ_;'_l)] (1+ﬂ>
85+5 = <S —I— —> = SS+?+§C § n 2 0g ns’ ,

now we have

1 m m?
+—+ lOg(1+—8>: S+ + @—W—i—eta

m  m?+mn
n 2n2s’

+ etc.

We have moreover, by making z = t",

m m m n
/xndmc‘x = —/xn_lda:c_x :m/tm_ldtc_t ,
n

the integral relative to ¢ being taken from ¢ = 0 to ¢ infinity. In substituting these
values into formula (¢’), it will give

m(m +n)(m+2n)(m+3n)--- (m+ s'n)

nd ¥t/ 2 <1+%+etc.)
— . "
- [tm=1dt ct" ’ (4

so that the approximate value of the product of all the terms of the arithmetic progres-
sion m, m—+n, m+2n, etc. depend on the three transcendentals ¢, 7 and f tmldt e

If in this equation we make for greater simplicity, n = 1, that which changes m
into g, and if we observe that [t# 'dtc™" = i [ ttdtc™t; we will have

' ’ 1 OO o,
(L )2+ p). (s 4 ) = T2 V/or fi‘isdt :
=

By changing p into —pu, we will have

/ 2 1+M+etc
1= )2 —=p)... (s — ) = Frac/2 1257 .
I=w@-p)...(s —p)=s c T Tredic
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By multiplying these two equations by one another, we will have

g2 +1e=2" on (1 + HGL,“Q + etc.)

L—p®)(4—p?) .. (57 =) = °

(1= p*) (4 —p7) . (87 =) Tirdic T [ordic

Equation (T) of §24 gives [131]

n n - 1
ng/tn+T—2dt C—t /tn—rdt C—t — _u

sin =—r
n

By making n =1 and y = r — 1, we have

/t“dtct/t“dtct - KT
sin p
we have therefore

. 1+6 2 oy p
sinpm = 3t =)= ) 67— ) (1= EEI e ) 212

If we make g infinitely small, this equation gives
1 / /
or =12223%. . 5?1 — — +etc. | §2 71>
65’

dividing therefore the preceding equations by this here, we will have

2 2 2 2
sin ur = pm (1 — p?) (1—%) (1—%)---(1—572) (1—%+ete.>.

If we make s infinity, we have for the expression of sin ¢, ¢ being equal to um, the
infinite product

¢? ¢? ¢? ¢*
o(1-%) (175 ) (1- 32 (1 oz ) et

the expression of sin ¢ is thus decomposable into an infinity of factors; that which we
know besides.
By supposing ¢ imaginary and equal to ¢'v/—1, sin ¢ becomes

therefore
() ()0
(1) (14 L)
and by making s’ infinite, we see that ¢® — ¢~ is equal to the infinite product
2¢/ (1 - ﬁ—lz) (1 - ;;;) ete.

We will have, by a similar process, the continued product of factors of which the [132]
general term is an integral or fractional rational function of s. But the expression

—¢' _ o’
02\/}01 ; we have
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to which we will arrive, will be able to contain other transcendentals dependent on
definite integrals of the form [ z#dzc¢™*.

We can observe here that these products being set under the form [ z%¢ dz, their
differentiation with respect to the variable s, presents a clear idea, and then we have
for this differential, [ 2°¢ dx logz.

The expressions of y, given by formulas (¢) and (¢’) of the preceding section, yet
hold according to the remark of §30, in the case where s and u are negatives, although
in this case, the equation

0=z,
which determines the limits of the definite integral which represents the value of s,
does not have many real roots. If in formula (¢) of the preceding section, we change
s into —s, and p into —pu, it becomes

YV=1e2 (1 — o + 5 — ete)
_1)888—% f dxxc;“” ’
Y being the value of ys which corresponds to s = —pu. All difficulty is reduced to

integrating [ d””x% In order to arrive there, it is necessary to follow the same process
of which we have made use in order to reduce into series, the integral [ e %% dz. We

will make therefore
T =—pu+wv-—1,
—u being the value of z given by the equation

7
TH

0=d

Y

we will have thus

/ dxc™* c“\/ / dwe V-1
ah (p—wy/—1)*
The integral relative to x needing to be extended between the two limits which render

null the quantity <, it is clear that the integral relative to  must be extended from
c—wV—1 d cwV—1

(r—mv—1pr N Grry=n

which correspond to the same values of w, affected with contrary signs, we will have

VI (- /ST
/dxcx c“\/—l/d (U2 + w?)r
= w
xrH ro_
A/ Tsinm o mY D = (et wy 1)
(1? + @?)r
the integral relative to w being taken from @w = 0 to w = oo. If we develop the

quantities under the [ sign, the imaginaries disappear, and there remains only a real
function which we will designate by @ dw; we will have thus

/dxc‘x _ c(“_\/lf/de7

w = —00tow = o0; by joining therefore the two quantities

Y

TH
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hence
5= 1,1
Ye 2 (1 25 + 58852

(—1)s—rs* f Qdw

Let us see presently what function of s is y_s. For this, let us take the original
equation

— etc.)

Y-s =

0=(s+ 1)ys — Yst1;
by changing s into —s, and making y_, = u, it becomes
0=(s— Dus —us_q;
an equation of which the integral
e
W+ mE+p- -1

Y being as above, equal to y_,,. If we compare this expression of y_s to the preceding, [134]
and if we observe that s — u is a whole number, and that thus we have (—1)2%72* = 1;
we will have

Ug =

1 _pV2meH (1 — ﬁ + @ —etc.)
(h+D(p+2)---(s—1) s77 [ Qdw

By dividing the two members of this equation by s, and by reciprocating them, we
will have

S+5 H—S
(M+1)(u+2)(,u+3)---8:8u#(1+E+etc)/de

If we compare this equation to formula (¢’) of the preceding section, we have this

remarkable result
2umcH
dw = 0

/ Q@ dw = f o dx e’ (0)
[ am arrived to this general equation, in the Mémoire de I’Académie des Sciences for
the year 1782,! by the preceding analysis, based, as we see, on the passage from the
real to the imaginary. By making successively in Q, u =1, p =2, u = 3, etc., we will
have the values of an infinite number of definite integrals; thus, in the case of u =1,
equation (O) gives

1+ @? c
a formula that I have given similarly in the Memoirs cited. This formula and all those
of the same kind, can be verified by the formulas of §26; for we have by this section,

)

/ dw(cosw + wsinw) 7

/dw COS T o dwo sin w
1+w2 2 14 w?

IThis is the paper “Mémoire sur les Approximations des Formules qui sont fonctions de trés
grands nombres”, [11].
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drc™ ™
xH

We will observe here, as in the Memoirs cited, that [ being equal to

C(Mj{)_? [ Q dw; we have, by substituting instead of [ @ dw, its value given by equation

(0)7

drc™® 2um(—1)"++2 B 27 (—1)"r+z
/ w [ardrer [ar-ldpcee’
the first integral being taken between the two imaginary values of x which render null
the quantity c;—:,

that which gives an easy way to transform into these here, the integrals [ d”;# and

dx cosx
xH

and the two other integrals being taken from x null to x infinity;

§34. Let us consider now the general equation
0= (a"+Vs)ysi1 — (a+bs)ys.
If we make
a a’ i b
b ) b/ 9 b, p’
it takes this form
0=(n"+ s+ 1)ysr1 — (n + 5)pys.

%z/ﬁlmm

we will have, by integrating by parts,
0 =z"¢(z — p)
+ [aodatats = np) + (p ~ ) do)
This first equation gives in order to determine ¢, the following
0= (n'z —np)pdx + (p — x)x do,
whence we deduce by integrating
6= Aa"(p— )" ",

A being an arbitrary constant. We will have next in order to determine the limits of
the integral, the equation

Let us suppose

0=2"¢(p — )
or
0= xn—ks(p _ I,)n’-‘,—l—n'

These limits are therefore x = 0 and x = p, if n + s and n’ + 1 — n are positive
quantities. Thus we will have, by taking the integral within these limits,

Ys = A/m”+3_1dx (p—x)” ™.
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We will determine the constant A, by means of a particular value of y;. Let y, be
this value; we will have

Yu
A= -
[ arte=tdx (p — x)V' ="’

consequently,

oy e e (p— )

T [ e (p— a2y

Let us integrate presently the proposed equation in the differences in y,. Its integral
is

Ys

 (n+p)ntp+1).. (n+s—1)
oW Hp+)n+p+2) . (n+s)
In this expression, as in all those formed from products, the factors of the numerator
commence only for the value of s which renders the last factor equal to the first, that
which holds here when s is equal to p + 1; it is likewise for it of the factors of the
denominator. For the value of s equal to p, the numerator and the denominator are
reduced to unity which is counted to multiply them both. If we compare the two
preceding expressions of y,, we will have
(n+wn+p+1).. . (n+s=-1) . [a" e (p—a)" "
m+p+)n+p+2)...(n+s) [ arti=tdy (p — x)v' -
Let us make p — & = pu?; the second member of this equation will become
i f u2n’f2n+1du (1 . u2)n+371
[ w2 =241y, (1 — 2)ntn—1’
the integrals being taken from u = 0 to u = 1, because these limits correspond to the
limits x = p and x = 0. We have therefore
m+uwn+p+1)...(n+s—1)  [u? 2 ldu(1—u?)"+s!
(W +p+)( +p+2).. (0 +s)  [u2' "2y (1 — u2)nte-t’

1
27

y.p° .

p

n’ =0 and pu = 1; if we observe that

/dum: iw;

Let us suppose n =

we will have

1.23...s
The first member of this equation is the coefficient of the middle term or term indepen-
dent of a, of the binomial (% + a) 28; we will have therefore by means of the preceding
methods, this coefficient, by a rapid approximation, when s is a great number. For
this, we will make

1 2)...2 22s+1 1
(s Vs +2) 5 /du(l—uQ)S—z.
T

1 2
=aq, 1 —u?=co;
S_

1
2
that which gives

u=V1-—cot

[136]
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/du(l - u2)s_% = /duc‘tQ.
Let us suppose

V1—cot? = a%t(l + aqWt? + 2@t + a3¢®t° + etc).

By taking the logarithmic differences of the two members of this equation, we will
have

and

1+ 3aqWt? + 502¢@t! + 7a3¢Bt + ete. atc—ot?

t+ agWd + a2¢@t5 + a3¢B®t7 +ete. 1 — ¢t
and this last member is equal to

1—at?+ %# — %tﬁ + etc.

at? a2t a3t6 :
t (1 12 + 123 1.2.34 + etc.)

We will have therefore by comparing this quantity to the first member, and reducing
to the same denominator; the general equation

12 ¢ 1237 12347
N I
123457 e

¢"9 being equal to unity. If we make successively in this equation i = 1, i = 2, i = 3,
etc.; we will have the successive values of ¢V, ¢®, ¢, etc.; and we will find

ay_ 1

47

(2 _ 0

= 95 etc.

q q

We will have next
/du(l — UQ)S_% =a

The integral relative to u needing to be taken from u = 0 to u = 1, the integral
relative to ¢ must be taken from ¢ null to ¢ infinity; we will have therefore, by §24,

N

/dt c [1 4+ 3aqWt? 4+ 502¢Pt* + 7a2¢ 310 + ete.].

1.3 1.3.5
L 1 1+ 70&(](1) + ?042(](2)
du(l —u?)*2 = —\/ar ;
2 1.3.5.7 5 (3
+ 53 a’q + ete.
hence,
1.3 1.3.5
i 0§ 2,(2)
(s+1)(s+2)(s+3)...2s 2% L+ Sag + —5-a7g
- 1.3.5.7
1.23...s (s — QL)F > a3q(3)+etc

Thus we will have by a very convergent series, the middle term or term independent
of a, of the binomial (£ + a) %
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We will arrive more simply to this result, by the following method, which can be
extended to any polynomial.

