
LII. A Demonstration of the Second Rule in the Essay
towards the Solution of a Problem in the Doctrine of
Chances, published in the Philosophical Transactions,
Vol. LIII. Communicated by the Rev. Mr. Richard
Price, in a Letter to Mr. John Canton, M.A.F.R.S.

Philosophical Transactions of the Royal Society of London LIV (1764) pp.
296–325

Dear Sir, Nov. 26, 1764

Read Dec. 6, 1764. I send you the following Supplement to the Essay on a Problem

in the Doctrine of Chances, hoping that you may not think it improper to be
communicatated to the Royal Society. I should not have troubled you again in
this way had I not found that some additions to my former papers were neces-
sary in order to explain some passages in them, and particularly what is hinted
in the note at the end of the Appendix. “I have first given the deduction of
Mr. Bayes’ second rule chiefly in his own words; and then added, as briefly
as possible, the demonstrations of several propositions, which seem to improve
considerably the solution of the problem, and to throw light on the nature of the
curve by the quadrature of which this solution is obtained.” Perhaps, there is
no reason for being very anxious about proceeding to further improvements. It
would, however, be very agreeable to me to see a yet easier and nearer approx-
imation to the value of the two series’s in the first rule: but this I must leave
abler persons to seek, chusing now entirely to drop this subject. The solution
of the problem enquired after in the paper I have sent you has, I think, been
hitherto a desideratum in philosophy of some consequence. To this we are now
in a great measure helped by the abilities and skill of our late worthy friend; and
thus are furnished with a necessary guide in determining the nature and propor-
tions of unknown causes from their effects, and an effectual guard against one
great danger to which philosophers are subject; I mean, the danger of founding
conclusions on an insufficient induction, and of receiving just conclusions with
more assurance than the number of experiments will warrant. I am, under a
sense of the value of your friendship, heartily yours,

Richard Price.
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Art. 1. If the curve ADH be divided into two parts by the ordinateDh mak-
ing Ah toHh as p is to q; then taking a = p

n
and b = q

n
the ratio of the Area ADh

to HO will be a×bq

p+1 ×

(

1+ q
p+2×

p
q
+ q×(q−1)×p2

(p+2)×(p+3)×q2
+ q×(q−1)×(q−2)×p3

(p+2)×(p+3)×(p+4)×q3

)

+&c.

For the series xp+1rq

p+1 + q
p+1 ×

xp+2×rq−1

p+2 +&c. in Prop. 10. Art. 2 of the
Essay, which expresses the ratio of ACf to HO, becomes this series when
x = a = p

n
, b = r = q

n
; that is when Cf has moved till it coincides with Dh and

ACf becomes ADh. In like manner, from Art. 3. in the Essay, it appears that

the ratio of HDh to HO is apbq+1

q+1 ×

(

1 + p
q+2 ×

q
p
+ p

q+2 ×
p−1
q+3 ×

q2

p2

)

+&c.

From hence it follows that the ratio of the difference between ADh and
HDh to HO is apbq

n
multiplied by the difference between the series p

p+1 +
q

p+1 ×
p2

pq+2q + q×(q−1)×p3

(p+1)×(p+2)×(pq2+3q2)+&c. and the series q
q+1 + p

q+1 ×
q2

pq+2p +
p×(p−1)×q3

(q+1)×(q+2)×(p2q+3p2)+&c. the former series being to be subtracted from the

latter, if HDh is greater than ADh, and vice versa.
2. The ratio of any term in the former of the two foregoing series to that

which next but one follows the correspondent term in the latter is pq+p
p×q

×
pq+2p
p×q

×

p×q
qp+q

×
pq+3p
pq−q

×
pq

pq+2q ×
pq+4p
pq−2q ×

pq−p
pq+3q ×

pq+5p
pq−3q ×

pq−2p
pq+4q ×

pq+6p
pq−4q &c. taking twice

as many terms and four over as there are units in the number which expresses
the distance of the term in the former series from its first term; which ratio if
q be greater than p, it is evident must be greater than the ratio of equality.
Wherefore, if from the second series you subtract the two first terms which
together are less than two, the remainder is less than the former series; and
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of consequence, the former series subtracted from the latter cannot leave a
remainder so great as two. And therefore in this case, that is, when q is greater
than p, by the preceding article, the ratio of HDh−ADh to HO cannot be so
great as 2apbq

n
.

