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Abstract

This report lists simple results about the relationship between power
variation (including the standard notions of total variation and quadratic
variation as special cases) and variation index, which is often used as
a measure of volatility. Variation index is defined for a given sequence
of partitions.
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Variation and variation index

The p-variation of ω ∈ Ω1 (continuous and ω(0) = 0) is defined as

varp(ω) = sup
0=t0<t1<···<tn=1

|ω(ti)− ω(ti−1)|p

The variation index is the borderline value

vi(ω) = inf{p|varp(ω) <∞} = sup{p|varp(ω) =∞}.
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Power variation

A partition of [0,1] is a finite sequence of numbers
0 = t0 < t1 < · · · < tm ≤ 1 (tk =∞ for k > m);
π = (π0, π1, π2, . . . ) is a nested sequence of partitions.
The nth approximation along π is

Vn(t) = An,p,π
t =

∞∑
k=1

∣∣ω(πn
k ∧ t)− ω(πn

k−1 ∧ t)
∣∣p .

If An,p,π(t) converges (uniformly?) as n→∞, then its limit
V (t) = Ap,π(t) is called power p-variation of ω along π.
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Relationship set

The relationship set of ω ∈ Ω1 is the set of all (p1,p2) ∈ [1,∞)× [1,∞)
for which there exists ω such that:

ω has nontrivial (non-zero) power p1-variation along π;
the variation index of ω is p2.
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Riemann and Lebesgue dyadic partition sequence

Riemann dyadic sequence is π = (πn) where
πn

k = k2−n (k = 1, . . . ,2n).

Lebesgue dyadic sequence is defined inductively:

πn
0 = 0;

πn
k (ω) = inf

{
t ∈ [πn

k−1(ω),1]|ω(t) ∈ {k2−n} \ {ω(πn
k−1)}

}
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Continuous functions

Proposition 1. For continuous functions, the relationship set with
respect to Riemann partition π is

{(1,1)} ∪ {(p1,p2) ∈ (1,∞)× (1,∞]|p1 ≤ p2} .

Recall that (p1,p2) belongs to the relationship set if there is a function
f which has power variation p1 along π, but its variation index of is p2.

We will use the facts: p1 ≤ p2;
fractional Brownian motion Bp(t) with Hurst index 1/p is known to have
the property p1 = p2 = p a.s.
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Example

Define f as the function whose graph connects the points

(0,0), (1/2,a1), (3/4,a1 − a2), (7/8,a1 − a2 + a3), . . .

by straight lines in this order, where a1 > a2 > a3 > ... > 0 (an → 0).
What is its power p-variation for p > 1?
For the partition (0,1/2,1), V1(1) ≤ ap

1 + ap
2 = b1 + ap

2;
for the partition (0,1/4,1/2,3/4,1),
V2(1) ≤ 21−pap

1 + ap
2 + ap

3 = b2 + ap
2;

and so on.
In general, bn = 21−pbn−1 + ap

n → 0, therefore Vn(1)→ 0, which
implies V → 0 as V is non-decreasing.
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Example for 1 < p1 ≤ p2 ≤ ∞

Let us combine two functions Bp (Brownian motion of index p) and
f (with an = n1/p2 for 1 ≤ p2 <∞ or 1/log(n + 1) for p2 =∞):

w(t) = Bp1(t) for 0 ≤ t ≤ 1/2;
w(t) = w(1/2) + f (2t − 1) for 1/2 ≤ t ≤ 1.

The first part has variation (p1,p1), the second has (1,p2).
So the whole function has power variation index p1 along Riemann
partition π and the variation index p2.

Nouretdinov y Vovk (CLRC) Variation index November 2014 10 / 19



Cadlag functions

What is the set of possible (p1,p2) is in the case of cadlag (continuous
on the right and having limits on the left) functions Ω2 (ω(0) = 0) on
[0,1]?

We already know that any combination 1 < p1 ≤ p2 is possible even for
continuous functions.