§35. Let us name y,, the middle term or term independent of a, of the binomial
(% + a) 25, or, that which reverts to the same, the term independent of ¢*®V~1, in the
development of the binomial (cwﬁ + c*wﬁ)%. If we multiply this development by
dw, and if we integrate from w null to w = %71’; it is easy to see that this integral will
be %Wys, and that thus we have

Ys = %/dw (V14 =V,
Indeed, by developing the binomial contained under the [ sign, and substituting
instead of ¢*2®V=1 its value cos2rw + v/—1sin 2rw, we will have the middle term
of the binomial, plus a series of cosines of the angle 2w and of its multiples; by
multiplying them by dw, and integrating them, this series will be transformed into
a series of sines of the angle 2w and of its multiples, sines which are null at the two
limits @w = 0 and @w = %7‘(‘. There will remain thus in the integral only the middle
term of the binomial, multiplied by %7‘(‘. This premised, if we substitute instead of the
binomial ¢®V~1 4 ¢=®V=1 its value 2 cos w, we will have

225+1
2s .
Ys = / dwo cos™ w;

™

by supposing sin w = u, we will have

225+1
Ys = /du(l — w253,

™

the integral being taken from v = 0 to u = 1; that which coincides with that which
we have found in the preceding section.

Let us consider now the trinomial (% +1+4 a)s, and let us name y, the mid-
dle term or term independent of a, in the development of this trinomial. This
term will be the term independent of ¢*®V~1, in the development of the trinomial

<CWV’1 + 1+ c’wV’1> ; we will have consequently, by applying here the reasoning
which precedes,
1
Ys = — /dw(l + 2cosw)?;
s

the integral being taken from w = 0 to w = m. The condition of the mazimum of the
function (1 + 2cosw)® gives sinw = 0, so that the two limits of the integral, @ = 0
and w = m, correspond to some mazxima of this function; we will partition therefore
the preceding integral into the two following,

/dw(l +2cosw)® (—1)S/dw(2 cosw — 1)

[139]
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the first of these two integrals being taken from w null to the value of @, which renders
null the quantity 2 cosw + 1; and the second integral being taken from w = 0, to its
value which renders null the quantity 2 cosw — 1.

In order to obtain the first integral in a convergent series, we will make

(14 2cosw)® = 3"

by supposing o = %, extracting the root s of each member, and developing cos @ and
% we will have
4 2,44
w
3—w2+5—etc.:3—304t2+

whence we deduce by the reversion of the series,

t2
w= a%t\/g (1 — % —l—etc.) :

33 : 3t
dw(l+2 S = dte™ (1—— +etc. ).
/ w(1l+ 2cosw) \/5/ c ( S5 +ec)

The integral relative to ¢ must be taken from ¢ null to ¢ infinity; we will have therefore

35+3 3
/dw(l +2cosw)® = 2;\/\_5/% (1 ~ T6s +etc.) :

— etce.;

hence,

We will find in the same manner

/dW(2008w 1) = § (1 - % +etc.) :
S S

we will have therefore

_ 3 1o 2 pete )+ S (122 )
Ys = 2./sm 16s ' 2y/sm 165 )

35+3

s being a very large number, this quantity is reduced very nearly to 3 N This is the
rough approximation of the middle term or term independent of a, of the binomial
(2+1+a)"

We will determine in the same manner, the middle term of any polynomial what-
soever, raised to a very high power. Let us suppose first the number of terms of the

polynomial, odd and equal to 2n + 1; and let us represent this polynomial by

1 1
a™ anfl

1
ST R L
a

By substituting ¢®V~1! for a, this polynomial becomes

14+ 2cosw + 2cos2w -+ 2cosnw;
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sin( 2”;1 )w

now this function is equal to ——5——; the power s of the polynomial is therefore
2

sin (241) '\
sin 1o '

2

The middle term of this power, is the term independent of w, in its development
in cosines of the angle w and of its multiples. We will have evidently this term, by
multiplying the power by dw; by taking next the integral from @w = 0 to @w = 7, and
by dividing it by 7. This term is therefore equal to

1 sin (22H) ’
—/dw (—( 21 ) )
T sin 5w

. 2n+1 o . .
The condition of the mazimum of % gives the equation
2

2 1 1
tan< n2—|— )w = (2n + 1)tan§w.

There is from w null to w = 7, many mazima, alternatively positive and negative.
The first corresponds to @ null and gives

s (2n41 s

SIn \ —— ) W

<—( - ) ) = (2n+1)%.
81115@

In order to have the preceding integral, from this mazimum to the point where

sin( 22w
% is null, that which holds first when w = 2311, we will make [142]
2
(2041 5
sin (<52 w
<(—21)> = (2n+1)°c "
sin 5w
By taking logarithms, and reducing into series relative to the powers of w, the function
: 2n+1
sin (<52 w
slog ( 21 )
sin 5
we will have |
—n(n6+ )sw2 + ete. = %
that which gives
dt+/6
dw = V6 + etc.;

the preceding integral becomes thus
(2n+1)° dtv/6

@ vn(n+1)s

It must be taken from ¢ null to ¢ infinity; for at the origin, or when w is null, ¢ is null;

and at the limit, where w = 2311, t is infinite; this integral becomes therefore, by

—t2
e + etc.
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considering only the first term, and neglecting the following which are, with respect
to it, of order %,
(2n +1)%V/3

n(n+1)2sm

The second maximum is negative, and corresponds to a value of (2"2—“) w com-

prehended between 27 and %ﬂ'. Indeed, the equation of the mazimum

1
2 1 1
tan< n2—l— )w:(2n+1)tan§w

; 2n+1 - 2n +1
an .
5 w 5 w

Thus, (2”“) w being comprehended within the second maximum between 7 and 2,

)
tan (25) @ surpasses T; consequently (22H) w surpasses 7 + im; it is therefore

comprehended between 2 a7 and 2 5. The preceding equation of the mazximum gives

gives

—sin(znz—ﬂ)w_ 2n+1
1 -
S 5w \/(3082 1o+ (2n + 1)2sin? 2w

This last member is smaller than
2n+1

(2n+1) wsin %w
2

?

1
2

L1
. . . sin 50 . .

%w not surpassing %7‘(‘, it is easy to be assured that —2— is never less that its value
2

which corresponds to @ = 7, and which is equal to %; the second member of which
there is question, is therefore generally smaller than

2n+1 T
(2n+1) )

2n+1
2

) w being comprehended between iﬂ' and 2 5T,

sm(%)w

this member will be smaller than (2n + 1) thus the power of s of ————, will
2

Relative to the second mazimum, (

not surpass at all (2n + 1)* (%)8; it will be therefore, when s is a very great number,
incomparably smaller than the same power corresponding to the first mazimum, and
which is equal to (2n + 1)°.

We will see in the same manner, that the third mazimum is comprehended between

(%) w = %w and (M) w = %w and that at this maximum, the power s of
. 2n+1

% does not surpass (2n+1)° (9) that the fourth mazimum is comprehended

between (2”2“) w = %w, and (2"2—“) w = %w, and that at this maxzimum, the power

sin( 22w s
s of (—ﬁw) does not surpass (2n + 1)* (&)~ at all, and so forth.
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Now, if, departing from any one of these mazima, we make

o (2n41 5 o (2n41 8
sin ( 5 ) @) _ (sin ( 5 ) II ot
sin 3o sin 511 ’

IT being the value of @ which corresponds to this maximum; and if we make
w=I+w,

we will have by taking the logarithms of the two members of the preceding equation
between w and ¢,

+1

2
slogsin( n )(H+w’)—slogsin%(l’[+w’)

2 1
=5 [logsin ( n2—|— > IT — log sin %H} — 2

By developing the first member of this equation according to the powers of w’, the
comparison of the first power will give first the equation of the mazimum

o + 1
tan( ”; >H:(2n+1)tan§r{.

By considering next only the second power of w’, we will have

In(n+1)sw” =%

that which gives
, 2dt

do' = ——;
vn(n+1)2s

1 sin (21 @\
o)
T sin 5w

(201
taken between the two limits between which % is null on both sides of the
2

the integral

maximum of this function, is therefore very nearly

2 sin (2524) 1)
2n(n+ 1)sm sin S11 '

This expression holds generally for the integrals relative to all the maxzima which
follow the first; only it is necessary to take only the half of it relative to the last
which corresponds to II = w. There results from that which precedes, that this
expression, with respect to the second mazimum, is less, setting aside the sign, than

()
on(n+1)smt \5/)

[145]
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that, relative to the third mazimum, it is less than

=)
o2n(n+1)st \9/

and so forth. When s is a very great number, these quantities decrease with an
extreme rapidity, and they are incomparably smaller than the quantity relative to the
first maximum, and which, as we have seen, is

(2n+1)*V3
V2n(n + 1)st’

we can therefore have regard only for this last integral, and we see that it is rigorous

in the case of n infinite; for the equation of condition of the mazimum gives then
2n+1

(M) II = (M) m, r being a whole number, that which renders M finite,
2 2 sin 511

when II is zero excepted, that which corresponds to the first mazimum.
If the polynomial is composed of any number of terms, even and equal to 2n, such

that

1 1

1 1 3 nol
1_|_ 3~--+—1+(12---+6L 2 +q 2,
a* 2 a2 a2
by substituting ¢V~ in place of a, it becomes
2 cos 2o + 20 S -+ + 2cos 2
cos —w cos —w - - - coS w
2 2 2 ’

or 227=. This polynomial raised to an integral and positive power, can have a middle
2

term or term independent of the cosines of %w and of its multiples, only so much as
that power is even; let us represent it by 2s: then the middle term will be

. 2s
1 sin nw
— | dw | — ,
T sin 5w

the integral being taken from w null to @ = w. This integral is composed of diverse
partial integrals, relative to the diverse mazima of the function 2=; but we will be
2

assured easily, by the preceding analysis, that all these integrals, when 2s is a very
great number, and when n is greater than unity, are incomparably smaller than the
one which is relative to the first mazximum which corresponds to w null; and then we
find very nearly the middle term of the 2s power of the polynomial equal to

(2n)* V3
V(2 +1)(2n + 1D)st

In bringing closer this result, of the preceding, we see that if we name generally n’
the number of terms of the polynomial, and s’ the power to which it is raised; the
middle term of the development will be, when there is one of them,

n/s’ \/§

s —
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and provided that it has a middle term, (n’ — 1)s’ must be an even number; that is
that one or the other at least, of the numbers n’ — 1 and s’, must be even.

§36. The preceding analysis gives further the coefficient of ™! in the development
of the polynomial

(@™ +a ™ ta 1 4a -+ a" +a")

In order to obtain it, we will observe that the coefficient of " in the development of [147]
this polynomial, is the same as the one of a™"; by naming therefore A, this coefficient,
by making a = ¢®V~!, and uniting the two terms of the development, relative to a”

and a~", we will have 2A, cosrw for their sum. Now, if we multiply this polynomial,
s (2n41 §
or its value M by dw coslw, and if we integrate the product from w = 0

sin 5@
to w = m; it is clear that all the terms vanish, except the one where r is equal to [;
the integral will be reduced therefore to 24; [ dw cos® lww; that which gives

1 sin (2l ’
A = —/dw cos lw (ﬁ)
T sin 5w

In order to integrate this function, we will make as above,
o (2n+1 5
sin (<%= ) w
(—( . ) ) = (2n+ 1) ",
sin ;@

By taking the logarithms and developing with respect to the powers of w, we will
have by the inversion of the series, for w, an expression of this form,

w = L(l + At* + etc.);
n(n+1)s

that which transforms the integral into this here,

(2n+1)* 1t\/6

V6
@ \/n(n—kl)s/dl COS[ n(n+1)s

the integral being taken from ¢ null to ¢ infinity. We can easily obtain it by §26, and
we find, by having regard only to its first term, for its value,

(2n +1)°V/3 L

¢ wnFDs
n(n+1).2sm

¢ (14 3AE + etc.),

This is the value sought of the coefficient of ™ in the development of the polynomial, [148]
when its power s is very elevated.