3. The curve ADH being as before divided into two parts ADh and HDh,
let the ordinates Cf and Ft be placed on each side of Dh and at the same
distance from it, and let z be the ratio of hf or ht to AH . Then if y, x and r

be respectively the ratios of Cf, Af and Hf to AH , by the nature of the curve
y = xprq. But because the ratio of Ah to AH is a, and that of hf to AH is z,
the ratio of Ah− hf (= Af) to AH is a− z. Wherefore a− z = x. And in like
manner b + z = r. But y = xprq, and y is the ratio of Cf to AH . Wherefore
the ratio of Cf to AH is (a− z)p× (b+ z)q. And in like manner the ratio of Ft

to AH is (a+ z)p× (b− z)q And consequently Cf is to Ft as (a− z)p× (b+ z)q

is to (a+ z)p × (b− z)q.
4. If q is greater than p, (a+z)p×(b−z)q is greater than (a−z)p×(b+z)q, and

the ratio between them increases as z increases. For the hyperbolic logarithm
of that ratio taken as usual, and then instead of p and q putting na and nb

because a = p
n

and b = q
n

(See Art. 1) you will find to be 2n multiplied by

the series b2−a2

3b2a2 × z3 + b4−a4

5b4a4 × z5 + b6−a6

7b6a6 × z7 &c. which logarithm when q

is greater than p, and therefore b greater than a has all its terms positive, and
so much the greater as z is greater; and therefore it is the logarithm of a ratio
greater than that of equality, and which increases as z increases.

5. By Art. 3. Ft is to Cf as (a+z)p×(b−z)q is to (a−z)p×(b+z)q. And by
Art. 4. (a+z)p×(b−z)q is greater than (a−z)p×(b+z)q, and the ratio between
them increases as z increases, if q is greater than p. Wherefore, upon this
supposition, also Ft is greater than Cf , and the ratio between them increases
as z or ht and hf increases, and consequently this will be true also concerning the
areas described by them as their equal abscissas ht and hf increase. Wherefore,
when q is greater than p, DhtF is greater than DhfC, and the ratio between
them increases as hf = ht increases.

6. Because Ah is to Hh as p is to q, when q is greater than p, Hh is greater
than Ah. In Hh therefore taking hl equal to Ah, by the preceding Art. the
part of the figure HDh which insists upon hl will be greater than ADh, and
the ratio of that part of HDh to ADh will be greater than the ratio of DhtF

to DhfC. Consequently, much more (q being greater than p) the whole figure
HDh is greater than ADh, and the ratio of HDh to ADh is greater than that
of DhtF to DhtC.

7. When q is greater than p, (1− n2z2

pq
)

n
2 is greater than (1− nz

p
)p×(1+ nz

q
)q

and less than (1− nz
q
)q × (1 + nz

p
)p. For the fluxion of (1− n2z2

pq
)

n
2 is −n3zż

pq
×

(1 − n2z2

pq
)

n
2
−1 and the fluxion of (1 − nz

p
)p × (1 + nz

q
)q (because p + q = n) is

−
n3zż
pq

×(1− nz
p
)p−1

×(1+ nz
q
)q−1. Wherefore (1− n2z2

pq
)

n
2 is to (1− nz

p
)p×(1+ nz

q
)q

as the fluxion of the former multiplied by (1− n2z2

pq
) to the fluxion of the latter

multiplied by ((1− nz
p
)× (1 + nz

q
) or) 1− nz

p
+ nz

q
−

n2z2

pq
. From which analogy,

because q is greater than p, it is plain that (1 −
nz
p
)p × (1 + nz

q
)q varies at
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a greater rate in respect of its own magnitude than (1 −
n2z2

pq
)

n
2 does. And,

because their fluxions as found out before have negative sign before them, they
both decrease as z increases; consequently, if they are ever equal, as z increases
the latter must be the largest. But when z = 0 they are each equal to 1. In
like manner the other part of this article appears. And hence, since a = p

n
and

b = q
n
, it is manifest that apbq × (1− n2z2

pq
)

n
2 is greater than (a− z)p × (b+ z)q

and less than (a+ z)p × (b− z)q, when q is greater than p.
8. Suppose now further that the curve RQW be described meeting the lines

Dh, Ft, ht produced in R, Q, W , in such manner that Ft, which is to Cf

as (a + z)p × (b − z)q to (a − z)p × (b + z)q (Vid. Art. 3.) shall be to Qt

as (a + z)p × (b − z)q to apbq × (1 −
n2z2

pq
)

n
2 wherever the points t and f fall

at equal distances from h. And it is manifest by the foregoing Art. that Qt

must always be greater than Cf , and less than Ft. And of consequence the
same must be true concerning the areas described by their motion while their
abscissas increase. Wherefore RhtQ is greater than DhfC, and less than DhtF .