But for cadlag (unlike continuous) functions the cases p1 > p2 and
p1 < 1 also become non-trivial.
Also, a non-continuous function may have multiple values of p1 index.
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Case 0 < p2 < p1: yes

Recall that p1 is power p-variation index along Riemann dyadic
partition π, p2 is ’standard’ p-variation index.

Consider a piecewise-constant cadlag function
with ’gaps’ (−1)nn−1/p2 at points 2−n.

Its standard variation index is p2
and any number larger than p2 can be p1.
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Case p1 < min{1,p2}: no

If this happens then for p = (p1 + min{p2,1})/2 power p-variation
along π is 0 but the ’standard’ p-variation is infinite.

But this is impossible: for cadlag functions the standard p-variation for
p < 1 can not be higher than the power p-variation along π.

The principal reason is: inserting new points into a partition may
decrease the total variation for p > 1 but not for p ≤ 1.
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Case p1 < min{1,p2}: no

Indeed, for p < 1 variation never decreases after adding new points to
the partition. Therefore we can consider two partitions sequences: π
and π′ where π′n = πn ∪ ρ where ρ is a partition along which too high
standard p-variation is achieved. Now the question becomes: is it
possible that power p-variation along π′n is higher that along π? Using
sequential binary bisection, we can find a specific point r ∈ ρ around
which this effect concentrates. Let un < r < vn be the smallest
πn-interval containing r . If the difference between variations along π′

and π really exists then there are r , δ > 0 and n0 such that
|f (un)− f (r)|p + |f (r)− f (vn)|p − |f (un)− f (vn)|p > δ for any n > n0. But
for a cadlag f , f (vn) tends to f (r) and f (un) tends to u, so the whole
expression tends to |u − f (r)|p − |f (r)− f (r)|p − |u − f (r)|p = 0.
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Lebesgue dyadic partition sequence

Recall that Lebesgue dyadic sequence is defined inductively:

πn
0 = 0;

πn
k (ω) = inf

{
t ∈ [πn

k−1(ω),1]|ω(t) ∈ {k2−n} \ {ω(πn
k−1)}

}
For continuous functions, it is known from Bruneau that p1 = p2.

For cadlag functions, any 1 ≤ p1 < p2 ≤ ∞ is possible, this can be
derived from Stricker’s upper bound for variation.
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Lebesgue dyadic partition sequence

The definition is modified for cadlag functions: λn
0 = Dn

0 = 0;

Cn
k (t) = conv{ω(λn

k−1), ω(t)} ∩
(
{k2−n} \ Dn

k−1(ω)
)

λn
k (ω) = inf

{
t ∈ [λn

k−1(ω),1]|Cn
k (t) 6= ∅

}
Dn

k (ω) ∈ arg min
D∈Cn

k (t)
|D − ω(λn

k )|
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Lebesgue dyadic partition sequence

Stricker: for any q > p, ω ∈ Ω, δ > 0 there exists c(q,p) s.t.

varq(ω) ≤ c

(
θq + θq−p sup

j
(L2−j)pM(ω,L2−j)

)

where θ = sups∈[0,1] w(s)− infs∈[0,1] w(s) and M(ω,L2−j)
(
D(ω,L2−j)

)
is the number of upcrossings (downcrossings) of L2−j by ω.

This is true for any L ≥ θ, we will use L of the form 2k .
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Lebesgue dyadic partition sequence

Suppose the power p-variation V of ω ∈ Ω2 exists for p ≥ 1 and q > p.
By Sticker’s result, it is enough to prove that for an integer j the total
number of crossings M(ω,L2−j) + D(ω,L2−j) is bounded above by a
linear function (independent of j) of V j (j th approximation to V )
multiplied by 2−jp.

This is achievable by calculating the crossings.
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Conclusion

Let p1 be for power variation index along Riemann dyadic partition
sequence π, p2 for standard variation index.
For continuous functions, either p1 = p2 = 1 or 1 < p1 ≤ p2;
for cadlag functions, any p1 and p2 larger than 1 are compatible, but
p1 < p2 is impossible if p1 < 1.

For continuous functions along Lebesgue partition sequence,
1 ≤ p2 ≤ p1.
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