Let us seek now the sum of all these coefficients, from the one of a~ inclusively,
to the one of @' inclusively, [ being a great number, but of an order inferior to s. For
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this, we will observe that we have, by §10,
1 1
Yy = =

dy;

2
H -1 i () tete )

A\t 1 fdy\°  1dy .
_(dl) _2(z T T

whence we deduce by the section cited,

d
Sy, = /yz dt — %yl + %% + etc. 4+ constant.

By taking the integral from the term corresponding to [ null inclusively, we will have
the sum of the values of y;, from this origin to the term y; exclusively. The arbitrary

constant will be equal then to %yo — %% — etc.; thus the sum of the values of y;,
from [ null inclusively to y; inclusively, will be
d d
/yl dl+ 1yo + 3y + gy% — %% + etc.

Let us suppose now
(2n 4+ 1)°V/3 32

= C*m;
n(n 4+ 1)2sm
then the differences of y; will be successively of an order inferior the ones to the others;

by considering therefore only the first three terms of the preceding series, we will have
/yz dl + 5y0 + 5u

for the sum of the coefficients of the terms of the development of the s power of the
polynomial, from [ null inclusively to y; inclusively. By doubling this sum, and by
subtracting from this double, the term yy, we will have for the sum of the coefficients,
from the one of the term corresponding to a~' inclusively, to the one of the term
corresponding to a' inclusively,

s 312 32
Ot NG ((f gy L)

n(n+ 1)sm

§37. We have supposed in the preceding examples, that the equations in the
differences in y,, had no last term at all; let us give an example of an equation
enjoying a last term, and for this, let us consider the equation in the differences

P° = 8Ys + (5 — 1) Yst1.

%z/ﬁlmm

p%w%u+@—/ﬁm+mm+u+mmw

By making

we will have
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that which gives first in order to determine ¢, the equation
(14 x)dop + (i + 1)pdx = 0;
whence we deduce by integrating,
A
A being an arbitrary constant. Next we have

ps = xs¢(1 + l’),

b=

or

whence we deduce
T =p, A= (14+p),

so that
x5 Y

ys = (1 +p)1/m,
the integral being taken from x = 0 to z = p. By adding to that value of y, this here
x* tdx

B(1 +p)i/m,

the integral being taken from z null to z infinite, and B being an arbitrary; we will
have for the complete integral of the proposed

x5 Y . x5 dx
s = B - <. 1 v —.’
4 / (1+ z)it? +(1+p) / (1+ )it

an expression that we can set under this form

s=ldx 4 x5 Y
s — B/ «T— — (1 ! / e
Y /(1 + )i+l (1+p) (14 z)+t’

the first integral being taken from x null to z infinity, and the second being taken
from x = p to x infinity.
Now, the integral of the proposed

P’ = 8Ys + (5 — 1)Yss1
is

B 1.2.3...(s—1) ii—1)(—2)...(i—s+1) .
ys_i(i—l)(i—?)...(i—s—{—l)(Q_Z 1.2.3...s p)’

@ being an arbitrary, and > being the characteristic of the finite differences; so that

the function ) 1(171)(;722.:)3..:87%1) p¥ is equal to

=1, ii—1)(-2)...(i—s+2) .
1 N2 s
TP 1.23.. . (s—1) L

[150]
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that is, the sum of s first terms of the binomial (1+ p)’. If we compare this expression
of y, to the preceding, we will have

/ x°dw i ¥ dx

¥ [ e 00 [
_ 1.23...(s—1) i(i—1)(i—2)...(i—s+1) ,
Tii-D-2). s +1) (Q‘Z 123 s p)'

If we make s = 1 in this equation, and if we observe that the product 1.2.3...(s—1) is
reduced then to unity, as we have seen in §34; we find, after the integrations, B’ = Q:
thus, B’ being an arbitrary, this equation is partitioned into the two following,

1.23...(s—1) _/ 5 tdw
i(i—1)G—2)...(i—s+1) ) (1+a2)+
1.23...(s—1) (=1 —2)...(i—s+1) , ; ey
i(z’—l)(z’—Q)...(i—s+1)Z 12.3...s P = (1+4p) /m
whence we deduce

f x5 ldm

(1+x (14z)+T

f xS~ ldm b
(4az)+t

the integral of the numerator being taken from z = p to x infinity; and that of the

denominator being taken from x null to z infinity. When s and i are large numbers,

it will be easy to reduce these two integrals to convergent series, by the formulas of

§22 and §23. We will have thus the sum of the first s terms of the binomial raised to

a great power, by an approximation so much more rapid, as this power will be higher.
If we effect the integrations, the preceding equation becomes

Mp2... i(i—1)(i—2)...(i—s5+2) .,

.
T 123.. . (s— 1)

— (1+p)

=1, ii-DG-2) ... (i—s+2) .,
1 N2 s
TP 123.. (s—1) P

i—s+1 p (i—s+1)(i—s+2) p?

L+ 1 1+ 1.2 (1+p)?

:(1+p>s—l p . p

(t—s+1)...(i—1) p*t
1.23...(s=1) (1+p)t

The second member of this equation is a transformation of the partial sum of the
terms of the binomial (1 + p)*, a transformation which is able to be useful.

Concerning the approzimation of the infinitely small and finite differences, very
elevated, of functions.

§38. Let us consider any function of z, that we will represent by ¢(z). By changing

z into z + t, let us designate by y, the coefficient of ¢° in the development of this
function; we will have

d*o(z +t)

— 123 sy,
s Y
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t being supposed null after the differentiations, and, as we have doeHt) _ dé(z) by

> ) dt o dz 0
supposing ¢t null, we will have

d*¢(2)
dzs

Thus the pursuit of the s* difference of ¢(z), is reduced to developing the function
¢(z + t) into series.

Let us suppose that this function of ¢ is a power of a polynomial in ¢, that we will
represent by

=1.23...5.9;.

(a+ bt + ct® + ete.)".
In expressing by
Yo + it + yat? - -yt + ete.
its development into series, we will have, by taking the logarithmic differences,

p(b+2ct +ete.) g1+ 2yt + - 4 sy t°! + ete.
a+bt+ct2+ete. o+t +yot2 + -+ yts +ete.

Cross multiplying, and comparing the terms multiplied by =1, we will have
asys + b(s — 1)ys—1 + (s — 2)ys_o + etc. = pbys_1 + 2ucys_o + ete.

Let us represent by [ 25 !¢ dz, the expression of y,; this equation becomes

b c
d¢ | a + — + — + etc.
b c x  x?
O0=2"(a+—+— +etc. |o— [ 2°
r b 2c
+ppdr | — + — +ete.
T T

By equating separately to zero, the part of this equation, affected of the integral sign,
we have

b b 2
0=do a—{——+£+ete. + po dx —+—C—|—etc. ;
x  x? x? a3
that which gives by integrating,
b M
¢:A(a+—+%+ete.) )
r  x

A being an arbitrary constant. The part of the preceding equation, beyond the
integral sign, will give next in order to determine the limits of the integral,

b c /»L+1
0=2a* <a+—+—2+etc.) ;
s x
these limits are therefore x = 0, and = equal to the diverse roots of the equation

b c
0:a+——|——2+etc.
T oz
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We will have therefore by the preceding methods, and by a very prompt approxima-
tion, the coefficients of the very elevated powers of ¢, in the development into series

of the power
(a+ bt + ct® + ete.)",

and consequently we will have the very elevated differentials of the power
(a/ + ¥z +2° + ete.)H,
which is changed into the preceding, by changing z into z + ¢ and making
a=d + bz+d2%+etc.,
b=10 +2cz+ etc.,
c=c +etc.,
ete.

Let us apply this analysis to an example.
z being the sine of an angle 6, we will have

dst10 o 1

dzst1 - dzs /1 — 22'
In order to have the expression of the second member of this equation, we will observe
that we have, by that which we just saw,

1
dzs 1 - 22

ys being the coefficient of * in the development of [1 — (z 4 £)2]"2. We have next

1 2
Ys :A/:vs_ldm [1— (z~|—5)

the limits of the integral being given by the equation

1 2
0=2a° [1—<z+—)
T

1 1
T =— , x =0, x = .
1+2z 1—2

As x has three values, the expression of y takes this form, by §29,

e N
Ys ZA/xS_ldx [1— <z+—) +A'/m5_1d:p [1— <z+—>
x x

A and A’ being arbitrary constants, and the first integral being taken from r = —

1

to x = 0, and the second being taken from z = 0 to z = ;—. If we make

=123...5ys,

1
2

[N

These limits are

N

1
1+=

z 4+ cosw

Tr =
1— 22
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The preceding expression of y, becomes
dw(z + cosw)? dw(z + cosw)?
ys — B/ ( 1) + B// ( 1)
(1— 22 (1— 22+
the first integral being taken from w = 0 to @ equal to the angle of which the cosine is

—z, and the second being taken from this last angle to @ = «. In order to determine
the arbitraries B and B’, we will observe that

1 1
yo—ﬁ, ?Jl—m,

whence it is easy to conclude

Y

hence
1

——— [ dw(z + cosw)®,
m(1— 22)5*2 / ( )

the integral being taken from @w = 0 to w = 7. By taking this integral, and observing
that

Ys =

1
/dw cos” @ = — [ dw(cV 4 FY N

92r
1.2.3...2r 1.35...(2r — 1)
—= m = T
22r(1.2.3...1)2 24.6...2r

we will have

Is(s—1) , 5 13s(s—1)(s—2)(s—3)

S I - s—4
. 5T 7 Ty 1.2.3.4 ®
=l 185s- - -3)6-D-5) . b (a
s+3
(1=22)"2 | 575 1.2.3.4.5.6 :
+ etc.

this expression is quite compound, when s is a large number; but then we can obtain
its value in a very close manner, by applying to the expression of y, under the form
of definite integral, the methods exposed above. The function under the integral sign
having two maxima, one at the origin of the integral, and the other at its extremity,
we will decompose it into the following two

1
Yy = ——————— {/ dw(z + cosw)® + (—l)s/dw(cosw — Z)S:| ;
(1 — 22)%t3
the first integral being taken from w null to @w equal to the angle of which the cosine
is —z, and the second integral being taken from w null to @ equal to the angle of
which z is the cosine. Let % = «, and let us make

(z+cos@)® = (14 2)°c

[155]
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we will have by taking the logarithms and reducing cos w into series,

w? wt 9
log (1 — —ete. | = —at?;
Og( 2(1+2) 241+ 2) ec) s

whence it is easy to conclude

9 _
w = a?t 2(1+ 2) (1 — %ﬂ +etc.> ;

we will have thus, by observing that the integral must be taken from ¢ null to ¢ infinity,

1 - -
24/2 1 2 —
/dw(z+cosw)sz a 5 7T(1—1—2)‘ngE 1—%—1—%0 .
By changing z into —z, we will have
1 - -
242 1 2
/dw(cosw—z)s: a22 7T(l—z)“’”FE 1—%—1—%0. ;

hence

1 (1 a2 —2) et >
Ys = T - etc.
(1 —2)t2/2s7 8

—1)° 2
+ ( )1 (1_a( +Z)—f—etc);
(1+2)°T2/2s7 8
in the case of s very great, this expression is reduced to very nearly this very simple
term,

(b)

1
(1—2)t2y/2s7

If we multiply the expression (b) of ys by the product 1.2.3... s, a product which
by §33, is equal to

s T2/ 2r <1 + % + etc.) :

we will have very nearly

ds+19 B ds\/11,7 B s5¢—*
dzst'  dzs (1 —z)5+%'

§39. When a function y, of s can be expressed by a definite integral of the form
[ x%¢ dz, the infinitely small and finite differences of any order n, will be by §21,

Cils?f = /msgbdx(logx)”,

Ay, = /azsgbd:v(x - 1"
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If instead of expressing the function of s, by the integral [ 2¢ dz, we express it by
the integral [ ¢ **¢ dx, then we have

dTL
ds%: = (—1)"/:I:”¢dxc_”,

Ay = /qbdx (et ="

In order to have the n'® integrals, either finite, or infinitely small, it will suffice
to make n negative in these expressions. We can observe that they are generally
true, whatever be n, by supposing it even fractional; that which gives the way to
have the differences and the integrals corresponding to some fractional indices. All
the difficulty is reduced to putting under the form of definite integrals, a function
of s; that which we can make by §§29 and 30, when this function is given by an
equation linear in the infinitely small or finite differences. As we are principally led
in the analysis of hazards, to some expressions which are only the finite differences of
functions, or a part of these differences; we are going to apply the preceding methods,
and to determine their values in convergent series.