9. Since Ft is to Qt as (a + z)p × (b − z)q to apbq × (1 −
n2z2

pq
)

n
2 ; and

(a+ z)p × (b− z)q (by Art. 3.) expresses the ratio of Ft to AH ; the ratio of Qt

to AH must be apbq×1−n2z2

pq
)

n
2 , and as has been all along supposed z is the ratio

of ht to AH . Wherefore, by squaring the curve RhtQ, it will appear that the

ratio ofRhtQ toHO is apbq×
(

z− n3z3

2.3pq+
n−2
4 ×

n5z5

2.5p2q2
−

n−2
4 ×

n−4
6 ×

n7z7

2.7p3q3
+&c.

)

which (ifm = n3

2pq ) is a
pbq×

√
2pq

n
√
n
×

(

mz−m3z3

3 + n−2
2n ×

m5z5

5 −
n−2
2n ×

n−4
3n ×

m7z7

7 +

n−2
2n ×

n−4
3n ×

n−6
4n ×

m9z9

9 −&c.
)

which last series when n2z2

pq
= 1, and consequently

the ordinate Qt vanishes, becomes B−
B3

3 + B2−1
2B2 ×

B5

5 −
B2−1
2B2 ×

B2−2
3B2 ×

B7

7 +&c.
taking B2 = n

2 .

10. If B2 = n
2 the ratio of the whole figure RQWh to HO is

√
2pq

n
√
n
× apbq ×

(

B−
B2−1
2B2 ×5−&c. Now, (by Prop. 10. Art. 4 of the Essay) the ratio of ACFH

to HO is 1
n+1 ×

1
E
, E being the coefficient of that term of the binomial (a+ b)n

expanded in which occurs apbq. Wherefore, the ratio of RQWh to ACFH is
n+1
n

×

√
2pq√
n

×Eapbq×
(

B−
B3

3 + B2−1
2B2 ×

B5

5 &c.
)

Put G now for the coefficient of

the middle term of the same binomial, and if p = q = n
2 , E = G, a = 1

2 = b the
area RRQWh is equal to half ACFH ; for then Qt, Ft, Cf are all equal, and

consequently the areas RQWh, HDh and ADh. Wherefore, the series B−
B3

3 +

&c. is equal to
√
2n

n+1 ×
2n−1

G
. But the series B−

B3

3 + &c. (because B2 = n
2 ) does

not alter whatever p and q are, whilst their sum n remains the same. Wherefore,

in all cases, the ratio of RQWh to ACFH is
√
pq

n
×

Eapbq

G
× 2n.

11. By Prop. 10. Art. 4. of the Essay, the ratio of ACFH to HO∗ is
1

n+1 ×
1
E
; and by Art. 9. the ratio of RhtQ to HO is apbq ×

√
2pq

n
√
n
×

(

mz −

m3z3

3 + n−2
2n ×

m5z5

5 &c.
)

. Wherefore, the ratio of RhtQ to ACFH is n+1
n

×

∗It is hoped that the imperfection of the figure all along referred to will be excused. The

lines Rh and Dh should appear equal; and it will be found presently, that the curve line

ACDFH should have been drawn from F and C convex towards AH.
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√
2pq√
n

×Eapbq ×
(

mz− m3z3

3 + n−2
2n ×

m5z5

5 −
n−2
2n ×

n−4
3n ×

m7x7

7 +&c.
)

Likewise,

by Art. 10. the ratio of RQWh to ACFH is
√
2pq
n

×
Eapbq

G
× 2n. Wherefore the

ratio of RhtQ to RQWh is n+1√
n

×

√
2

2n ×G×

(

mz − m3z3

3 +&c.
)

.

12. By Art. 2.6. When q is greater than p, the ratio of HDh−ADh to HO

is less than 2apbq

n
. And by Prop. 10. Art. 4. of the Essay, the ratio of ACFH

or HDh + ADh to HO is 1
n+1 ×

1
E
. Wherefore, the sum of these two ratios,

or the ratio of 2HDh to HO, is less than 1
n+1 ×

1
E
+ 2apbq

n
; and the difference

between them, or the ratio of 2ADh to HO is greater than 1
n+1 ×

1
E
−

2apbq

n
.

Wherefore, the ratio of 2HDh to 2ADh, or that of HDh to ADh, is less than
that of 1

n+1 ×
1
E

+ 2apbq

n
to 1

n+1 ×
1
E

−
2apbq

n
, which is equal to the ratio of

1× 2Eapbq + 2Eapbq

n
to 1− 2Eapbq − 2Eapbq

n
. But the ratio of HDh to ADh, by

Art. 6. is greater than the ratio of DhtF to DhfC, when q is greater than p.
Wherefore, much more when q is greater than p, the ratio of DhtF to DhfC will
be less than that of 1 + 2Eapbq + 2Eapbq

n
to 1− 2Eapbq − 2Eapbq

n
. And because,

by Art. 8. RhtF is a mean between DhtF and DhfC, the ratio of DhtF to
RhtQ will be less than that of 1+2Eapbq+ 2Eapbq

n
to 1−2Eapbq− 2Eapbq

n
. And

the ratio of DhfC to RhtQ will be greater than that of 1− 2Eapbq − 2Eapbq

n
to

1 + 2Eapbq + 2Eapbq

n
.

RULE II.

If nothing is known of an event but that it has happened p times and failed
q in p + q or n trials, and q be greater than p; and from hence I judge that
the probability of its happening in a single trial lies between p

n
and p

n
+ z, (if

m2 = n3

2pq , a = p
n
, b = q

n
, E the coefficient of the term in which occurs apbq

when (a+ b)n is expanded, and Σ = n+1
n

×

√
2pq√
n

×Eapbq ×
(

mz− m3z3

3 + n−2
2n ×

m5z5

5 −
n−2
2n ×

n−4
3n ×m5z57 +&c.

)

my chance to be in the right is greater than

Σ, and less than Σ ×
1+2Eapbq+ 2Eapbq

n

1−2Eapbq− 2Eapbq

n

. For by Art. 11. compared with the

value of Σ here set down, the ratio of RhtQ to ACFH is Σ. But by Art. 8.
DhtF is greater than RhtQ, and by Art. 12. the ratio of DhtF to RhtQ is
less than that of 1 + 2Eapbq + 2Eapbq

n
to 1 − 2Eapbq − 2Eapbq

n
. From whence

it is plain that the ratio of DhtF to ACFH is greater than Σ, and less than

Σ ×
1+2Eapbq+ 2Eapbq

n

1−2Eapbq− 2Eapbq

n

. But, as appears from the 10th Proposition in the Essay,

the chance that the probability of the event lies between p
n
and p

n
+ z (that is,

between the ratio of Ah to AH , and that of At to AH) is the ratio of DhtF to
ACFH . Wherefore, the chance I am right in my guess is greater than Σ and

less than Σ×
1+2Eapbq+ 2Eapbq

n

1−2Eapbq− 2Eapbq

n

.

In like manner, 2dly, the same things proposed, if I judge that the probability
of the event lies between p

n
and p

n
− z, my chance to be right is less than Σ, and

greater than Σ ×
1−2Eapbq− 2Eapbq

n

1+2Eapbq+ 2Eapbq

n

. This is manifest as the other case, because

DhfC is less than RhtQ, but the ratio between them is greater than that of
1− 2Eapbq − 2Eapbq

n
to 1 + 2Eapbq + 2Eapbq

n
.
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3dly, If, other things supposed as before, p is greater than q, and I judge the
probability of the event lies between p

n
and p

n
+ z, my chance to be right is less

than Σ, and greater than Σ×
1−2Eapbq− 2Eapbq

n

1+2Eapbq+ 2Eapbq

n

. But if I judge it lies between p
n

and p
n
−z, my chance is greater than Σ, and less than Σ×

1+2Eapbq+ 2Eapbq

n

1−2Eapbq− 2Eapbq

n

. And

if p = q, which ever of these ways I guess, my chance, my chance is Σ exactly.
This may be proved in the same manner with the foregoing cases, where q is
greater than p, or may be proved from them by considering the happening and
failing of an event, as the same with the failing and happening of its contrary.

4thly, Other things supposed the same, whether q be greater or less than
p, and I judge the probability of the event lies between p

n
+ z and p

n
− z, my

chance is greater than 2Σ
1+2Eapbq+ 2Eapbq

n

, and less than 2Σ
1−2Eapbq− 2Eapbq

n

. This is

an evident corollary from the cases already determined. And here, if p = q, my
chance is 2Σ exactly.

Thus far I have transcribed Mr. Bayes.

It appears, from the Appendix to the Essay, that the rule here demonstrated,
though of great use, does not give the required chance within limits sufficiently
narrow. It is therefore necessary to look out for a contradiction of these limits;
and this, I think, we shall discover by the help of the following deductions;
which, for the sake of greater distinctness, I shall give as a continuation of the
foregoing Articles.

13. The ratio of the fluxion of (1− n2z2

pq
)

n
2 to the fluxion of (1+ nz

p
)p×(1− nz

q
)q

is
(1 − n2z2

pq
)

n
2
−1

(1 + nz
p
)p−1

× (1 − nz
q
)q−1

and the ratio of the fluxion of (1− nz
p
)p× (1+ nz

q
)q to the fluxion of (1− n2z2

pq
)

n
2

is
(1− nz

p
)p−1

× (1 + nz
q
)q−1

(1 − n2z2

pq
)

n
2
−1

This will immediately appear from Art. 7.