§40. Let us consider first the function si In designating it by vy, it will be

(3

determined by the equation in the infinitely small differences

dys .
0=s—7 5
Sds +wy

If we suppose in this equation,

Ys = /c“qﬁ dzx, ¢ =y,

0= /qbdm <i5y+xd—5y) :
dx

whence we deduce by integrating by parts, conformably to the method of §29, the
two equations

it will become

o d(z9)
0=1i¢p—
Zgb dx Y
0 =z¢dy.
The first gives by integrating it,
¢ = Azt

A being an arbitrary. The second equation gives for the limits of the integral
[ ¢dr, z =0 and x = co. We will have therefore within these limits,

1 .
— = A/x’_ldx c %,

gt

[157]
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[158] In order to determine the constant A, we will observe that s being 1, the first
member of this equation is reduced to unity; that which gives
1

- f - ldy e ;

A

hence

1 [t tda e ‘

s [aldze

we will have therefore by the preceding section

1 [a et (et —1)" )
st [ tdr e ’ a

the integrals of the numerator and of the denominator being taken from z null to z
infinity.
In order to develop this expression into series, let us suppose

ATL

! 1C sx(c x_1>n:az 1C sa(c a_l)nc t7

a being the value of x which corresponds to the maximum of the first member of this
equation. If we make x = a+6, we will have, by taking the logarithm of each member,
and by developing the logarithm of the first, into a series ordered with respect to the
powers of 6,

ho* + B0 + 16 + etc. = t3;
the quantities a, h, ', h”, etc. being given by the following equations:
=1 nc®

0

71— 1 n c° ™ c SIS c ¢ 5 c? 4
B = — - — + — - = + — ,
4at 24c—a—1 2 ce—1 2 \ca—-1 4 \co—1
etc.;

we will have therefore by the reversion of series,
t ( ) Rt 5h"? — 4Rk
2

/P +
Vh hWh 8h3

[159] and this series will be so much more convergent, as the number n will be greater.

2+ etc.) ;

By substituting this value of § into the function [ df ¢, and taking the integral
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within the limits ¢ = —o0 and ¢t = oo, limits which correspond to the limits x = 0
and x = oo, we will have

) ) 1 2 12 "
/xz_lda: (e 1) =a" e (e — 1)”% (1 + % + etc.) :

) 1 )
/xz_ldxc_” = —,/a:zd:vc_’“";
)

and when i is very great, we have, by §32,

: . . 1
/a:‘ldx T = itaci/2g (1 +—+ etc.) ;

121
by dividing therefore the one by the other, the two values of

/xi_lda: (e =1)" and /xidx c ",

We have besides

we will have

1512 — 12hh"

a1 i—sa( .—a n B ———
and () e J I g et
s V2hi _
12 '

In order to have the n'" finite difference of the positive power s*; it suffices, by
§30, to change in this equation ¢ into —z, and we will have

) ) ) —1 )

A"s'=(s+n) —n(s+n— 1)’+%(s+n—2)’—etc.

<l)i+1 csa—i(ca _ 1)n 15l/2 _ 12”// 1 (,U,/)

= o 1+ ————= 4+~ tete);
\/i(i+1) i 1673 124
a? (ce—1)2
a, [, ', 1", etc. being given by the equations [160]
1+ 1 nc®
0= —5—
a v —1’

l,,__i+1_£ ct +7_n c” 2_
 4a* 24 —1 24 \eo—1

a 3 a 4
¢ L
(=55) i)

The series (y') ceases to be convergent, when a is a very small fraction of order
%; because it is clear that the quantities [, I’, [” etc., forming then an increasing

ete.
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progression, each term of the series is of the same order as the one which precedes it.
In order to determine in what case a is very small, let us resume again the equation

1+ 1 nc®
a @ —1

0=

We can transform it into the following, when a is very small,

a a

whence we deduce very nearly, under the assumption of a very small,

i+ l-—nm
s+ 5

I

thus a will be quite small all the time that ¢ —n will be not very considerable relative
to s + 5. In this case, we will determine A"s" by the following method.
Let us resume again the equation

f $Z+1 Cfs:r _ 1)n

)
x
fr“flc

in which formula (u) is changed, when we make i negative and equal to —i. We can
put the function (¢=* — 1)" under this form

A"st =

_nz _z T\ n —nT 1 =z 1 $4 "
crler o) =t (1+12322+12345¥+et0)

nz?  n(bn —2)
= (=) T (1 * ete. ) ;
(=1)% (+24+15.16.24x+ec)’

we will have therefore

dx —8T( — n n dr —(s+2 )z TLZL‘2
/x”lc (" =1)"=(-1) /xi+1_nc( ) (1+ﬂ+etc.>.

If we make
<s + n> r=2a
2 - )
we will have generally
dx n n\1 [ da'c™™
e = (s+3) / P

now we have found in §33, by passage from the real to the imaginary,

/ d' ¢ 2;(—=1)"z om(—1)""2

2 [artde e (r—1)(r—2)(r — 3).etc.
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hence we will have

A”si:(z’—n—i—l)(z’—n—i—Q)...<s—|—ﬁ>l_n

2
1+(i—n)<i_n_1>m (M”)
X q +(i—n)(i—n—1)(i—n—2)(i—”_3)1512(22(_8?2)4
[+ ete. 2 g

This series will be very convergent, if ¢ —n is not very considerable relative to s + %;
it can moreover be employed in the case where i is fractional, as it is easy to be
convinced. As for the product (i —n + 1)(i —n + 2)...4, it is easy to obtain it in
convergent series, by §33.

The preceding formula is a very simple application of the equation

d d n
A S
ys = C dz — C dx

that we have given in §10; because by developing the second member of this equation,
and making y, = s’, we obtain directly that formula that we have concluded from
the passages from the real to the imaginary; that which confirms the justice of these
passages.

§41. Formulas (') and (u”) of the previous sections, suppose n equal or less than
1. Indeed, if we consider the expression

— ST

dxc —x n
angi = LT 2 )
- dxc—® )
i1

of which the development has produced these formulas; we see that the limits of the
integrals of the numerator and of the denominator being determined by the preceding
section, by equating to zero the product of the quantities under the integral sign, by
x; these limits will be totally imaginaries, when ¢ will be greater than n; instead that
in the case where ¢ will be less than n, the limits of the integral of the numerator will
be reals, while those of the denominator will be imaginaries; it is necessary therefore
then to bring back these last limits to the real state. In order to arrive there, we will
observe that we have generally

i+r —x
/xi_ldxc_x = — fm d ¢ - .
i+ 1)@ +2)...(i+71)

If we make in this expression, 7 negative and equal to —r — ™, m being less than
n; we will have

(R IR R

/dwc‘x (=)t [a=wdrc®

[162]
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now we have by §33, the integrals being taken from x null to x infinity,
(14 ™) (24 i = Jwtdwer
n n [axmdrc

. . o . . . . - . .
1 being here positive: this is the expression of d;?iil of which we must make use in

the case that we examine here. If we make x = t", we will have

m m n n
/a: wdr e I/.:Endzcc_x :nz/tn_m_ldtc_t /tm_ldtc_t ;

and equation (T) of §24 gives, by changing r into m + 1,
n n ﬂ-
n? /t”mldt ™t /t’”1dt =
sin 7
we will have therefore
/dw cr (=) i
it sin Zx [zide e’

whence we deduce, by substituting this value into the preceding expression of A"s’,

n i (_1>r+1Sin% i —x dr —sx( — n "
A"s' = /xdxc /x”lc (¢ —=1)", (")

™

the integrals being taken from x null to x infinity.

The process which just led us to this equation, is based on the reciprocal passages
from the real to the imaginary; but we can arrive there directly by the following
analysis which will confirm thus the justice of these passages.

If we take the integral [ do f+1 from z = «a to x infinity; we will have, by making
i =1+, the function

, m3r1+m(1+m) El ;
r_ —sa s — — — — — €eTcC.
(=1"c n « n n/ ao?
Er ) ) it my L

SR (14 2) (242
(_1>r+18r+1 / dr 5% ’

T )

now we have generally, when « is infinitely small,

Anc—sasr—f
= 7 -,
of

f being zero or a positive whole number; for, if we develop ¢

designate by ka?s? any term of this series, we will have

kadf Amsttr=F =,

in series, and if we

Indeed, if g surpasses f, this term becomes null by the assumption of « infinitely small.
If g is equal or less than f, ¢+ — f will be equal or less than r, and consequently, it
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will be smaller than n; and then, by the known property of finite differences, A"s977~/
will be null. It follows thence that A" [ &= or dwc‘sz&—i‘f‘”” is reduced to

(_1)r+1AnSr+1f dxxc%*sz
R

the integral being taken from x null to = infinity. If we make x = ‘%/, we will have

_ o
dx c™5% m_ dx' c™*
1
™ = 8Sn —/"L ?
Tn '

the integrals being taken from x and 2’ nulls to z and 2’ infinities; we will have
therefore

/dJIC_Sx(C_x . 1)77, ( T‘-‘rlf dx < - de’c ™ Ang 7

P T EQTE)G+E)
By substituting for (1 + %) (2 + %) .-+ ¢ its value %, and observing that we

have by that which precedes,

m _m / m _ ™
?ndy ¢ | avdre ™ = — —,
sin 2

///

we will have formula (

If i is a very large number we will have by §33, the integral [ z'dxc™
drc 5% (¢ *—1)"

have next by that which precedes, the integral [ T thus we will obtain,
by a very convergent series, the value of the second member of the formula cited.

Let us suppose ¢ infinitely small, 7 will be null, and ** will be an infinitely small
fraction; we will have therefore

*: we will

.. m m .
sin —m = —m =17,
n n

A" (S — 1> = A" log s;

1

formula (p”) will give thus

—Sl’d
A”logs:—/c x(c_x—l)”,

X

an expression that we will reduce easily into convergent series, when n is a great
number.