14. While z is increasing from nothing till n2z2

pq
becomes equal to unity,

these two ratios are at first greater than the ratio of equality, and increase
as z increases, till they come to a maximum. Afterwards they decrease untill
they become first equal to the ratio of equality, and then less. This is proved by
finding the hyperbolic logarithms of these ratios, the hyperbolic logarithm of the

first is the series
(

q−1
q

−
p−1
p

)

×nz+
(

q−1
q2

+ p−1
p2 −

n−2
pq

)

×
n2z2

2 +
(

q−1
q3

−
p−1
p3

)

×
n3z3

3 +
(

q−1
q4

+ p−1
p4 −

n−2
p2q2

)

×
n4z4

4 +
(

q−1
q5

−
p−1
p5

)

×
n5z5

5 +
(

q−1
q6

+ p−1
p6 −

n−2
p3q3

)

×
n6z6

6 +&c..

The hyperbolic logarithm of the second ratio is the series
(

q−1
q

−
p−1
p

)

× nz −
(

q−1
q2

+ p−1
p2 −

n−2
pq

)

×
n2z2

2 +
(

q−1
q3

−
p−1
p3

)

×
n3z3

3 −

(

q−1
q4

+ p−1
p4 −

n−2
p2q2

)

×
n4z4

4 +&c.

It will appear from examining these two serieses (q all along supposed greater
than p) that while z is small the value of each of them is positive, and increases
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as z increases till it becomes a maximum, after which it decreases till it becomes
nothing, and after that negative; which demonstrates this article.

15. The former of the two ratios in Art. 13. (q being greater than p) is at
first, while z is increasing from nothing, less than the second ratio; and does
not become equal to it, till some time after both ratios have been the greatest
possible.

Upon considering the two serieses in the last Art. it will appear that the
first term of the first series is always positive, the second negative, the third
also negative, after which the terms become alternately positive and negative.
On the other hand, it will appear that in the second series the two first terms
are always positive, and all that follow negative. But as the serieses converge
very fast when z is small, the second term being negative in the first series and
positive in the second, has a greater effect in making the first series less than the
second, than can be compensated for by the terms being afterwards alternately
negative and positive in the one, and all negative in the other. It will further
appear from considering the two serieses, that the first must continue less than
the second ’till z becomes so large as to make the fourth term equal to the
second, in which circumstances the two serieses are nearly equal. Afterwards,
as z goes on to increase, the value of both lessens continually; but the second now
decreasing fastest, as before it increased fastest, becomes first nothing. After
which, the other series becomes nothing; and after that both remain negative.
From hence it is easy to infer this Article.

16. What has now been shewn of the ratio of the fluxion of (1 − n2z2

pq
)

n
2 to

the fluxion of (1 + nz
p
)p × (1 −

nz
q
)q compared with the ratio of the fluxion of

(1− nz
p
)p× (1+ nz

q
)q to the fluxion of (1− n2z2

pq
)

n
2 is also true of the ratio of the

fluxion of apbq×(1− n2z2

pq
)

n
2 (orQt in the figure) to the fluxion of (a+z)p×(b−z)q

(or Ft) compared to the ratio of the fluxion of (a− z)p× (b+ z)q (or Cf) to the

fluxion of apbq × (1− n2z2

pq
)

n
2 or Qt; the latter quantities being only the former

multiplied by the common and permanent quantity apbq. It appears, therefore,
that if we conceive Ft, Qt, Cf (Vid. Fig.) to move with equal and uniform
velocities, from Dh to Rh along AH , in order to generate the areasHDh, RWh,
ADh; Cf will at first not only decrease faster than Qt, and Qt than Ft; but the
ratio of the rate at which Cf decreases to the rate at which Qt decreases, will
be greater than the ratio of the rate at which Qt decreases to the rate at which
Ft decreases. It appears also that after some time, first Cf and Qt, and then
Qt and Ft will come to decrease equally; after which, Qt will decrease faster
than Cf , and Ft faster than Qt.

17. The curves DFH , RQW , DCA, have each of them a point of contrary
flexure; and the value of z, or of the equal abscissas at that point, is in all three√

pq√
n3−n2

. This may be found in the common manner, by putting the second

fluxions of the ordinates equal to nothing. In the single case, when either p or
q is equal to unity, one of these points vanishes, or coincides with A or H .

18. At the points of contrary flexure (q being greater than p) the ratio of
the fluxion of Qt to the fluxion of Ft is a maximum; and the same is true of
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the ratio of the fluxion of Cf to the fluxion of Qt. This is found by making the
fluxions of the logaritms of these ratios, or of

(1− n2z2

pq
)

n
2
−1

(1 + nz
p
)p−1

× (1 − nz
q
)q−1

, and
(1− nz

p
)p−1

× (1 + nz
q
)q−1

(1− n2z2

pq
)

n
2
−1

equal to nothing: which will give the value of z equal to
√
pq√

n3−n2
, or the same

with the value of z at the points of contrary flexure.
19. At the points of contrary flexure, the ratio of the fluxion of Cf to the

fluxion of Qt, is greatest in comparison of the ratio of the fluxion of Qt to the
fluxion of Ft. This is proved by finding the value of z when the fluxion of the
former ratio divided by the latter, or of

(1− n2z2

p
)p−1

× (1 + n2z2

q
)q−1

(1− n2z2

pq
)n−2

is nothing, which will still give z =
√
pq√

n3−n2
. The reason, therefore, in the nature

of the curve, which, as the ordinates flow, keeps at first the excess of Ft above
Qt less than the excess of Qt above Cf , operates with the greatest force at the
points of contrary flexure.

20. The greatest part of the area RQWh lies between Rh, and the ordinate
at the point of contrary flexure. By Art. 11 the ratio of RhtQ to RQWh is
n+1√

n
×

√
2

2n ×G ×

(

mz − m3z3

3 + n−2
2n ×

m5z5

5 − &c. Substitute here
√

pq
n3−n2 for

z, and 2n√
nK×H

† for G (K being the ratio of the quadrantal arc to radius, and

H the ratio whose hyperbolic logarithm is 3
12n −

15
360n3 + 63

1260n5 &c.‡) and the
ratio of RhtQ to RQWh at the point of contrary flexure, will be n+1√

n×
√
n−1

×

.797884
H

×

(

1− n
2.3.(n−1) +

n×(n−2)
2.5.4(n−1)2 −

n(n−2)(n−4)
2.3.7.8(n−1)3 +

n(n−2)(n−4)(n−6)
2.3.4.9.16(n−1)4 −&c. Now

when n is little, the value of this expression will be considerably greater than
.6822. It approaches to this continually as n increases; and when n is large, it
may be taken for this exactly. Thus when n = 6, this expression is equal to
.804. When n = 110, it is equal to .6903. If we would know the ratio of RhtQ

to RQWh, when Cf comes to decrease no faster in respect of Qt, than Qt

decreases in respect of Ft; that is, when the excess of Qt above Cf , is greatest
in comparison of the excess of Ft above Qt, it may be found (by putting the
fourth term of the series in the 14th Art. equal to the second term, and then
finding the value of z) to be about .8426, when n, p, and q are considerable;
and in other cases greater.

Coroll. ’Tis easy to gather from hence that in like manner the greatest
part of the area ADH lies between the two ordinates at the points of contrary

†This is always the true value of G; but it would be too tedious to give the demonstration

of this here.
‡Vid. the Second Rule in the Essay, Phil. Trans. Vol. LIII.
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flexure.§

21. RhtQ is greater than the arithmetical mean between DhtF and DhfC.
This appears from the latter part of Art. 19. for what is there proved of the
ordinates must hold true of the contemporary areas generated by them. And
though beyond the points at which the ratio of the decrease of Qt to the decrease
of Ft comes to an equality with the ratio of the decrease of Qt to the decrease
of Cf , the excess of Ft above Qt begins to grow larger than before in respect of
the excess of Qt above Cf ; yet as it appears from the last article, that above five
sixths of the areas RQWh and ACFH are generated before the ordinates come
to these points, and as also beyond these points the said ratios, ’till they become
negative and for some time afterwards, are but small; the effect produced before
towards rendering the excess of DhtF above RbtQ always less than the excess
of RhtQ above DhfC, will be such as cannot be compensated for afterwards.

A further proof of this will appear from considering that even when RhtQ

is increased to RQWh, it is but little short of the arithmetical mean between
ADh and HDh. For from Art. 11. and 20. it may be inferred that the ratio
of the whole area RQWh to this mean, or to ACFH

2 , is h ×H , which is never
far from the ratio of equality, but when both p and q are of any considerable
magnitude, it is very nearly the ratio of equality. For example; when n = 110,
q = 100, p = 10, it is .9938.

22. The ratio of DhtF to RhtQ is less than that of 1 + 2Eapbq + 2Eapbq

n

to one. For by Art. 12. the ratio of DhtF to DhfC is less than that of
1 + 2Eapbq + 2Eapbq

n
to 1 − 2Eapbq −

2Eapbq

n
. But by the last Art. RhtQ is

greater than the arithmetical mean between DhtF and DhfC, and 1 is exactly
the arithmetical mean between 1 + 2Eapbq + 2Eapbq

n
and 1− 2Eapbq − 2Eapbq

n
.