§42. We have need often, in the analysis of hazards, to consider in the expression
of A"s®, only the part in which the quantities raised to the power i are positive. We
are going to determine the sum of all these terms. For that, let us resume the formula
(1) of the preceding section. If we substitute instead of A™s' its value

n(n —1)

T (s +n—2)" — etc.;

(s+n) —n(s+n—1)"+

165
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and if we change next s into —s, we will have, in continuing the two series of the first
member of the following equation, only to the terms in which the quantity raised to
the power i, become negative, and observing that the + sign holds, if n is even, and
the — sign, if n is odd,

(1) [(n —s) —nn—s—1)+ n(r;—;l)(n —5—2) — etc.]

n(n —1) ;
T(S —2) — etc.]

-1 r+1 ) d
:( 72 Sin%-/xldx c_m/xiflcsm(c_m - 1"

If we change in the last integral, x into —2x’v/—1, it becomes, after all the reductions,

: npi - sinz’\"
2" (—1) 2 /x'”_’_ dx'[cos(2s — n)x’ — /—1sin(2s — n)a’] ( ) ;

ﬂj,

+(—1)° {si —n(s—1)"+

the integral relative to 2’ being taken from 2’ null to 2’ infinity. We will have therefore
n(n —1)

(1) {(n—s)i—n(n—s— 1)" + 15

(n—s—2)" — etc.]

n(n —1) ;
T(s —-2) — etc}

—1 T+l . n+1i .
= (=1) 2i(—1)"2 sinm/xdasc—”&/x'"_l_ldz’
n

™

+ (—1)° [si —n(s—1)" +

% [cos(2s — n)a’ — v/—1sin(2s — n)’] (Sin 9”)"

:L./
Let us suppose r = n — 1, that which gives i+ = n — 1+ 2, and let us compare
separately the real parts and the imaginary parts of the preceding equation. We have

(1) = (@0)" (1) =1";
now we have

1 = cos2lm + v/ —1sin 2,
[ being a whole number; we will have therefore

m 21 21
(1)» = cos mr ++v/—1sin m7r'
n n

The corresponding values of (—1)= are
cos(2l + 1)m + v/ —1sin(2l + 1)m.
n n
Now (1)’ needing to be supposed equal to unity, in equation (o), it is necessary to

choose [ in a manner that cos QZ% +y/—1sin 21% be 1, that which requires that we
have
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f being a whole number that we are able to suppose null; then we have
m m m
(—1)» = cos T/ sin —7T;
n n

but we have

m

H(-1) = £ = (1)
the imaginary part of the first member of equation (o) is therefore
. mm |, - n(n—1)
v/ —1sin — | & — B DU S A
sin —~ |5 n(s—1)"+ 3
Let us determine the imaginary part of the second member of equation (0). We have

(_1)r+n—1 _ (_1)271—2 — 1;

(s —2)" — ete.

we have next

(_1)”;i+r+1 _ _\/_—1(_1)%

because of r =n — 1 and of : = n — 1+ ™; now we have by that which precedes,

(—1)2n = cos T/ Isin m;
2n 2n
we will have therefore, for the imaginary part of the second member of equation (o),
sin X m nz/\" .
—nly/ 11— /dx' '~ cos [(23 —n)x’ — M} e /x’dm "
s 2n T/

If we equate this function to the imaginary part of the first member of this equation;
if we observe moreover that

/xidxc_w: <1+@) <2+m)...i/x7nndxc_x
n n

- (1+%) <2+%>mk

by making k = [t"t™ !dtc™"", the integral being taken from ¢ null to ¢ infinity;
finally, if we suppose 2s — n = z; we will have

(n+2)" % —n(n 4z —2)" e 4 2D gy 4T et
(e e )

2" m inz’\"
_nk /x"ndm’ cos (zx’ - M) i
m 2n T

In the first member of this formula, the series must be continued until we arrive to a
negative quantity raised to the power n — 1+ 2, 2 not surpassing n; in the second
member, the integral must be taken from ' null to 2’ infinity.

The comparison of the real parts of the two members of equation (o) leads to
the same result; and besides, it proves that for the coincidence of the two results
deduced from the comparison of the real quantities between them and of the imaginary
quantities between them, it is necessary to suppose, as we have done, f = 0.

We can further arrive to formula (p), by means of the following equation:

ilp(z+2,n) —d(z,n)] = (n+2+2)¢'(z+2,n) + (n — 2)¢'(2,n),

()

168
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¢'(z,n) being the coefficient of dz in the differential of ¢(z,n), and ¢(z,n) being equal

to
n(n—1)

1.2
all the terms in which the quantity raised to the power ¢ is negative, needing to be
rejected, and z not surpassing n, so that the quantity raised to the power i, never
surpasses 2n. In resolving this equation in the infinitely small and finite differences,
by the method of §30, and determining conveniently the arbitrary constants, we arrive
to the form (p).

We are going now to give some applications of this formula, which will lead us to
many curious theorems of analysis.

Let us suppose m null; then we have

W1
k:/ﬂMHﬁft:ﬂ
n

(n+2z2)—n(n+z—-2)"+ (n+ 2z —4)" —etc.;

formula (p) thus becomes
(42"t —n(n 42z —2)" "+ 20U (n 4 2 — 41— et
EERNCESS
fd:c cos zx! (512”” )

we have

that which gives

we will have therefore, by §26, by making z = r/n,
[ da' cos sa’ (S22)" /3 {

20n
(n+7yn)" ' —n(n+ryn—2)" 1 4 20D (0 4ory/m— 471 — et
1.23.. . (n—1)2"

the series of this last member needing to be arrested at the powers of the negative
quantities.

By differentiating this equation with respect to r, we will have, with the condition
of the exclusion of the powers of the negative quantities,

(n+rvn)" 2 —n(n+ryn—2)""%+ @(n +ryv/n —4)"% — etc}

/3 3
— _ Pt 251 1.
3r 5 { 50m (5—10r* + 3r )—l—etc}

3
1——(1- .
- 2n7r (1—67r°+3r )+etc}

(q)

n
1.23.. . (n—2)2"
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By continuing to differentiate thus, we will have the values of the inferior differences,
provided however that the number of these differentiations be quite small relative to
the number n. We can observe that these equations subsist, by making r negative;
for cos za’ or cos z'r/n is the same in the two cases of r positive and of r negative.

We can, by integrating successively equation (g¢), obtain analogous theorems on
the finite differences of the powers superior to n, by excluding always the powers of
the negative quantities. Thus we have, by a first integration,

(n+ry/n)* —n(n+7ryn —2)" + 22D (0 4 ry/n— 4)" — et
1.2.3...n2"

3 3 3
=1/ — =27 |1 — (1 — 62 4 ]
\/QW/drc [ 20n< 6r° + 3r )}%—etc
3 3,2 3 3,2
—C 4] = =3 % (1 — ) et 1.
C+ o |:/d7’C 2 20nr( re)c 2 —l—etc}

We will determine the arbitrary constant C', by starting with r, the integral [ dr c_%rz,

and by observing that then r remaining null, the last member of the equation is [171]

reduced to this constant. In this case, the first becomes

n(n —1)
1.2

But we have, as we know, without the exclusion of the power of the negative quanti-
ties,

»

n" —n(n—2)*+ (n—4)" — etc..

n" —n(n—2)"+etc. Fn(2—n)"F(—n)" =1.2.3...n.2",
the superior sign holding if n is even, and the inferior sign if n is odd. In the two
cases, we see that the sum of the terms in which the quantities raised to the power
n are negatives, is equal to the sum of the other terms; we have therefore, with the
exclusion of the powers of the negative quantities,

n(n —1)
1.2
that which gives C' = %; consequently,

(n+ryn)" —n(n+ryn—2)"+ %(n +ry/n —4)" — etc.
1.2.3...n.2"

1 3 3,2 3 3
= — _ —5TrT _ 1_ 2 —2r2 ) )
2+“27r [/drc 2 —Qonr( )2 —I—etc}

By integrating anew this expression, and determining conveniently the arbitrary con-
stant, we find

(n+ry/n)" —n(n+ryn—2)" + —”(?_;1) (n+ry/n—4)" — ete.
1.23...(n+1)2"/n

3 s saf1 1 , 1
= %{r/drc +c l3+60n(1 37“)]}—1—27“.

n" —n(n—2)" + (n—4)" —etc. = 1.2.3...n.2"1;
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§43. We can extend the preceding methods to the determination of the n'® dif-
ference of any power of a rational function of s. It suffices for that to reduce, by
the method of §29, this function to the form [ z°¢dx. But we have seen then that
we arrive in order to determine ¢, to a differential equation of a degree equal to the
highest exponent of s in this function, and which most often is not integrable. We can
obviate this disadvantage, by means of multiple integrals, in the following manner.

Let us consider generally the function

1
(s+p)i(s+p) (s+p")" etc.

If in the integral [2'~'dxc~+P)% taken from z null to x infinity, we change (s +

p)z into ', it becomes Jrlp)i [ 2"""'da’ ¢, the new integral being taken within the

preceding limits. The comparison of the two integrals will give

1 B f 21y Cf(erp)x
(s+p)i  [ai-ldwce

It follows thence that
1
(s +p)i(s+p)"(s+p")" etc.
f 2 =1 ate da da da ete.cpe—p' @ b2 —ete.—s(zta+a" +etc.)

N . 1
[2iYdy o 2" da! ¢ [ 2" o ete.

all the integrals being taken from x, 2/, 2", etc. null to their infinite values; we will
have therefore

" 1
(s +p)i(s + p)" .etec.
f Ii—lxli’—l ete.dr dr' .ete. .C—px—p’w’—etc.—s(z+az’+etc.) (C—x—x’—etc. _ 1)n

f i ldx c=* ' —dz! ¢ etc.

We will reduce easily into convergent series, by the method of §40, the numerator and
the denominator of this expression; and if we change in this series, the signs of i, 4/,
etc.; we will have the very near value of

A™(s 4 p)i(s + p')¥ ete.,
n, i, i, etc. being supposed very large numbers. We will find by the section cited,

A™(s+p)i(s + p') ete.

(1) i+1 ( &/ )i’Jrl 'etc'C(s—l—p)a—i—(s—i-p’)a’—i—etc.—i—i’—etc. (ca+a’+etc. _ 1)n

a a’

i(i+1) nica+a’+etc. i/(i’+1) ni’ ca+a +etc.
2 7 P 7 .etc.
a (Ca+a +ctc._1)2 a (Ca+a +ctc._1)2
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a, a’, etc. being determined by the equations

i1 nca+a/+etc,
0= a +8_p_ca+a’+etc._1’

i+1 i+1
/ = +p - D
a a
"+1 i+1 .,
&,, = a +p - D,
ete.

The most ordinary case is the one in which the exponents i, ¢/, i”, etc. are equal,

and s + p, s + p/, etc. form an arithmetic progression. We can obtain then, by the
following method, the finite difference of their product elevated to a high power.
Let us consider the difference A"[s(s — 1)]". If we make s = s’ + 1, it becomes

. 1\°
n 121
A"s (1 — 45,2) )

By developing this function in series, we have

C : i(i—1 ,
ATLS/ZZ . ZATLSQZ 2 + 5242) AnS/Zz 4 ete.

The formulas of §40 will give the near value of each of the terms of this series, and we
see, by these formulas, that, n and i being very great numbers, /A"s*~2 is of an order
less by two units than A”s?; whence it follows that each term of the preceding series
is of an order inferior by one unit, to the one which precedes it; that which shows the
convergence of the series.

We would arrive to the same result by resolving by approximation, the differential

equation of the second order in ¢, to which the method of §29 leads. When we suppose

1\~ ,
(3’2 - Z) = /c_S o dx;
22'3'/6_5/33@5 dr = (3’2 - i) /c_slmgzﬁ dz.