From whence this Article is plain.
23. The ratio of DhtF to ACFH is greater than Σ, and less than Σ ×

(

1 + 2Eapbq + 2Eapbq

n

)

. For DhtF being greater than RhtQ, the ratio of it to
ACFH must be greater than the ratio of RhtQ to ACFH , or greater than Σ.
Also; since the ratio of RhtQ to ACFH is equal to Σ; the ratio of DhtF to
RhtQ is less than the ratio of 1+ 2Eapbq + 2Eapbq

n
to 1; it follows that the ratio

compounded of the ratio of RhtQ to ACFH , and of DhtF to RhtQ, that is,
the ratio of DhtF to ACFH must be less than Σ×

(

1 + 2Eapbq + 2Eapbq

n

)

.
24. The ratio of DhtF + DhfC to ACFH (that is, the chance for being

right in judging that the probability of an event perfectly unknown, which has

§From this Article may be inferred a method of finding at once, without any labour,

whereabouts it is reasonable to judge the probability of an unknown event lies, about which

a given number of experiments have been made. For when neither p nor q are very small,

or even not less than 10, it will be nearly an equal chance, that the probability of the event

lies between
p

n
+

√
pq

√

2n3−2n2
and

p

n
−

√
pq

√

2n3−2n2
. It will be the odds of two to one that it

lies between
p

n
+

√
pq

√

n3−n2
and

p

n
−

√
pq

√

n3−n2
; and the odds of five to one that it lies between

p

n
+

√
2pq

√

n3−n2
and

p

n
−

√
2pq

√

n3−n2
. For instance; when p = 1000, q = 100, there will be nearly

an equal chance, that the probability of the event lies between 10

11
+ 1

163
and 10

11
−

1

163
; two to

one that it lies between 10

11
+ 1

115
and 10

11
−

1

115
; and five to one that it lies between 10

11
+ 1

81

and 10

11
−

1

81
.
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happened p and failed q times in p+ q or n trials, lies somewhere between p
n
+ z

and p
n
− z) is greater than 2Σ

1+2Eapbq+ 2Eapbq

n

, and less than 2Σ. The former part

of this Art. has already been proved, Art. 12. The latter part is evident from
Art. 21. For RhtQ being greater than the arithmetical mean between DhtF

and DhfC, 2RhtQ must be greater than DhtF +DhfC; and consequently the
ratio of 2RhtQ to ACFH , greater than the ratio of DhtF +DhfC to ACFH .¶

It will be easily seen that this Article improves considerably the rule given
in Art. 12. But we may determine within still narrower limits whereabouts the
required chance must lie, as will appear from the following Articles.

25. If c and d stand for any two fractions, whenever the fluxion of c×FT is
greater than the fluxion of d×Cf (Vid. fig.) c×Ft+d×Cf will be greater than
Qt. For in the same manner with Art. 6. it will appear that c×Ft+ d×Cf is
to Qt, as the fluxion of c×Ft× (1+ nz

p
)× (1− nz

q
) together with the fluxion of

d×Cf × (1− nz
p
)× (1+ nz

q
) to the fluxion of Qt× (1− n2z2

pq
). Now since 1− n2z2

pq

is the arithmetical mean between (1+ nz
p
)×(1− nz

q
) and (1− nz

p
)×(1+ nz

q
), it is

plain, that were the fluxion of c×Ft equal to the fluxion of d×Cf , c×Ft+d×Cf

would decrease in respect of its own magnitude at the same rate with Qt; and,
therefore, since at first equal, they would always continue equal. But the fluxion
of c × Ft being greater than the fluxion of d × Cf by supposition, and (since
q greater than) p(1 + nz

p
) × (1 − nz

q
), also greater than (1 − nz

p
) × (1 + nz

q
), it

follows that the fluxion of c × Ft × (1 + nz
p
) × (1 −

nz
q
) added to the fluxion

of d × Cf × (1 −
nz
p
) × (1 + nz

q
) is greater than these two fluxions multiplied

by (1− n2z2

pq
); and, therefore, greater, than the fluxion of Qt× (1− n2z2

pq
); and,

therefore, c× Ft+ d× Cf greater than Qt.
26. If we suppose three continued arithmetical means between Cf and Ft

(

3Cf+Ft
4 , Cf+Ft

2 , 3Ft+Cf
4

)

Qt will be greater than the second, and less than the
third, if p is greater than 1. That Qt will be greater than the second has been
already proved; and that it will be less than the third, will be an immediate
consequence from the last Article, if it can be shewn that the fluxion of 3Ft

4 is

greater than the fluxion of Cf
4 . This will appear in the following manner. The

ratio of the fluxion of Cf to the fluxion of Ft is by Art. 7. and 14.