By making s" of the coefficients of this equation vanish, by the method cited, in the
terms affected with the integral sign; equating next to zero, the sum of these terms,
and supposing next, in the differential equation that we obtain thus, ¢ equal to an
ascending series with respect to the powers of x, we will have a convergent series. We

will have next '
- /
A" (SIQ_Z) :/C_S$(0_$—1)n¢dl';

i)_i, and in which it will suffice

to change the sign of 4, in order to have the value of A" (3’2 — }L)l.

we have

whence we will deduce a value in series of A" (5’2 —

[174]
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This manner to resolve by approximation, the differential equation in ¢, and that
we have indicated at the end of §30, can serve in a great number of cases where this
equation is not integrable exactly.

General remark on the convergence of series.

§44. We will terminate this Introduction, with an important observation on the
convergence of the series of which we have made a so frequent use. These series
converge very rapidly in their first terms; but often this convergence diminishes and
ends by being changed into divergence. It must not prevent the use of these series, by
employing only their first terms, in which the convergence is rapid; because the rest
of the series, which we neglect, is the development of an algebraic function or integral,
very small with respect to that which precedes. In order to render this sensible by an
example, let us consider the development into series, of the integral [ dt ¢, taken
from ¢t = T to t infinity. We have, by §27,

et _ (1 13 135
e = ar Mo o T s T )

This series ends by being divergent, however great that the value be that we suppose

to T; but then we can employ without sensible error, its first terms. Indeed, if we

1.3.5.7 [ dtct.
24 8

consider, for example, its first four terms, the rest of the series will be

2
now this quantity, setting aside the sign, is smaller than the term —% which
precedes, that is that we have

T . dt c_tQ‘

™~ T

dt " c dt "
7 = constant — —— — 2 :
t8 t7 t6

In determining the constant, in a manner that the integral be null, when ¢t = T, we

for we have

2
will have % for this constant; we will have therefore, by taking the integral from

t =T to t infinity,
. dt "’ B T’ 9 dt ¢t
s T 6

The preceding series therefore can be employed, as long as it is convergent; since we
are sure that that which we neglect, is below the term at which we arrest ourselves.
This series enjoys further this property, namely, that it is alternatively greater
and smaller than its entire value, according as we are arrested at a positive term, or
at a negative term. We can name for this reason, this kind of series, limited-series.
Besides, we have seen in §27, that in the case where they are divergent; we can, in
reducing them to continued fractions, obtain always convergent approximations.
That which we just said on the preceding series, can be extended to all those that
we have considered, and must remove all disquiet on the uses that we have made of
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them. Indeed, we can always stop these series at the point where they cease to be
convergent, and represent the rest by an integral. This is that which we are going to [176]
demonstrate on the most general formula of the development of functions into series.

We have, in taking the integral from z = 0,

/ dz¢(z — 2) = $(z) — $(a — 2),

¢'(x) being the differential of ¢(x) divided by dx. If we designate similarly by ¢"(z)
the differential of ¢'(z) divided by dz; by ¢ (z) the differential of ¢"(z) divided by

dx, and so forth, we will have
/dng'(x —z2)=2z¢(x — 2) + /zdz " (v — 2),
/dz¢”(3: —2)=12¢"(z —2) + / 12%dz ¢ (x — 2),

ete.

By continuing thus, we will find generally

n

2
(1 —2) = 20 (2 — 2) 4+ —— (1 — 2) o+ ——— () (g —
/d”b (v=2)=2¢/(w=2)+ 156" (@ —2) o+ 53— 0" e —2)
2"dz
_ (nt+1) (o
/ 23 a0 @2
By comparing this expression to the preceding, we will have
d(x) = d(x — 2) + 2¢ (v — 2) + Z—2¢"(x —2)- -+ Lgf)(")(:c —2)
1.2 1.23...n

1
_ n (n4+1)(,.
1.2.3...n/z dz¢™ (w — 2).

Let us make x — z = t, the preceding equation will take this form

2 oM

o / Z_ 1 A ()]
Ot +2) = 6(t) + 26/(1) + —0"() -+ + 5" (1)
=53 31 - /z'”dz’ PVt 4+ 2 — o),

the integral being taken from 2z’ = 0 to 2z’ = z. It is clear that if we made in this
integral ¢V (¢ 4+ 2z — 2’) constant, we could have a too great result, if we took the
greatest value of this quantity; and a too small result, by taking its least value. It has
therefore in the interval of 2z’ = 0 to 2’ = z, a value of 2z’ such that in supposing this
quantity constant, we will have an exact result. Let u be this value; the preceding [177]
integral becomes thus

Zn+1

(n+1) (4 _
23 i’ UtEou
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that which gives
Ot +2) = B1) + 20/ (8) -+ ——— (1)

123...n
Zn—i—l (1)
n t .
T2 man? UtEow

z — u being comprehended between zero and z. We could thus judge from the con-
vergence of the series and from the degree of approximation, when we stop ourselves
at one of its terms.

END OF THE FIRST PART
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L.
We have integrated by a very convergent approximation, in §34 of Book I, the
equation in the finite differences,
0=(n"+s+1)yss1 — (n+ 8)ys.
It is easy to conclude from our analysis, the expression of the ratio of the circumference
to the radius, in infinite products, given by Wallis. In fact, this analysis has led us in
the section cited, to the general expression
(n + Iu)(n + ,U + 1) e (n _|_ S _|_ 1) fu2n/—2'n+1du(1 _ u2)n+s—1 ( )
= a
(N +p+1) +p+2)--- (' +s) [u2Hdu(l —w?)rtr-t’

the integrals being taken from v = 0 to v = 1. By making first n’ =0, n = %, pw=1

and observing that [ du(1l — UQ)% = 1w, 7 being the ratio of the semi-circumference
to the radius, we will have

4 3.5...(2s—1)

T 4.6...2s [du(l —u?)" 2

By supposing therefore generally
1 J— .
[du(l —u2)s Ysi

one will have

4 35..(2s—1) 35...(2s+1)
— = Y1 = Ygqp1 = etc
T 46...2s 2 46...(25+2)
that which gives
 2s+1
Yooz T 95 1 2¥h
If we make next in formula (a), n’ = =1, n =0 and p = 1, it gives
35...(25—1)
= Ys—1;
24... (25— 2)
whence we deduce
JR— 28 .
Ys—1 = %25 + 1ysv

an equation which coincides with the preceding between y,_ 1 and y, 1 by changing
s into s + %; so that this equation holds, s being whole, or equal to a whole plus %

143

[462]

463



[464]

144 ADDITIONS

The two expressions of ys_1 and of % give

4 33 55 (25—1)(2s—1)¥s-1

T 24 46 (25 —2)2s  ys 1’

the equations in the differences in y, and y,_ 1 give

Ys—1  (2s+1)2 Yt (25+1)? (25 + 3)* Ysy3

= = = etc.
Ys—1  28(2s4+2) s 25(2s+2) (25s4+2)(2s+4) Ys1

Lo YL, . el e e . . .
The ratio ; 2 is greater than unity: it diminishes without ceasing, in measure as s

increases; and, in the case of s infinite, it becomes unity. In fact, this ratio is equal

to
[ du(l —u?)s!

[ du(l — u?)2

Now the element du(1 — u2)*~! is greater than the element du(1 — u2)*"2, or du(1 —
u?)* 1 — UQ)%; the integral of the numerator of the preceding fraction surpasses
therefore that of the denominator; this fraction is therefore greater than unity. When
s is infinite, these integrals have a sensible value only when w is infinitely small;
because u being finite, the factor (1 — u?)*~! becomes a fraction having an infinitely
24\ 1 . .
great exponent; one can therefore then suppose (1 —u*)2z = 1, this which renders the
1

S—

ysj equal to unity.

This ratio is equal to the product of an infinite sequence of fractions of which the

ratio

first is {22° and of which the others are deduced from it, by increasing successively

2s(2s+2)°
I Ys : : 1 . (254+1)2
s by one unit; it becomes ey by changing s into s + 3, and the fraction 25251 D
(25+2)% .
becomes a1 1)(2s73)) NOW we have, whatever be s,

(25 4+ 1)? (2s+2)*
25(2s+2) ~ (2s+1)(2s+3)’

we have therefore this inequality

ys—% Ys
Yso1 Yool

By changing s into s — %, we will have

Ys—1 N ys—%
ys—% Ys—1
These two inequalities give
ys—% > Ys < ys_%

Ys—1 Ys—1 Ys_3 .
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yS . . .
Substituting in place of the ratios % and o their values given by the equations
ST3

in the differences in y,, we will have

Ys—

1>\/l—|—1<\/l+ L.
Ys—1 2s 2s — 1’

N}

we will have therefore

4 3 5.5 (2s—1)(2s—1) 1

21 16 e V1T n
4 _ 33 55 (25—1)(25—1) 1

<3106 (@oe V1T

Wallis published in 1657, in his Arithmetica infinitorum?, this beautiful theorem, one
of the most curious in analysis, by itself, and by the manner in which the inventor is
arrived there. His method containing the principles of the theory of definite integrals,
that the geometers have specially cultivated in these recent times; I think that they
will see with pleasure, a succinct exposition, in the actual language of Analysis.
Wallis considers the series of fractions of which the general term is

[ dx l—an )
n and s being whole numbers, by commencing with zero. By developing tlr<1e birgo—
mial contained under the integral sign, and integrating each term of the expansion,
he obtains for one same value of n, the numerical values of the preceding fraction,
corresponding to s = 0, s = 1, s = 2, etc.; that which gives to him a horizontal series,
of which s is the index. By supposing successively n = 0, n = 1, n = 2, etc., he has
so many horizontal series. Thence he forms a table in double entry, of which s is the
horizontal index, and n the vertical index.

In this table, the horizontal and vertical series are the same, so that by designating
by yns the term corresponding to the indices n and s, we have this fundamental
equation,

Yn,s = Ysn-
Wallis observes next that the first series is unity; that the second is formed of the
natural numbers; that the third is formed of the triangular numbers, and so forth; in
a manner that the general term y, s of the horizontal series corresponding to n is

(s+1)(s+2)---(s+n)
1.2.3...n ’

this fraction being equal to

n+1)(n+2)---(s+n)
1.23...s ’

we see clearly that y, s is equal to ys .

Now if we arrive to interpolate in the preceding table, the term corresponding to
n and s equal to %, we would have the ratio of the square of the diameter to the
surface of the circle; because the term of which there is concern is —L——, or 4.

Jdx(1—22)2 4

Wallis seeks therefore to make this interpolation. It is easy in the case where one of

2This work has been translated into English. See [13, 14].

[465)
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the two numbers n and s is a whole number. Thus, by making successively s equal

to a whole number less 1, in the function (Sﬂ)f; ;)_'_'T'Z(SJF”), he obtains all the terms of
13 5

the horizontal series, corresponding to the values of s, —3, 5, 3, etc.; and by making

n equal to a whole number less 3, in the function ("+1)(1"2+ 32 k 8("+8) he obtains all the
terms of the vertical series, correspondlng to the values of n, é, 5, etc. But the
difficulty consists in finding the terms corresponding to n and s both equal, to some
whole numbers less %

Wallis observes for this that the equation
(s 1)(s+2)---(s+n)

18 1.23...n
gives
Cs(s+ 1) (s+n—1)
Yns—1 = 123...n ’
and that thus we have
s+n
Yn,s = Yn,s—1; (CL)

so that each term of a horizontal series is equal to the preceding, multiplied by the

fraction #£; whence it follows that all the terms of a horizontal series, departing from
5§ = ;, 5 1ncreasmg successively by unity, are the products of y,, 1 , by the fractions
2n+1  2n43 2n45

, etc.; and, departing from s = 1, these terms are the products of

13 5
Yn,0, by the fractions ”T“, "T”, ”TJF?’, etc. He supposes that the same laws subsist in

the case of n fractional and equal to %, so that we have all the terms departing from

s = —%, by multiplying Yyi 1 by the series of fractions %, 3 , etc. By designating

therefore by [J the term corresponding to n = % and s = %, a term which, as we have
seen, is equal to %, we have

11,
27 2
that which gives
-1
U3, = 2
Departing from Y1 or from unity, he obtains the successive terms of the series,
corresponding to s whole, by multiplying successively unity, by the fractions %, %, %,
etc. He forms thus the following horizontal series which corresponds to n = %, and
to s successively equal to —5 (), 5 L g,
1 3 4 3 5 46
-0, 1, O = =0 =---, =-=0 etc; 0
2 2" 3 2 4 3 5 (3)
a series which represents this here,
1 1 1

[de(1—22)~2"  [de(l =23 [dz(l—a22)2’
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Series (1) gives generally, s being a whole number,

46 2

ylS,l — — e — .. ,
23— 35 25— 1
3 5 2s —1

Yoot T 970 s

whence we deduce
3.3 5.5 (2s —1)(2s — 1) Y151 ®)
24 4.6 (25 — 2)2s Y11 ’

Wallis considers next that in the series (i), the ratio of each term to the one which
precedes it by one unit, is greater than unity, and diminished without ceasing, so that
we have

27

y%,sfl Y1

2>

yl s > y%75+1

This results in fact from the equation

2s+1
Yis = "5 Ybs1

He supposes that this holds equally for all the consecutive terms of the series; so that
we have the two inequalities
y%,sfé > y%,s < y%,sfl :

1 1 1 1 3
y5,3—1 y§,s—§ yi’s_ﬁ

whence he deduces, as we have done above,

YL, 1 / 1 1
222 > /14+ — <4/14+ ——;
Y1 2s 2s —1
2,51

thence, it changes formula (B) into formula (A).

This manner to proceed by way of induction, must appear, and appeared in fact,
extraordinary to the geometers accustomed to the rigor of the ancients. Thus we
see that some great contemporary geometers of Wallis, were not very satisfied with
it, and Fermat, in his correspondence with Digby,®> made some objections not very
worthy of him, against this method which he had not studied sufficiently deeply. It
must be, without doubt, employed with an extreme circumspection: Wallis himself
said, in responding to Fermat, that it is thus that he is served by it, and in order
to confirm the exactitude, he supported it on a calculation by which lord Brouncker?
had found, by means of formula (A), the ratio of the circumference to the diameter,
comprehended between the limits

3.14159 26535 69,
3.14159 26536 96,

3Sir Kenelm Digby (1603-1665).
4William Brouncker (1620-1684)

468
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limits which coincide in the first ten digits, with this ratio that we have carried
beyond one hundred decimals. Notwithstanding these confirmations, it is always
useful to demonstrate in rigor, that which one obtains by these means of invention.
Wallis observes that the ancients had, without doubt, similar ones that they had
not made known at all, being content to give their results supported on synthetic
demonstrations. He regrets with reason, that they had concealed from us their ways
to arrive there, and he said to Fermat, that one must be thankful to him not to have
imitated them, and to not have destroyed the bridge after the flood having passed.’
It is worthy to note that Newton who had profited from this method of induction
of Wallis and of his results, in order to discover his theorem on the binomial, had
merited the reproaches that Wallis made to the ancients geometers, in concealing the
means which had led them to their discoveries.
Let us resume formula (B) of Wallis. If we suppose

Y11
2 = Us,
y%,s—l
this formula will give
(2s — 1)?
Us—1 = 75 g Us,
(25 —2)2s
or
0=25(2s — 2)(us — Us_1) + Us. (1)
Let there be
AWM A®2) AB)

Ug = A© 4 + etc.;

5—|—1+(8+1)(s+2)+(S+1)(5+2)(5+3)

and let us consider that which produces in the second member of equation (), the
term

A
(s+1)---(s+7)
By having regard only to this term in wug, we will have
—r A
s(s—i—l)(s—f—Z)---(s—f—r);

Us — Us—1 =

the term 2s(2s — 2)(us — us_1) of the equation (I) becomes thus

—4r AW (s — 1)
(s+1)---(s+7)’

or
—4r A N 4r(r +1)AT)
(s+1)---(s+r—1) (s+1)---(s+7r)

SText: détruit le pont aprés avoir passé le fleuve, i.e., not conceal the means to safety.



ADDITIONS 149

The term of u, depending on A1 will produce similar terms, and thus of the others. [470]
By comparing therefore in equation (/) the terms which have the same denominator
(s+1)---(s+7), we will have
0=4dr(r+1)A" —4(r + DAY 4 A,
that which gives
40D _ (2r +1)2A0)
4(r+1)
It is clear, by that which precedes, that u, is reduced to unity, when s is infinite, that
which gives A® = 1. Thence, we deduce

12 12.3 12.32.52 Yool
s+ 1) BRI+ 0512 Pl2ss+Dsts+3) Ty
The ratio of the mean term of the binomial (1 + 1) to the entire binomial, is
(s+1)(s+2)---2s

Us = 1+

2251.2.3...5
or
1.35...(2s 1)
24.6...2s
By naming therefore 7" this mean term, formula (B) will give
I
STUg

This theorem and the preceding expression of u, in series, are due to Stirling; and we
see how they are attached to the theorem and to the analysis of Wallis. This value
of T? is able to serve to determine by approximation, the ratio of the circumference
to the diameter, that which was the object of Wallis; or this ratio being supposed
known, it gives the mean term of the binomial, that which was the object of Stirling.
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IL.

The expression of A"s’ given by formula (1) of §40 of the first book, has been
concluded from the expression of A"%, by changing in that one, ¢ into —i. This
passage from the positive to the negative, is analogous to the inductions that Wallis
and other geometers have so happily employed. All these means of invention, which
hold in the generality of analysis, require in their usage, a great circumspection, and
it is always good to demonstrate the results directly. This is that which we are going
to do relative to formula (p).
Let us consider the integral

/ doo C—asw\/?l
(1= =)/
taken from @w = —o00, to @w = o0o. This integral is equal to
\/__1 C—asw\/TI N CLS/ deo C_asw‘/jl
i (1—w)v=1y i J (1—w)y—1)H

This constant is

-+ constant.

\/__1 casw\/jl
TN
w being supposed infinite. By uniting it with the term
/=1 eswVT
i (=)D
in which we must similarly suppose w infinite, we will have
= cos(asw)[(1 — wv/—1)" — (14 wv/—1)]
o {—i-\/—_lsin(asw)[(l —wvV=1)" + (1 + wV/-1)]
(1 + w?)
the numerator of this fraction is real, as also its denominator; and it is clear that it
becomes null, in making w infinity; we have therefore

/ deo C_asw\/jl CLS/ dwo C_asw\/?l
(

i

1 —wy/—1)+ 0 (1 —wy/—1)"

Thence it is easy to conclude that in making ¢« = r — ™* 7 being a positive whole
number, we will have

/ dme ! = a"s" / deo ¢—ws=mV—1
(1 —wy/—1)i+t i(i-1)---1-2)) 1-—w/-) %
Let asw = @', and let us make as = ¢; we will have

r r/ deo c—as@V=1 l/ deo’ =@ V-1
a’s _ = _
(1—wy/-1)1" q (g—'v/—1) =
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the integrals being taken from w and @’ equal to —oo, to w and w equal to +oo.
Let us designate by k the integral

/ da’ C—asw’\/j
(¢ —w'v/=1)'="

we will have

%—_<1_T)/ dew’ @' V-1
dg n/J (¢—=vV=1)""
L EeEvT de' =1
~ oo | e
We will see, as above, that this last member is reduced to the term affected with
the integral sign, a term which is equal to —k; we have therefore

+ constant.

dk
— =k
dq
that which gives, by integrating,
k= Ac™?,

A being an arbitrary constant independent of ¢q. It is clear that this equation supposes
q positive; for by making ¢ positive or negative infinity, k is infinitely small. We have
therefore

I—wy=D*  (i—1)---(1—2)
This equation holds whatever be the value of a, provided that as is positive. By [473]
making s = 1, and changing a into another constant a’, we will have

/ doo C_a/(l_w\/?l) Ad”

/ doo cas(lfw\/jl) Adatst

(I—wv/—D) . i(i—1)--(1—2)

we will have therefore
s doo cas(l—wv/=1)

i a (1—w/—1)it1
5 T 4 [dme 0wV
(1—w)v/ 1)t

that which gives

p doo Cas(l—w\/j) (ca(l—w\/—il)il)n

a” f 1wy 1)1

al dwo ca/(lfw\/jl)
(I—w/—1)it1

In order to have the integrals in series; we will suppose

Cas(lfw\/jl) (Ca(lfw\/jl) _ 1)n
(1— w\/__l)iJrl

we will have by taking logarithms,

A"st =

42
:Cas<ca_1)nc t;

a

—aswyv—1+nlog |1+ (=YD (4 1) log(1 — wv/—1) = —¢2.

ct—1
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Let us determine a, in a manner that, in the development of the first member of this
equation, the first power of @ vanishes, and let us suppose this development equal to

—fa*w? — fladw® — flatwt — ete. = —t%;
we will have first ,
1+1 nc
0= -5 — ;
a c®—1

next

f_z'+1+n c® n c® 2
22 2ce—1 2\ce—1)"
i1+1 n n c® > n c® 3
I /__1 e T _n
/ 3a® 60“—1+2<c“—1) 3(0‘1—1)]’

f,,__i+1_£ c? +7_n c? 2_2 c® 3+£ @ \*
T 4a* 24cr—1 24 \ev—1 2 \eo—1 24 \er—1) 7

etc.

We have next, by the reversion of series,

t /t 5 /2_4 1/
/ / 11 ﬁ—+eu;):

aw:ﬁ(1_2fﬁ+ e

we have therefore, by taking the integrals from w and ¢ equal to —oo, to t and @
equal to 400,

dewo Cas(l—wﬁ)(ca(l—wﬁ) _ 1)n
/ (1 —wy/—1)"
as(ca _ 1\n ! 2 4 "
SN A’ (e ) dt <1 — It + 35f 2] 2+ etc.)

a Vi i 83
RV 1572 —12f f" (et —1)"
—W <1 + —16f3 + etc.> Y

If we suppose s = 1, n = 0 and if we change a into a’, we will have

1 V=1 , 1

!
it T3 e

/ pu— 1 1 pu—
@=itl f (i +1)2 46+ 1)

we will have therefore

/dmu/(WH) _ oL ) VA
1—wy 1) i+l 12; = ¢ LT

Thence it is easy to conclude
NI e
) K3 s~ (et — 1\ 15 /2_12 " 1
A"s' = (a’) ey ( ) (1 + 1577 = 12777 + — —|—etc.) )
\/Z(Za—; —1in (Cac_l)z

163 12
a formula which coincides with formula (') of §40 of the first book.
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This formula supposes a positive, and this is that which holds, when i+ 1 surpasses
n. In fact, if, in the equation

1+ 1 nct
a c*—1

0:

we suppose a infinitely small, the second member is positive and equal to iHT’”;
next, a being positive and infinite, this second member becomes negative and equal
to —s — n; there is therefore a positive value of a which satisfies this equation. But

. . . y a
there is only one; because if there were two, the function % — 8 — &~ would have

a maximum between these two values; we would have therefore at this mazimum,

1+ 1 nct

0=
a? + (v —1)%’

2

that which cannot be, a being positive. In fact, (c* — 1)? is greater than a?c?®, or

¢® — 1 > ac?, that which is clear; because we have

a a a/3
2 —c 2 = t L > .
c & a+4_1.2.3+ec a;
we have therefore
nct n 141

(cv—1)2 = a? = a?