(1 − nz
p
)p−1

× (1 + nz
q
)q−1

1 + nz
p

p−1
× (1− nz

q
)q−1

.

The hyperbolic logarithm of this ratio is ( 1
p
−

1
q
)× 2nz − ( 1

p2 −
1
p3 −

1
q2

+ 1
q3
)×

2n3z3

3 − ( 1
p4 −

1
p5 −

1
q4

+ 1
q5
) × 2n5z5

5 , &c. This ratio by Art. 18. is greatest at

the point of contrary flexure, or when z =
√
pq√

n3−n2
. Substitute this for z in the

series, and it will become ( 1
p
−

1
q
)×

2
√
pq√

n−1
− ( 1

p2 −
1
p3 −

1
q2

+ 1
q3
)× 2p

3
2 ×q

3
2

3×(n−1)
3
2

−&c.

which, therefore, expresses the logarithm of the ratio when greatest, and will
easily discover it in every case. ’Tis apparent that the value of this series is

¶This Art. is true, whether p be greater or less than q.
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greatest when p is least in respect of q. Suppose then p = 2, and q infinite. In
this case, the value of the series will be 1.072, and the number answering to this
logarithm is not greater than 2.92. The fluxion, therefore, of Cf , when greatest,
cannot be three times the contemporary fluxion of Ft; from whence it follows
that the fluxion of 3Ft

4 must be greater than the fluxion of Cf
4 .

It is easy to see how these demonstrations are to be varied when q is less
than p, and how in this case similar conclusions can be drawn. Or, the same
conclusions will in this case immediately appear, by changing p into q and q

into p, which will not make any difference in the demonstrations.
In the manner specified in this Article we may always find within certain

limits how near the value of Qt comes to the arithmetical mean between Ft and
Cf , which limits grow narrower and narrower, as p and q are taken larger, or
their ratio comes nearer to that of equality, ’till at last, when p and q are either
very great or equal, Qt coincides with this mean. Thus, if either p or q is not less
than 10; that is, in all cases, where it is not practicable without great difficulty
to find the required chance exactly by the first rule, Qt will be greater than the
fourth, and less than the fifth of seven arithmetical means between Cf and Ft.

27. The arithmetical means mentioned in the last Article may be conceived
as ordinates describing areas at the same time with Qt; and what has been
proved concerning them is true also of the areas described by them compared
with RhtQ.

28. If either p or q is greater than 1, the true chance that the probability of
an unknown event which has happened p times and failed q in (p+q) or n trials,
should lie somewhere between p

n
+ z and p

n
− z is less than 2Σ, and greaterer

than

Σ +
Σ× (1− 2Eapbq − 2Eapbq

n
)

1 + Eapbq + Eapbq

n

.

If either p or q is greater than 10, this chance is less than 2Σ, and greater than

Σ +
Σ× (1− 2Eapbq − 2Eapbq

n
)

1 + 1
2Eapbq + 2Eapbq

2n

.

This is easily proved in the same manner with Art. 12, 23, 24.
That it may appear how far what has been now demonstrated improves

the solution of the present problem, let us take the fifth case mentioned in
the Appendix to the Essay, and enquire what reason there is for judging that
the probability of an event concerning which nothing is known, but that it has
happened 100 times and failed 1000 times in 1100 trials, lies between 10

11 + 1
110

and 10
11 −

1
110 . The second rule as given in Art. 12. informs us, that the chance‖

for this must lie between .6512, (or the odds of 186 to 100) and .7700 (or the
odds of 334 to 100). but from this last Art. it will appear that the required

‖In the Appendix, this chance, as discovered by Mr. Bayes’s second rule, is given wrong,

in consequence of making m2 equal to n
3

pq
, whereas it should have been taken equal to n

3

2pq
as

appears from Article 8.
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chance in this case must lie between 2Σ, and

Σ + Σ×

1− Eapbq − 2Eapbq

n

1 + 1
10Eapbq + Eapbq

10n

;

or, between .6748 and .7057; that is, between the odds of 239 to 100, and 207
to 100.

In all cases when z is small, and also whenever the disparity between p and q

is not great 2Σ is almost exactly the true chance required. And I have reason to
think, that even in all other cases, 2Σ gives the true chance nearer than within
the limits now determined. But not to pursue this subject any further; I shall
only add that the value of 2Σ may be always calculated very nearly, and without
great difficulty; for the approximations to the value of Eapbq, and of the series

m− zm3z3

3 + n−2
2n ×

m5z5

5 , &c.∗∗ given in the Essay, are sufficiently accurate in
all cases where it is necessary to use them.

∗∗In the expression for this last approximation there is an error of the press which should

be corrected; for the sign before the fourth term should be − and not +.
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