Thus formula (x') can be used, while ¢ + 1 surpasses n; that which is conformed to
that which we have said in §41 of the first book, according to the consideration of
the passages from the real to the imaginary, passages that the preceding analysis
confirms.

I1I.

Formula (p) of §42 of the first book, is quite remarkable: it can be demonstrated
in the following manner, which shows distinctly the reason for which the series of
differences must be arrested, when the quantity under the exponent of the power,
becomes negative.

Let us consider the integral

_m mm sinz\"
/:c nda:cos(m:——)( ) ,
2n T

and let us give to it this form

mm m sinz\"
cos— | 7 »dx coszx
T

2n
. n
. mm _m ) sin x
+sin — [ 7 ndx sin zx ,
2n T

[476]
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the integrals being taken from z null to z infinity. Let us suppose first n even and
equal to 2i; we will have, by the known formulas,

-1
sin 2\ 2 (c1y | cosna— ncos(n — 2)x + % cos(n — 4)x — etc.
T - 2i-lg2 i1 nn—1n-2)...(n—i+1) [’
2 1.23...14

the + sign holding, if ¢ is even, and the — sign, if ¢ is odd. By multiplying this

equation by cos zx, we will have

cos(n £ z)x —ncos(n — 2 + z)x £ etc.

sinz\ > (—1)

COS 2 = - - — — — 9 ;

T 2213721 iln(n 1)(” 2) °t (’I’L ? + 1) COS(%ZI’)
2 1.23...1

where we must observe that by cos(n — 2r 4+ z)z, | understand the sum of the cosines
cos(n — 2r + z)z and cos(n — 2r — z)x, 2r being here at most equal to n or 2i. Let us

multiply the second member of this equation by z~ = dx; we have generally

/a:"zdx cos(n —2r + z)x

cos(n —2r + z)x
(it = 1)ai
(n—2r+z)sin(n — 2r + 2)x
. I e
N (n—2r+£z)"cos(n —2r £+ z)x
(n+2-1)(n+2-2)(n+2—3)z" a3

— etc.

(=)fn=2r+2) /dx x”n cos(n — 2r + 2)x.
(n—i— m _ 1)%

n

We have therefore

/x?dac COS 2Z Sy = (_—1)m
€T 2221‘71“1‘;
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( cos(ntz)r —ncos(n —2+2)r ) )

1
nin—1) cos(n —4+ 2)x
. 1.2
— —etc. >
n+2 -1
1 -1 —1+1
ln(n=1)-(n , ' )cos(izx)
\ 2 1.2.3...12 J

(n+£ z)sin(n + 2)x
—n(n —24z2)sin(n — 2+ 2)x
+-etc.

3 (n £ 2)? cos(n + 2)x
) (n—l—%—Z) (n—i—%—?)) —etc.

( (n+2)"cos(n+ 2)z
—n(n—24 z)"cos(n — 2+ 2)x

M(n —4+z)"cos(n —4+2)x

1.2
—etc.
Inn—1)---(n+i—1)

4+ =
\+ 2 1.2.3...4

155

2" cos(tzx)

—+ constant.

This constant must be determined in a manner that the second member of this equa-

tion be null: when x is null: now we have, by that which precedes,

cos(n & 2)x — ncos(n — 2 £ 2)x + ete. = (—1)"2%(sinx)" cos zz.

By differentiating this equation with respect to x, we have

—[(n+ 2)sin(n + z)x —n(n — 2 £ 2)sin(n — 2 + z)z + etc.

d[(sinx)" cos zx]
dx ’

= (—1)i2%

differentiating again, we have

—[(n £ 2)*cos(n £ 2)x — n(n — 2 £ 2)*cos(n — 2 £ z)zetc.]

s d*[(sin )™ cos zx]
= (-1 1221 .

[478]
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and so forth: now we have to the two limits = 0 and z infinity,

7wt (sina)" cos zx = 0,

S d[(sin xc)l" oS 2] _o,
T

ete.

We have therefore, by integrating next x null to z infinity,

/ m sinz\" 1
x” ndx coszx = —
T 2 (n+2—1)...2

([ (n£2)"cos(n+ 2)x
—n(n—2+z)"cos(n — 2+ 2)x
X /x—’;}dx +etc.

Intn—1)-(n—i+1
\i§n(n 1?2.3.@.@ = )zncos(izx)

Now we have, by making (n — 2r £ z)z = 2/,

/a:_zldx (n—2r4+z)"cos(n —2r + z)z

— m —_m
=(n-—2r+z)" Hm/dx’x’ n cosa.

[479]  We have moreover, as we will demonstrate it hereafter,

_m . mm

'~ ndx’ cosa’ = K sin —,
2n

_m . mm

/x’ nda' sinx’ = k' cos —,

2n

k' being equal to [ t~wdtct, the integral being taken from ¢ null to ¢ infinity. This
premised, we will have

/m (sinx)n k' sin 3%
" ndx coszx = u
A L



ADDITIONS

( (n42)"" M —n(n+z—2)" R

n(n —1) qym
B S — 4\
3 (n+2z—4)
o j:ln(n—l) -(n—z—l—l)zn
2 1.2.3.. .12

It is easy to see by the preceding analysis, that if n — z — 2r is negative, it is necessary
to change the power (n — z — 2r)""'*% into (2r + z — n)" '+ % because we have

cos(n — z — 2r)x = cos(2r + z — n)z.

We will find by the same analysis,

/m . sinz\" 1
x~ ndx sin zx =
x 2"(n—|—%—1)-~%

( (n+ z)"sin(n + 2)x

m +etc.
X / - ndx

—(n —2)"sin(n — 2)z

| +etc.

Now we have
/x_g(n + 2 —2r)"dz sin(n £ z — 2r)z

= (n+2z—2r)"" "Wk cos iy
2n

If (n — z — 2r) is negative, we have
/x_rs(n — z —2r)"dx sin(n — z — 2r)x

= —/x_fdx (2r+z—7r)"sin(2+ z —n)x

m mm
= —(2 — )"k cos —.
(2r+2z—n) cos

—n(n+z—2)"sin(n+ 2z — 2)z

+n(n—z—2)"sin(n — z — 2)x

157
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Thence we deduce

. n
mm m sin x
cos — [ 7 ndx coszx
2n x
. n
.omT m . sin x
+sin— [ 27 ndz sinzx | ——
2n T

k' sin 2% [(n + ) —n(n 4z —2)" R 4 %(n + 2z — 4" —ete.

2n
2"(n+2—-1)(n+2-2)...2 ’
(4)
the series being continued to that which in the power (n+z—2r)""1*%  the quantity
n + z — 2r’ becomes negative, 2r’ being able here to be extended to 2n. In fact, it
is clear that in the expressions of the two terms of the first member of equation (1),
the terms relative to the power (n 4 z — 2r)"'*% | are the same and are added. The
terms relative to the power (n — z — 27“)"’1+%, are the same and of contrary signs,
as long as n — z — 2r is positive; but they have the same sign, when n — 2z — 2r is
negative; and the preceding power must, by that which precedes, be changed into
(2r + z — n)""1*%. The sum of the terms relative to this power is

(1) e 2 — )R
2.3..1r ]{ZSID—;

now this term is encountered in the series of the second member of equation (7). This
series contains the term

(1) e g 2= o) R
sin —;
n + z — 2r' being supposed positive. If we make n — 2r' = 2r — n, that which

gives ' = n — r, this term becomes equal to the preceding; because then we have
(—=1)" = (=1)", and
nn—1)--(n—r"+1) nn-1)---(n—r+1)

1.2.3...0 1.23...r
Formula (T) of §24 of the first book, gives

1
/tT—ldt c—t/tl—’"dt P —
r—1 sin(r — 1)m

the integrals being taken from ¢ null to ¢ infinity. If we suppose r —1 = 7, we will

have
m m D
/tndtct/tndtct = L.
SIHT

That which we have named k in formula (p) from §42 of the first book, is equal to
Jtmtr=tdt e and it is easy to see that the integrals being taken from ¢ null to ¢

infinity, we have
w1 m
/t”_1+mdt6_t = —/tndtc—t;
n
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we have therefore
m
nkk = 2

sin @
n

By multiplying the two members of equation (i) by @, and substituting into the

second member thus multiplied, instead of nkk’, its value Sif—;m we will have the

formula (p) cited.

The same analysis is applied to the case where n is an odd number. It shows
distinctly the reason for which the series of the differences must be arrested, when
the quantity raised to the power n — 1 + 2 becomes negative.

There remains for us now to demonstrate the formulas

_m .. mm

'~ ndx’ cosa’ = K sin —,

n

_m . mm
/x’ nda' sinx’ = k' cos —,

n

For this, let us consider the definite integral

d —axr
/ re (cosrx — v/ —1sinrz),

ZL»UJ
this integral being taken from z null to x infinity; w being less than unity. In devel-

oping it by the known expressions of cosrz and of sinrz, into series, it becomes

TQCL’Q 7,4x4

1 —
/dxC“” 1.2 + 1.2.34
» 2,2 4,4
g —rxv—1 (1 T + re etc.)

- 1237 12345
Now we have generally, by taking the integral from x null to x infinity, [483]
/xi—wdxc—az:(l_w)(2_o“])”'(z_w)/dl‘c '
a v

By making next ax = t, we have

dx ¢~ 1 k'
/ = / t¥dt et = ,
xw al—w al—w

the integral relative to ¢ being taken from ¢ null to ¢ infinity, and &’ being supposed
to express the integral [t “dt ¢!, taken within these limits. We will have thus

/xi—wdxc_(w _ (1 —w)(2—w)...(i_w)k/.

qitl—w )
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whence we deduce

d —axr
/ ’ Cw (cosre —+/—1sinrz)

X

10w (02 w)B-w)d -0t
_ ¥ 1.2 a? 1234 at '
a o (1—@2_ 1-w@-w@B-wr

123 o et

If we make = = s, the second member of this equation becomes
k/
al=(1 4+ sy/—1)1-«"
Let A be an angle of which s is the tangent, we will have
1
sin A= —— cos A =

V1+ 52 V1 + 52

that which gives

VT

cosA—+v—1sinA=———,
14+ sv—1
whence we deduce, by the known theorem,

1—w

(1+5%)
(14 sy/—1)1"

[484] The tangent s is not only the tangent of angle A, but further that of the same angle
increased by any multiple of the semi-circumference; but the first member of this
equation needing to be reduced to unity, when s is null, it is clear that we must take
for A, the smallest of the angles which have s for tangent.

Now, this equation gives, by substituting ~ in place of s,

K k' ' |
al (1 + sy/—1)l« (@4 12) 5 x [cos(l —w)A — v—=1sin(l —w)A] :

we have therefore

d —ax
/ re (cosrx —/—1sinrz)

xw

cos(l — w)A — v/—1sin(l — w)A =

k/
= ————[cos(l —w)A — vV—1sin(l —w)A|.
(a®>+712)=z
In comparing separately the real and the imaginary quantities, we have
d —ax k:/
/ T cosTr ™ _cos(1 — w)A,
e (a® +1r?2)2
d 3 —ax k/
/ T sinryc ™ __sin(1 — w)A.
x (a®>+712)=
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us

If a is null, * is infinite, and the smallest angle, of which it is the tangent, is 7; we
have therefore

/ dx cosrx k' s

v pl-w 2’
dz sinrx k' W
o e (P

By supposing r = 1 and w = 2, we will have the equations that there was concern

to demonstrate.
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